Learning Human Pose Models from Synthesized Data for Robust RGB-D Action Recognition

We propose Human Pose Models that represent RGB and depth images of human poses independent of clothing textures, backgrounds, lighting conditions, body shapes and camera viewpoints. Learning such universal models requires training images where all factors are varied for every human pose. Capturing...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer vision Vol. 127; no. 10; pp. 1545 - 1564
Main Authors: Liu, Jian, Rahmani, Hossein, Akhtar, Naveed, Mian, Ajmal
Format: Journal Article
Language:English
Published: New York Springer US 01.10.2019
Springer
Springer Nature B.V
Subjects:
ISSN:0920-5691, 1573-1405
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We propose Human Pose Models that represent RGB and depth images of human poses independent of clothing textures, backgrounds, lighting conditions, body shapes and camera viewpoints. Learning such universal models requires training images where all factors are varied for every human pose. Capturing such data is prohibitively expensive. Therefore, we develop a framework for synthesizing the training data. First, we learn representative human poses from a large corpus of real motion captured human skeleton data. Next, we fit synthetic 3D humans with different body shapes to each pose and render each from 180 camera viewpoints while randomly varying the clothing textures, background and lighting. Generative Adversarial Networks are employed to minimize the gap between synthetic and real image distributions. CNN models are then learned that transfer human poses to a shared high-level invariant space. The learned CNN models are then used as invariant feature extractors from real RGB and depth frames of human action videos and the temporal variations are modelled by Fourier Temporal Pyramid. Finally, linear SVM is used for classification. Experiments on three benchmark human action datasets show that our algorithm outperforms existing methods by significant margins for RGB only and RGB-D action recognition.
AbstractList We propose Human Pose Models that represent RGB and depth images of human poses independent of clothing textures, backgrounds, lighting conditions, body shapes and camera viewpoints. Learning such universal models requires training images where all factors are varied for every human pose. Capturing such data is prohibitively expensive. Therefore, we develop a framework for synthesizing the training data. First, we learn representative human poses from a large corpus of real motion captured human skeleton data. Next, we fit synthetic 3D humans with different body shapes to each pose and render each from 180 camera viewpoints while randomly varying the clothing textures, background and lighting. Generative Adversarial Networks are employed to minimize the gap between synthetic and real image distributions. CNN models are then learned that transfer human poses to a shared high-level invariant space. The learned CNN models are then used as invariant feature extractors from real RGB and depth frames of human action videos and the temporal variations are modelled by Fourier Temporal Pyramid. Finally, linear SVM is used for classification. Experiments on three benchmark human action datasets show that our algorithm outperforms existing methods by significant margins for RGB only and RGB-D action recognition.
Audience Academic
Author Liu, Jian
Mian, Ajmal
Akhtar, Naveed
Rahmani, Hossein
Author_xml – sequence: 1
  givenname: Jian
  orcidid: 0000-0003-3258-0380
  surname: Liu
  fullname: Liu, Jian
  email: jian.liu@research.uwa.edu.au
  organization: School of Computer Science and Software Engineering, The University of Western Australia
– sequence: 2
  givenname: Hossein
  surname: Rahmani
  fullname: Rahmani, Hossein
  organization: School of Computing and Communications, Lancaster University
– sequence: 3
  givenname: Naveed
  surname: Akhtar
  fullname: Akhtar, Naveed
  organization: School of Computer Science and Software Engineering, The University of Western Australia
– sequence: 4
  givenname: Ajmal
  surname: Mian
  fullname: Mian, Ajmal
  organization: School of Computer Science and Software Engineering, The University of Western Australia
BookMark eNp9kV1rHCEUhqWk0E3aP9AroVe9mMSP0RkvNx9NAltaNum1ODPHqWFXU3Wgm18fNxMIyUUQUeR5PJzzHqIDHzwg9JWSY0pIc5IoZZJXhKqyqWIV-4AWVDS8ojURB2hBFCOVkIp-Qocp3RFCWMv4At2uwETv_Iivpq3x-HdIgH-GATYJ2xi2-Gbn819I7gEGfG6ywTZEvA7dlDJeX55W53jZZxc8XkMfRu_298_oozWbBF-ezyP058fF7dlVtfp1eX22XFU9VyxXAxGMq8YQ4JKTuulkY5gUHS1PpoNe8qFruRAWgLXWGCrkILtukJYp26qaH6Fv87_3MfybIGV9F6boS0nNmGzb0jqVhTqeqdFsQDtvQ46mL2uArevLHK0r70uhWlnXtKZF-P5KKEyG_3k0U0r6-mb9mm1nto8hpQhW9y6b_RBKEbfRlOh9QHoOSJeA9FNAmhWVvVHvo9uauHtf4rOUCuxHiC8tv2M9Ap1BonY
CitedBy_id crossref_primary_10_1109_TIP_2020_2965299
crossref_primary_10_1016_j_engappai_2022_105655
crossref_primary_10_1109_TMM_2021_3050642
crossref_primary_10_1016_j_imavis_2022_104403
crossref_primary_10_1038_s41598_024_66312_6
crossref_primary_10_1007_s11263_021_01467_7
crossref_primary_10_1109_ACCESS_2020_2980269
crossref_primary_10_1155_2021_8467906
crossref_primary_10_3390_electronics10091118
crossref_primary_10_3390_s20102758
crossref_primary_10_1155_2021_2621691
crossref_primary_10_3390_app112411938
crossref_primary_10_34133_2021_9874597
crossref_primary_10_2478_amns_2023_2_00680
crossref_primary_10_1007_s10489_021_02487_z
Cites_doi 10.1109/ICCV.2015.510
10.1109/CVPR.2014.108
10.1109/CVPR.2014.333
10.1109/CVPR.2014.82
10.1109/TPAMI.2016.2533389
10.1007/11744047_33
10.1109/CVPR.2014.339
10.1109/ICCV.2011.6126344
10.1109/ICCV.2013.441
10.1109/TPAMI.2015.2491925
10.1007/s11263-005-3671-4
10.1109/CVPR.2011.5995729
10.1109/ICCV.2015.222
10.1007/978-3-540-88682-2_13
10.1109/CVPR.2016.213
10.1109/TPAMI.2017.2712608
10.1109/CVPR.2005.177
10.1007/978-3-319-49409-8_2
10.1145/2647868.2654928
10.1109/CVPR.2017.492
10.1007/s11263-016-0982-6
10.1109/CVPRW.2013.76
10.1109/CVPR.2015.7299172
10.1007/s11263-012-0594-8
10.1109/CVPR.2016.167
10.1109/CVPR.2016.295
10.1109/CVPR.2015.7298594
10.1109/CVPR.2015.7298878
10.1109/CVPR.2007.383131
10.1016/j.cviu.2006.07.013
10.1109/CVPR.2016.115
10.1007/978-3-319-46487-9_50
10.1007/978-3-319-42999-1
10.1109/TPAMI.2017.2691321
10.1109/TPAMI.2017.2691768
10.1109/TPAMI.2012.59
10.1145/2647868.2654889
10.1109/CVPR.2016.215
10.1023/A:1020350100748
10.1007/978-3-319-46484-8_2
10.1109/TPAMI.2013.198
10.1109/CVPR.2016.90
10.21105/joss.00205
10.1109/CVPR.2016.297
10.1109/TPAMI.2015.2505295
10.1007/978-3-319-46493-0_13
10.1109/CVPR.2011.5995407
10.1109/CVPR.2015.7298676
10.1109/ICPR.2014.772
10.1109/CVPR.2016.219
10.1109/CVPR.2015.7298860
10.1109/ICCV.2009.5459350
10.1109/CVPR.2014.223
10.1109/ICCV.2007.4408849
10.1109/CVPR.2005.58
10.1109/CVPR.2015.7299059
10.1109/CVPR.2013.347
10.1109/ICCV.2013.394
10.1109/CVPR.2013.98
10.1145/2964284.2967191
10.1016/j.cviu.2016.10.004
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
COPYRIGHT 2019 Springer
International Journal of Computer Vision is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: COPYRIGHT 2019 Springer
– notice: International Journal of Computer Vision is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
ISR
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYYUZ
Q9U
DOI 10.1007/s11263-019-01192-2
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 1564
ExternalDocumentID A598644141
10_1007_s11263_019_01192_2
GrantInformation_xml – fundername: Australian Research Council
  grantid: DP160101458
  funderid: http://dx.doi.org/10.13039/501100000923
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c392t-d052397a0e363047b67a265b17a0abec63db8355fee28faa156d6bbd6f29f8943
IEDL.DBID M0C
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000485320300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-5691
IngestDate Wed Nov 05 01:15:57 EST 2025
Sat Nov 29 10:12:06 EST 2025
Wed Nov 26 10:43:36 EST 2025
Sat Nov 29 06:42:27 EST 2025
Tue Nov 18 22:01:08 EST 2025
Fri Feb 21 02:26:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Human action recognition
CNN
Cross-subject
GAN
Cross-view
Depth sensor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-d052397a0e363047b67a265b17a0abec63db8355fee28faa156d6bbd6f29f8943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3258-0380
PQID 2268840516
PQPubID 1456341
PageCount 20
ParticipantIDs proquest_journals_2268840516
gale_infotracacademiconefile_A598644141
gale_incontextgauss_ISR_A598644141
crossref_citationtrail_10_1007_s11263_019_01192_2
crossref_primary_10_1007_s11263_019_01192_2
springer_journals_10_1007_s11263_019_01192_2
PublicationCentury 2000
PublicationDate 20191000
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 20191000
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2019
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References RahmaniHMianAShahMLearning a deep model for human action recognition from novel viewpointsIEEE Transactions on Pattern Analysis and Machine Intelligence20174066768110.1109/TPAMI.2017.2691768
Zhu, W., Hu, J., Sun, G., Cao, X., & Qiao, Y. (2016). A key volume mining deep framework for action recognition. In IEEE conference on computer vision and pattern recognition (pp. 1991–1999).
Li, B., Camps, O. I., & Sznaier, M. (2012) Cross-view activity recognition using hankelets. In IEEE conference on computer vision and pattern recognition (pp. 1362–1369).
Luo, Z., Peng, B., Huang, D. A., Alahi, A., & Fei-Fei, L. (2017). Unsupervised learning of long-term motion dynamics for videos. In IEEE conference on computer vision and pattern recognition.
Yu, F., Zhang, Y., Song, S., Seff, A., & Xiao, J. (2015). LSUN: Construction of a large-scale image dataset using deep learning with humans in the loop. CoRR.
Farhadi, A., & Tabrizi, M. K. (2008). Learning to recognize activities from the wrong view point. In European conference on computer vision (pp. 154–166).
Liu, J., Shah, M., Kuipers, B., & Savarese, S. (2011). Cross-view action recognition via view knowledge transfer. In IEEE conference on computer vision and pattern recognition (pp. 3209–3216).
WeinlandDRonfardRBoyerEFree viewpoint action recognition using motion history volumesComputer Vision and Image Understanding2006104224925710.1016/j.cviu.2006.07.013
ShahroudyANgTTGongYWangGDeep multimodal feature analysis for action recognition in RGB+D videosIEEE Transactions on Pattern Analysis and Machine Intelligence2017401045105810.1109/TPAMI.2017.2691321
Yang, X., & Tian, Y. (2014). Super normal vector for activity recognition using depth sequences. In IEEE conference on computer vision and pattern recognition (pp. 804–811).
ShahroudyANgTTYangQWangGMultimodal multipart learning for action recognition in depth videosIEEE Transactions on Pattern Analysis and Machine Intelligence201638102123212910.1109/TPAMI.2015.2505295
Ohn-Bar, E., & Trivedi, M. (2013). Joint angles similarities and HOG2 for action recognition. In IEEE conference on computer vision and pattern recognition workshops (pp. 465–470).
ParameswaranVChellappaRView invariance for human action recognitionInternational Journal of Computer Vision20061668310110.1007/s11263-005-3671-4
Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 886–893).
He, K., Zhang, X., Ren, S., & Sun, J. (2016a). Deep residual learning for image recognition. In IEEE conference on computer vision and pattern recognition (pp. 770–778).
Yilmaz, A., & Shah, M. (2005). Actions sketch: A novel action representation. In IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 984–989).
Weinland, D., Boyer, E., & Ronfard, R. (2007). Action recognition from arbitrary views using 3D exemplars. In IEEE international conference on computer vision (pp. 1–7).
RaoCYilmazAShahMView-invariant representation and recognition of actionsInternational Journal of Computer Vision200250220322610.1023/A:10203501007481012.68779
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015). Going deeper with convolutions. In IEEE conference on computer vision and pattern recognition (pp. 1–9).
Shahroudy, A., Liu, J., Ng, T. T., & Wang, G. (2016a). NTU RGB+D: A large scale dataset for 3d human activity analysis. In IEEE conference on computer vision and pattern recognition (pp. 1010–1019).
Rahmani, H., & Mian, A. (2015). Learning a non-linear knowledge transfer model for cross-view action recognition. In IEEE conference on computer vision and pattern recognition (pp. 2458–2466).
Su, B., Zhou, J., Ding, X., Wang, H., & Wu, Y. (2016). Hierarchical dynamic parsing and encoding for action recognition. In European conference on computer vision (pp. 202–217).
Wang, P., Li, Z., Hou, Y., & Li, W. (2016b). Action recognition based on joint trajectory maps using convolutional neural networks. In ACM on multimedia conference (pp. 102–106).
Gopalan, R., Li, R., & Chellappa, R. (2011). Domain adaptation for object recognition: An unsupervised approach. In IEEE international conference on computer vision (pp. 999–1006).
Du, Y., Wang, W., & Wang, L. (2015). Hierarchical recurrent neural network for skeletonbased action recognition. In IEEE conference on computer vision andpattern recognition (pp. 1110–1118).
Hu, J. F., Zheng, W. S., Lai, J., & Zhang, J. (2015). Jointly learning heterogeneous features for RGB-D activity recognition. In IEEE conference on computer vision and pattern recognition (pp. 5344–5352).
Lv, F., & Nevatia, R. (2007). Single view human action recognition using key pose matching and viterbi path searching. In IEEE conference on computer vision and pattern recognition (pp. 1–8).
Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R. (2016). Learning from simulated and unsupervised images through adversarial training. arXiv:1612.07828.
Farhadi, A., Tabrizi, M. K., Endres, I., & Forsyth, D. (2009). A latent model of discriminative aspect. In IEEE international conference on computer vision (pp. 948–955).
FanREChangKWHsiehCJWangXRLinCJLIBLINEAR: A library for large linear classificationJournal of Machine Learning Research20089187118741225.68175
Jia, C., Kong, Y., Ding, Z., Fu, Y. R. (2014a). Latent tensor transfer learning for RGB-D action recognition. In ACM international conference on multimedia (pp. 87–96).
Shakhnarovich, G. (2005). Learning task-specific similarity. Ph.D. thesis, Massachusetts Institute of Technology.
Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., et al. (2016a). Temporal segment networks: Towards good practices for deep action recognition. In European conference on computer vision (pp. 20–36).
JiSXuWYangMYuK3D convolutional neural networks for human action recognitionIEEE Transactions on Pattern Analysis and Machine Intelligence201335122123110.1109/TPAMI.2012.59
Wang, J., Nie, X., Xia, Y., Wu, Y., & Zhu, S. C. (2014). Cross-view action modeling, learning and recognition. In IEEE conference on computer vision and pattern recognition (pp. 2649–2656).
He, Y., Shirakabe, S., Satoh, Y., & Kataoka, H. (2016b). Human action recognition without human. In European conference on computer vision workshops (pp. 11–17).
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., & Darrell, T. (2014b). Caffe: Convolutional architecture for fast feature embedding. arXiv:1408.5093.
Feichtenhofer, C., Pinz, A., & Zisserman, A. (2016). Convolutional two-stream network fusion for video action recognition. In IEEE conference on computer vision and pattern recognition (pp. 1933–1941).
Liu, J., Shahroudy, A., Xu, D., & Wang, G. (2016). Spatio-temporal LSTM with trust gates for 3D human action recognition. In European conference on computer vision (pp. 816–833).
Wang, H., Kläser, A., Schmid, C., & Liu, C. L. (2011). Action recognition by dense trajectories. In IEEE conference on computer vision and pattern recognition (pp. 3169–3176).
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672–2680).
Li, R., & Zickler, T. (2012). Discriminative virtual views for cross-view action recognition. In IEEE conference on computer vision and pattern recognition (pp. 2855–2862).
Huang, Z., Wan, C., Probst, T., & Van Gool, L. (2016). Deep learning on lie groups for skeleton-based action recognition. In IEEE conference on computer vision and pattern recognition.
WangHKläserASchmidCLiuCLDense trajectories and motion boundary descriptors for action recognitionInternational Journal of Computer Vision201310316079304841610.1007/s11263-012-0594-8
Tran, D., Bourdev, L., Fergus, R., Torresani, L., & Paluri, M. (2015). Learning spatiotemporal features with 3D convolutional networks. In IEEE international conference on computer vision (pp. 4489–4497).
Varol, G., Romero, J., Martin, X., Mahmood, N., Black, M. J., Laptev, I., et al. (2017b). Learning from Synthetic Humans. In IEEE conference on computer vision and pattern recognition.
Zhang, Z., Wang, C., Xiao, B., Zhou, W., Liu, S., & Shi, C. (2013). Cross-view action recognition via a continuous virtual path. In IEEE conference on computer vision and pattern recognition (pp. 2690–2697).
Soomro, K., Zamir, A. R., & Shah, M. (2012). UCF101: A dataset of 101 human actions classes from videos in the wild. arXiv:1212.0402.
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L. (2014). Large-scale video classification with convolutional neural networks. In IEEE conference on computer vision and pattern recognition (pp. 1725–1732).
KongYFuYMax-margin heterogeneous information machine for RGB-D action recognitionInternational Journal of Computer Vision20171233350371366033310.1007/s11263-016-0982-6
Gupta, A., Martinez, J., Little, J. J., & Woodham, R. J. (2014). 3D pose from motion for cross-view action recognition via non-linear circulant temporal encoding. In IEEE conference on computer vision and pattern recognition (pp. 2601–2608).
WangJLiuZWuYYuanJLearning actionlet ensemble for 3D human action recognitionIEEE Transactions on Pattern Analysis and Machine Intelligence20133691492710.1109/TPAMI.2013.198
Evangelidis, G., Singh, G., & Horaud, R. (2014). Skeletal quads: Human action recognition using joint quadruples. In International conference on pattern recognition (pp. 4513–4518).
Gkioxari, G., & Malik, J. (2015). Finding action tubes. In IEEE conference on computer vision and pattern recognition (pp. 759–768).
KerolaTInoueNShinodaKCross-view human action recognition from depth maps using spectral graph sequencesComputer Vision and Image Understanding201715410812610.1016/j.cviu.2016.10.004
Zhang, B., Wang, L., Wang, Z., Qiao, Y., & Wang, H. (2016). Real-time action recognition with enhanced motion vector CNNs. In IEEE conferenc
H Wang (1192_CR57) 2013; 103
H Rahmani (1192_CR40) 2017; 40
1192_CR60
D Weinland (1192_CR64) 2006; 104
1192_CR63
1192_CR20
1192_CR61
T Kerola (1192_CR22) 2017; 154
1192_CR62
1192_CR67
1192_CR24
1192_CR68
1192_CR21
A Shahroudy (1192_CR44) 2017; 40
1192_CR65
1192_CR66
1192_CR27
1192_CR28
1192_CR25
1192_CR26
L McInnes (1192_CR32) 2017; 2
1192_CR29
1192_CR53
1192_CR50
1192_CR51
1192_CR12
1192_CR56
1192_CR13
1192_CR10
1192_CR54
1192_CR11
1192_CR55
1192_CR16
RE Fan (1192_CR6) 2008; 9
1192_CR17
G Varol (1192_CR52) 2017; 40
1192_CR14
1192_CR15
1192_CR59
1192_CR19
1192_CR4
1192_CR3
1192_CR2
1192_CR1
1192_CR42
M Yu (1192_CR69) 2016; 38
1192_CR45
V Parameswaran (1192_CR35) 2006; 1
1192_CR46
1192_CR49
1192_CR47
1192_CR48
J Wang (1192_CR58) 2013; 36
S Ji (1192_CR18) 2013; 35
C Rao (1192_CR41) 2002; 50
1192_CR70
1192_CR71
1192_CR30
1192_CR31
A Shahroudy (1192_CR43) 2016; 38
Y Kong (1192_CR23) 2017; 123
1192_CR72
1192_CR73
1192_CR34
1192_CR33
1192_CR8
1192_CR38
1192_CR7
1192_CR36
H Rahmani (1192_CR39) 2016; 38
1192_CR5
1192_CR37
1192_CR9
References_xml – reference: Soomro, K., Zamir, A. R., & Shah, M. (2012). UCF101: A dataset of 101 human actions classes from videos in the wild. arXiv:1212.0402.
– reference: Yu, F., Zhang, Y., Song, S., Seff, A., & Xiao, J. (2015). LSUN: Construction of a large-scale image dataset using deep learning with humans in the loop. CoRR.
– reference: Li, B., Camps, O. I., & Sznaier, M. (2012) Cross-view activity recognition using hankelets. In IEEE conference on computer vision and pattern recognition (pp. 1362–1369).
– reference: VarolGLaptevISchmidCLong-term temporal convolutions for action recognitionIEEE Transactions on Pattern Analysis and Machine Intelligence2017401510151710.1109/TPAMI.2017.2712608
– reference: Farhadi, A., & Tabrizi, M. K. (2008). Learning to recognize activities from the wrong view point. In European conference on computer vision (pp. 154–166).
– reference: YuMLiuLShaoLStructure-preserving binary representations for RGB-D action recognitionIEEE Transactions on Pattern Analysis and Machine Intelligence20163881651166410.1109/TPAMI.2015.2491925
– reference: Wang, J., Nie, X., Xia, Y., Wu, Y., & Zhu, S. C. (2014). Cross-view action modeling, learning and recognition. In IEEE conference on computer vision and pattern recognition (pp. 2649–2656).
– reference: Dalal, N., Triggs, B., & Schmid, C. (2006). Human detection using oriented histograms of flow and appearance. In European conference on computer vision (pp. 428–441).
– reference: Evangelidis, G., Singh, G., & Horaud, R. (2014). Skeletal quads: Human action recognition using joint quadruples. In International conference on pattern recognition (pp. 4513–4518).
– reference: ShahroudyANgTTGongYWangGDeep multimodal feature analysis for action recognition in RGB+D videosIEEE Transactions on Pattern Analysis and Machine Intelligence2017401045105810.1109/TPAMI.2017.2691321
– reference: Wang, Y., & Hoai, M. (2016). Improving human action recognition by non-action classification. In IEEE conference on computer vision and pattern recognition (pp. 2698–2707).
– reference: WeinlandDRonfardRBoyerEFree viewpoint action recognition using motion history volumesComputer Vision and Image Understanding2006104224925710.1016/j.cviu.2006.07.013
– reference: Hu, J. F., Zheng, W. S., Lai, J., & Zhang, J. (2015). Jointly learning heterogeneous features for RGB-D activity recognition. In IEEE conference on computer vision and pattern recognition (pp. 5344–5352).
– reference: Yang, X., & Tian, Y. (2014). Super normal vector for activity recognition using depth sequences. In IEEE conference on computer vision and pattern recognition (pp. 804–811).
– reference: Feichtenhofer, C., Pinz, A., & Zisserman, A. (2016). Convolutional two-stream network fusion for video action recognition. In IEEE conference on computer vision and pattern recognition (pp. 1933–1941).
– reference: Luo, Z., Peng, B., Huang, D. A., Alahi, A., & Fei-Fei, L. (2017). Unsupervised learning of long-term motion dynamics for videos. In IEEE conference on computer vision and pattern recognition.
– reference: Li, Y., Li, W., Mahadevan, V., & Vasconcelos, N. (2016). VLAD3: Encoding dynamics of deep features for action recognition. In IEEE conference on computer vision and pattern recognition (pp. 1951–1960).
– reference: Huang, Z., Wan, C., Probst, T., & Van Gool, L. (2016). Deep learning on lie groups for skeleton-based action recognition. In IEEE conference on computer vision and pattern recognition.
– reference: Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015). Going deeper with convolutions. In IEEE conference on computer vision and pattern recognition (pp. 1–9).
– reference: Weinland, D., Boyer, E., & Ronfard, R. (2007). Action recognition from arbitrary views using 3D exemplars. In IEEE international conference on computer vision (pp. 1–7).
– reference: He, Y., Shirakabe, S., Satoh, Y., & Kataoka, H. (2016b). Human action recognition without human. In European conference on computer vision workshops (pp. 11–17).
– reference: Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672–2680).
– reference: Yilmaz, A., & Shah, M. (2005). Actions sketch: A novel action representation. In IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 984–989).
– reference: Pfister, T., Charles, J., & Zisserman, A. (2015). Flowing convnets for human pose estimation in videos. In IEEE international conference on computer vision (pp. 1913–1921).
– reference: He, K., Zhang, X., Ren, S., & Sun, J. (2016a). Deep residual learning for image recognition. In IEEE conference on computer vision and pattern recognition (pp. 770–778).
– reference: Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., et al. (2015). Long-term recurrent convolutional networks for visual recognition and description. In IEEE conference on computer vision and pattern recognition (pp. 2625–2634).
– reference: Shakhnarovich, G. (2005). Learning task-specific similarity. Ph.D. thesis, Massachusetts Institute of Technology.
– reference: Liu, J., Shahroudy, A., Xu, D., & Wang, G. (2016). Spatio-temporal LSTM with trust gates for 3D human action recognition. In European conference on computer vision (pp. 816–833).
– reference: FanREChangKWHsiehCJWangXRLinCJLIBLINEAR: A library for large linear classificationJournal of Machine Learning Research20089187118741225.68175
– reference: Zhu, W., Hu, J., Sun, G., Cao, X., & Qiao, Y. (2016). A key volume mining deep framework for action recognition. In IEEE conference on computer vision and pattern recognition (pp. 1991–1999).
– reference: Shahroudy, A., Liu, J., Ng, T. T., & Wang, G. (2016a). NTU RGB+D: A large scale dataset for 3d human activity analysis. In IEEE conference on computer vision and pattern recognition (pp. 1010–1019).
– reference: Liu, J., Shah, M., Kuipers, B., & Savarese, S. (2011). Cross-view action recognition via view knowledge transfer. In IEEE conference on computer vision and pattern recognition (pp. 3209–3216).
– reference: Jia, C., Kong, Y., Ding, Z., Fu, Y. R. (2014a). Latent tensor transfer learning for RGB-D action recognition. In ACM international conference on multimedia (pp. 87–96).
– reference: Gkioxari, G., & Malik, J. (2015). Finding action tubes. In IEEE conference on computer vision and pattern recognition (pp. 759–768).
– reference: Zheng, J., & Jiang, Z. (2013). Learning view-invariant sparse representations for cross-view action recognition. In IEEE international conference on computer vision (pp. 3176–3183).
– reference: Lv, F., & Nevatia, R. (2007). Single view human action recognition using key pose matching and viterbi path searching. In IEEE conference on computer vision and pattern recognition (pp. 1–8).
– reference: Gopalan, R., Li, R., & Chellappa, R. (2011). Domain adaptation for object recognition: An unsupervised approach. In IEEE international conference on computer vision (pp. 999–1006).
– reference: Zhang, B., Wang, L., Wang, Z., Qiao, Y., & Wang, H. (2016). Real-time action recognition with enhanced motion vector CNNs. In IEEE conference on computer vision and pattern recognition (pp. 2718–2726).
– reference: Li, R., & Zickler, T. (2012). Discriminative virtual views for cross-view action recognition. In IEEE conference on computer vision and pattern recognition (pp. 2855–2862).
– reference: McInnesLHealyJAstelsSHDBSCAN: Hierarchical density based clusteringThe Journal of Open Source Software2017220510.21105/joss.00205
– reference: Ohn-Bar, E., & Trivedi, M. (2013). Joint angles similarities and HOG2 for action recognition. In IEEE conference on computer vision and pattern recognition workshops (pp. 465–470).
– reference: Du, Y., Wang, W., & Wang, L. (2015). Hierarchical recurrent neural network for skeletonbased action recognition. In IEEE conference on computer vision andpattern recognition (pp. 1110–1118).
– reference: WangHKläserASchmidCLiuCLDense trajectories and motion boundary descriptors for action recognitionInternational Journal of Computer Vision201310316079304841610.1007/s11263-012-0594-8
– reference: Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 886–893).
– reference: Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., & Darrell, T. (2014b). Caffe: Convolutional architecture for fast feature embedding. arXiv:1408.5093.
– reference: Farhadi, A., Tabrizi, M. K., Endres, I., & Forsyth, D. (2009). A latent model of discriminative aspect. In IEEE international conference on computer vision (pp. 948–955).
– reference: JiSXuWYangMYuK3D convolutional neural networks for human action recognitionIEEE Transactions on Pattern Analysis and Machine Intelligence201335122123110.1109/TPAMI.2012.59
– reference: Wang, P., Li, Z., Hou, Y., & Li, W. (2016b). Action recognition based on joint trajectory maps using convolutional neural networks. In ACM on multimedia conference (pp. 102–106).
– reference: Zhang, Z., Wang, C., Xiao, B., Zhou, W., Liu, S., & Shi, C. (2013). Cross-view action recognition via a continuous virtual path. In IEEE conference on computer vision and pattern recognition (pp. 2690–2697).
– reference: Krizhevsky, A., Sutskever, I., Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097–1105).
– reference: Rahmani, H., & Mian, A. (2016). 3d action recognition from novel viewpoints. In IEEE conference on computer vision and pattern recognition (pp. 1506–1515).
– reference: ShahroudyANgTTYangQWangGMultimodal multipart learning for action recognition in depth videosIEEE Transactions on Pattern Analysis and Machine Intelligence201638102123212910.1109/TPAMI.2015.2505295
– reference: Su, B., Zhou, J., Ding, X., Wang, H., & Wu, Y. (2016). Hierarchical dynamic parsing and encoding for action recognition. In European conference on computer vision (pp. 202–217).
– reference: Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L. (2014). Large-scale video classification with convolutional neural networks. In IEEE conference on computer vision and pattern recognition (pp. 1725–1732).
– reference: Tran, D., Bourdev, L., Fergus, R., Torresani, L., & Paluri, M. (2015). Learning spatiotemporal features with 3D convolutional networks. In IEEE international conference on computer vision (pp. 4489–4497).
– reference: KerolaTInoueNShinodaKCross-view human action recognition from depth maps using spectral graph sequencesComputer Vision and Image Understanding201715410812610.1016/j.cviu.2016.10.004
– reference: WangJLiuZWuYYuanJLearning actionlet ensemble for 3D human action recognitionIEEE Transactions on Pattern Analysis and Machine Intelligence20133691492710.1109/TPAMI.2013.198
– reference: Vemulapalli, R., Arrate, F., & Chellappa, R. (2014). Human action recognition by representing 3D skeletons as points in a lie group. In IEEE conference on computer vision and pattern recognition (pp. 588–595).
– reference: RaoCYilmazAShahMView-invariant representation and recognition of actionsInternational Journal of Computer Vision200250220322610.1023/A:10203501007481012.68779
– reference: Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., et al. (2016a). Temporal segment networks: Towards good practices for deep action recognition. In European conference on computer vision (pp. 20–36).
– reference: Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R. (2016). Learning from simulated and unsupervised images through adversarial training. arXiv:1612.07828.
– reference: Rahmani, H., & Mian, A. (2015). Learning a non-linear knowledge transfer model for cross-view action recognition. In IEEE conference on computer vision and pattern recognition (pp. 2458–2466).
– reference: Wang, H., Kläser, A., Schmid, C., & Liu, C. L. (2011). Action recognition by dense trajectories. In IEEE conference on computer vision and pattern recognition (pp. 3169–3176).
– reference: Gupta, A., Martinez, J., Little, J. J., & Woodham, R. J. (2014). 3D pose from motion for cross-view action recognition via non-linear circulant temporal encoding. In IEEE conference on computer vision and pattern recognition (pp. 2601–2608).
– reference: RahmaniHMianAShahMLearning a deep model for human action recognition from novel viewpointsIEEE Transactions on Pattern Analysis and Machine Intelligence20174066768110.1109/TPAMI.2017.2691768
– reference: Simonyan, K., & Zisserman, A. (2014). Two-stream convolutional networks for action recognition in videos. In Advances in neural information processing systems (pp. 568–576).
– reference: Varol, G., Romero, J., Martin, X., Mahmood, N., Black, M. J., Laptev, I., et al. (2017b). Learning from Synthetic Humans. In IEEE conference on computer vision and pattern recognition.
– reference: RahmaniHMahmoodAHuynhDMianAHistogram of oriented principal components for cross-view action recognitionIEEE Transactions on Pattern Analysis and Machine Intelligence201638122430244310.1109/TPAMI.2016.2533389
– reference: ParameswaranVChellappaRView invariance for human action recognitionInternational Journal of Computer Vision20061668310110.1007/s11263-005-3671-4
– reference: KongYFuYMax-margin heterogeneous information machine for RGB-D action recognitionInternational Journal of Computer Vision20171233350371366033310.1007/s11263-016-0982-6
– reference: Wang, H., & Schmid, C. (2013). Action recognition with improved trajectories. In IEEE international conference on computer vision (pp. 3551–3558).
– reference: Wang, L., Qiao, Y., & Tang, X. (2015). Action recognition with trajectory-pooled deep-convolutional descriptors. In IEEE conference on computer vision and pattern recognition (pp. 4305–4314).
– reference: Oreifej, O., & Liu, Z. (2013). HON4D: Histogram of oriented 4D normals for activity recognition from depth sequences. In IEEE conference on computer vision and pattern recognition (pp. 716–723).
– ident: 1192_CR26
– ident: 1192_CR51
  doi: 10.1109/ICCV.2015.510
– ident: 1192_CR66
  doi: 10.1109/CVPR.2014.108
– ident: 1192_CR13
  doi: 10.1109/CVPR.2014.333
– ident: 1192_CR45
– ident: 1192_CR54
  doi: 10.1109/CVPR.2014.82
– volume: 38
  start-page: 2430
  issue: 12
  year: 2016
  ident: 1192_CR39
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2016.2533389
– ident: 1192_CR2
  doi: 10.1007/11744047_33
– ident: 1192_CR68
– ident: 1192_CR59
  doi: 10.1109/CVPR.2014.339
– ident: 1192_CR12
  doi: 10.1109/ICCV.2011.6126344
– ident: 1192_CR55
  doi: 10.1109/ICCV.2013.441
– volume: 38
  start-page: 1651
  issue: 8
  year: 2016
  ident: 1192_CR69
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2015.2491925
– volume: 1
  start-page: 83
  issue: 66
  year: 2006
  ident: 1192_CR35
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-005-3671-4
– ident: 1192_CR28
  doi: 10.1109/CVPR.2011.5995729
– ident: 1192_CR36
  doi: 10.1109/ICCV.2015.222
– ident: 1192_CR4
– ident: 1192_CR7
  doi: 10.1007/978-3-540-88682-2_13
– ident: 1192_CR9
  doi: 10.1109/CVPR.2016.213
– volume: 40
  start-page: 1510
  year: 2017
  ident: 1192_CR52
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2017.2712608
– ident: 1192_CR1
  doi: 10.1109/CVPR.2005.177
– ident: 1192_CR15
  doi: 10.1007/978-3-319-49409-8_2
– ident: 1192_CR19
  doi: 10.1145/2647868.2654928
– ident: 1192_CR53
  doi: 10.1109/CVPR.2017.492
– volume: 123
  start-page: 350
  issue: 3
  year: 2017
  ident: 1192_CR23
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-016-0982-6
– ident: 1192_CR25
– ident: 1192_CR46
– ident: 1192_CR33
  doi: 10.1109/CVPRW.2013.76
– ident: 1192_CR16
  doi: 10.1109/CVPR.2015.7299172
– volume: 103
  start-page: 60
  issue: 1
  year: 2013
  ident: 1192_CR57
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-012-0594-8
– ident: 1192_CR38
  doi: 10.1109/CVPR.2016.167
– ident: 1192_CR63
  doi: 10.1109/CVPR.2016.295
– ident: 1192_CR50
  doi: 10.1109/CVPR.2015.7298594
– ident: 1192_CR24
– ident: 1192_CR47
– ident: 1192_CR3
  doi: 10.1109/CVPR.2015.7298878
– ident: 1192_CR31
  doi: 10.1109/CVPR.2007.383131
– volume: 104
  start-page: 249
  issue: 2
  year: 2006
  ident: 1192_CR64
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2006.07.013
– ident: 1192_CR11
– ident: 1192_CR42
  doi: 10.1109/CVPR.2016.115
– ident: 1192_CR29
  doi: 10.1007/978-3-319-46487-9_50
– ident: 1192_CR30
  doi: 10.1007/978-3-319-42999-1
– volume: 40
  start-page: 1045
  year: 2017
  ident: 1192_CR44
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2017.2691321
– volume: 40
  start-page: 667
  year: 2017
  ident: 1192_CR40
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2017.2691768
– volume: 35
  start-page: 221
  issue: 1
  year: 2013
  ident: 1192_CR18
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2012.59
– volume: 9
  start-page: 1871
  year: 2008
  ident: 1192_CR6
  publication-title: Journal of Machine Learning Research
– ident: 1192_CR20
  doi: 10.1145/2647868.2654889
– ident: 1192_CR27
  doi: 10.1109/CVPR.2016.215
– volume: 50
  start-page: 203
  issue: 2
  year: 2002
  ident: 1192_CR41
  publication-title: International Journal of Computer Vision
  doi: 10.1023/A:1020350100748
– ident: 1192_CR61
  doi: 10.1007/978-3-319-46484-8_2
– volume: 36
  start-page: 914
  year: 2013
  ident: 1192_CR58
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2013.198
– ident: 1192_CR14
  doi: 10.1109/CVPR.2016.90
– volume: 2
  start-page: 205
  year: 2017
  ident: 1192_CR32
  publication-title: The Journal of Open Source Software
  doi: 10.21105/joss.00205
– ident: 1192_CR70
  doi: 10.1109/CVPR.2016.297
– volume: 38
  start-page: 2123
  issue: 10
  year: 2016
  ident: 1192_CR43
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2015.2505295
– ident: 1192_CR49
  doi: 10.1007/978-3-319-46493-0_13
– ident: 1192_CR56
  doi: 10.1109/CVPR.2011.5995407
– ident: 1192_CR10
  doi: 10.1109/CVPR.2015.7298676
– ident: 1192_CR48
– ident: 1192_CR5
  doi: 10.1109/ICPR.2014.772
– ident: 1192_CR73
  doi: 10.1109/CVPR.2016.219
– ident: 1192_CR37
  doi: 10.1109/CVPR.2015.7298860
– ident: 1192_CR8
  doi: 10.1109/ICCV.2009.5459350
– ident: 1192_CR21
  doi: 10.1109/CVPR.2014.223
– ident: 1192_CR65
  doi: 10.1109/ICCV.2007.4408849
– ident: 1192_CR17
– ident: 1192_CR67
  doi: 10.1109/CVPR.2005.58
– ident: 1192_CR60
  doi: 10.1109/CVPR.2015.7299059
– ident: 1192_CR71
  doi: 10.1109/CVPR.2013.347
– ident: 1192_CR72
  doi: 10.1109/ICCV.2013.394
– ident: 1192_CR34
  doi: 10.1109/CVPR.2013.98
– ident: 1192_CR62
  doi: 10.1145/2964284.2967191
– volume: 154
  start-page: 108
  year: 2017
  ident: 1192_CR22
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2016.10.004
SSID ssj0002823
Score 2.4740036
Snippet We propose Human Pose Models that represent RGB and depth images of human poses independent of clothing textures, backgrounds, lighting conditions, body shapes...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1545
SubjectTerms Algorithms
Analysis
Artificial Intelligence
Cameras
Computer Imaging
Computer Science
Feature extraction
Human motion
Human-computer interaction
Image Processing and Computer Vision
Invariants
Learning
Lighting
Motion capture
Moving object recognition
Pattern Recognition
Pattern Recognition and Graphics
Synthesis
Three dimensional bodies
Training
Vision
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfQ4MCFMj5EWZkshMQBLNVJ7CTHQtmGhKopLVVvlp3YU6UqmeoUafvr9-w6rQpjElydF8exn59_z-8LoQ-liTKW6pIkiclJoiQlOUs0iWU0hGYuuY9Km_9IJ5NsscgvQ1CY7bzdO5Okl9T7YDcaOZujC7qhgEsICN7HcNxlrmBDMZ3v5C8oEdsC8qAYMZ7TECpzfx8Hx9HvQvkP66g_dM56_zfc5-hZAJl4tOWKY_RI1y9QLwBOHLazhaaupkPX9hLNQsLVK-yv9_FlYzV2BdNWFrtQFDy9qQEz2uUt9DSWrcSAenHRqI1tcXH-hYzxyIdK4KJzTWrqV-jn2bfZ1wsSKi-QEvBSSyp3WZyncqhj7uxyiqcy4kxRaJKw6jyuFEA3ZrSOMiMlKIEVV6riJsqNy-j-Gh3VTa3fIJyrSmeAksrMpEnFTBYPjQS1iSmmqjiJ-4h2CyDKkJbcVcdYiX1CZTeTAmZS-JkUUR992r1zvU3K8SD1e7euwmW7qJ07zZXcWCu-Twsx8tnpE5rQPvoYiEwDny9liE6An3AJsg4oBx1_iLDfrQAQm4GqzCjvo88dP-wf_31wb_-N_AQ9jRxLeW_CATpq1xv9Dj0pf7VLuz71--AO7Jr-Nw
  priority: 102
  providerName: Springer Nature
Title Learning Human Pose Models from Synthesized Data for Robust RGB-D Action Recognition
URI https://link.springer.com/article/10.1007/s11263-019-01192-2
https://www.proquest.com/docview/2268840516
Volume 127
WOSCitedRecordID wos000485320300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMXylMsLSsLIXEAi83DTnJC2xcgYLXKllK4WHZiV5WqpK13keDXM5N1uiqIXrhEysRxHM14_I09D4AXlYtzkdmKp6kreGp0xAuRWp7oeIRkqWUXlXb0KZtM8uPjYho23Hxwq-x1Yqeo67aiPfI3CBNyNEZEJN-eX3CqGkWnq6GExhpsELIhl77Po90rTYzmxLKUPJpIQhZRCJpZhs5FMZ1gUghPhCiHx9cWpj_V81_npN3yc7D5vwO_B3cD8GTjpaTch1u2eQCbAYSyMMU9kvo6Dz3tIRyGJKwnrNvyZ9PWW0ZF1M48o_AUNvvZII70p7-wpz091wyRMCtbs_BzVr7b4Xts3IVPsLJ3V2qbR_DlYP9w9z0P1Rh4hRhqzmvaQC4yPbKJpLM6IzMdS2EiJGmUBJnUBuGccNbGudMaDcNaGlNLFxeOsrw_hvWmbewTYIWpbY7IqcpdltbC5cnIaTSlhBGmTtJkAFHPClWFVOVUMeNMrZIsE_sUsk917FPxAF5dvXO-TNRxY-vnxGFFGTAacrE50Qvv1YdZqcZdxvo0SqMBvAyNXIufr3SIWMCfoKRZ11pu97xXQQd4tWL8AF730rN6_O_BPb25ty24E5Pcdh6F27A-v1zYZ3C7-jE_9ZdDWMu-fhvCxs7-ZFri3ceMD7tZgdep-I7Xcnb0G5nODcQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aAwkubHyJwhgWAnEAa42TOMkBoUIZq1qqqSvTbp6d2NOkKRlzChp_FH8jz4mzaiB224Gr4zhx8vPz7_l9AbzMDUvjROc0ikxGIyUDmsWRpqFkfWzmkjdRafuTZDpNDw6y3RX41cXCOLfKTiY2grqocndGvoU0IUVlJA74-9Nv1FWNctbVroRGC4uxPv-BKpt9Nxri_33F2Pan-ccd6qsK0By5QE0LdxCaJbKvQ-5sToonkvFYBdgkcUY8LBTSkthozVIjJSo4BVeq4IZlxmUrx3FvwM0oTBO3rsYJvZD8qL60petRJYt5FvggnTZUL2DOYupChgJkVZRd2gj_3A7-sss229322v_2odbhrifWZNCuhHuwosv7sOZJNvEizGJTV8eia3sAc59k9og0Jg2yW1lNXJG4E0tc-A3ZOy-RJ9vjnzjSUNaSINMns0otbE1mnz_QIRk04SFk1rljVeVD-Hot030Eq2VV6sdAMlXoFJlhnpokKmKThn0jUVWMVayKMAp7EHS_XuQ-FburCHIilkmkHVwEwkU0cBGsB28u7jltE5Fc2fuFQ5RwGT5K50J0JBfWitHeTAyajPxREAU9eO07mQofn0sfkYGTcEnBLvXc6LAmvIyzYgm0Hrzt0Lq8_O-Xe3L1aM_h9s78y0RMRtPxU7jD3JppvCc3YLU-W-hncCv_Xh_bs81m9RE4vG4U_wbbxmVN
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aAyEuG5-iY4CFQBzAWuPETnJAqFAK1aaq6gaadjF2Yk-TpmTMKWj8afx1PKfOqoHYbQeuL44TJz-_D78vgOeFZRlPTUGTxOY00SqiOU8MjRXrI1ko0WalfdlJJ5Nsfz-frsCvLhfGh1V2PLFl1GVd-DPyLVQTMjRGeCS2bAiLmA5Hb0--Ud9Byntau3YaC4hsm7MfaL65N-Mh_usXjI0-7L3_REOHAVqgXtDQ0h-K5qnqm1h4_5MWqWKC6whJClcn4lKjisKtMSyzSqGxUwqtS2FZbn3lcpz3GlxP0cb04YRTfnAuBdCUWbSxR_OMizwKCTuLtL2Iee-pTx-KUMOi7IJQ_FM0_OWjbUXfaP1__mi3YS0o3GSw2CF3YMVUd2E9KN8ksDaHpK6_RUe7B3uh-OwhaV0dZFo7Q3zzuGNHfFoO2T2rUH92Rz9xpqFqFEELgMxqPXcNmX18R4dk0KaNkFkXplVX9-HzlSz3AaxWdWUeAsl1aTLUGIvMpknJbRb3rUITkmuuyziJexB1MJBFKNHuO4Ucy2VxaQ8didCRLXQk68Gr83tOFgVKLh39zKNL-soflYfDoZo7J8e7MzloK_UnURL14GUYZGt8fKFCpgYuwhcLuzBys8OdDLzPySXoevC6Q-7y8r9fbuPy2Z7CTQSv3BlPth_BLea3TxtUuQmrzencPIYbxffmyJ0-aTciga9XDeLfRTducQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Human+Pose+Models+from+Synthesized+Data+for+Robust+RGB-D+Action+Recognition&rft.jtitle=International+journal+of+computer+vision&rft.au=Liu%2C+Jian&rft.au=Rahmani%2C+Hossein&rft.au=Akhtar%2C+Naveed&rft.au=Mian%2C+Ajmal&rft.date=2019-10-01&rft.pub=Springer&rft.issn=0920-5691&rft.volume=127&rft.issue=10&rft.spage=1545&rft_id=info:doi/10.1007%2Fs11263-019-01192-2&rft.externalDBID=ISR&rft.externalDocID=A598644141
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon