Policy gradient in Lipschitz Markov Decision Processes
This paper is about the exploitation of Lipschitz continuity properties for Markov Decision Processes to safely speed up policy-gradient algorithms. Starting from assumptions about the Lipschitz continuity of the state-transition model, the reward function, and the policies considered in the learnin...
Uloženo v:
| Vydáno v: | Machine learning Ročník 100; číslo 2-3; s. 255 - 283 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.09.2015
Springer Nature B.V |
| Témata: | |
| ISSN: | 0885-6125, 1573-0565 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper is about the exploitation of Lipschitz continuity properties for Markov Decision Processes to safely speed up policy-gradient algorithms. Starting from assumptions about the Lipschitz continuity of the state-transition model, the reward function, and the policies considered in the learning process, we show that both the expected return of a policy and its gradient are Lipschitz continuous w.r.t. policy parameters. By leveraging such properties, we define policy-parameter updates that guarantee a performance improvement at each iteration. The proposed methods are empirically evaluated and compared to other related approaches using different configurations of three popular control scenarios: the linear quadratic regulator, the mass-spring-damper system and the ship-steering control. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0885-6125 1573-0565 |
| DOI: | 10.1007/s10994-015-5484-1 |