The Path Inference Filter: Model-Based Low-Latency Map Matching of Probe Vehicle Data

We consider the problem of reconstructing vehicle trajectories from sparse sequences of GPS points, for which the sampling interval is between 1 s and 2 min. We introduce a new class of algorithms, which are altogether called the path inference filter (PIF), that maps GPS data in real time, for a va...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems Vol. 15; no. 2; pp. 507 - 529
Main Authors: Hunter, Timothy, Abbeel, Pieter, Bayen, Alexandre
Format: Journal Article
Language:English
Published: New York IEEE 01.04.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1524-9050, 1558-0016
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider the problem of reconstructing vehicle trajectories from sparse sequences of GPS points, for which the sampling interval is between 1 s and 2 min. We introduce a new class of algorithms, which are altogether called the path inference filter (PIF), that maps GPS data in real time, for a variety of tradeoffs and scenarios and with a high throughput. Numerous prior approaches in map matching can be shown to be special cases of the PIF presented in this paper. We present an efficient procedure for automatically training the filter on new data, with or without ground-truth observations. The framework is evaluated on a large San Francisco taxi data set and is shown to improve upon the current state of the art. This filter also provides insights about driving patterns of drivers. The PIF has been deployed at an industrial scale inside the Mobile Millennium traffic information system, and is used to map fleets of data in San Francisco and Sacramento, CA, USA; Stockholm, Sweden; and Porto, Portugal.
AbstractList We consider the problem of reconstructing vehicle trajectories from sparse sequences of GPS points, for which the sampling interval is between 1 s and 2 min. We introduce a new class of algorithms, which are altogether called the path inference filter (PIF), that maps GPS data in real time, for a variety of tradeoffs and scenarios and with a high throughput. Numerous prior approaches in map matching can be shown to be special cases of the PIF presented in this paper. We present an efficient procedure for automatically training the filter on new data, with or without ground-truth observations. The framework is evaluated on a large San Francisco taxi data set and is shown to improve upon the current state of the art. This filter also provides insights about driving patterns of drivers. The PIF has been deployed at an industrial scale inside the Mobile Millennium traffic information system, and is used to map fleets of data in San Francisco and Sacramento, CA, USA; Stockholm, Sweden; and Porto, Portugal.
Author Hunter, Timothy
Abbeel, Pieter
Bayen, Alexandre
Author_xml – sequence: 1
  givenname: Timothy
  surname: Hunter
  fullname: Hunter, Timothy
  email: tjhunter@eecs.berkeley.edu
  organization: Dept. of Electr. Eng. & Comput. Sci., Univ. of California at Berkeley, Berkeley, CA, USA
– sequence: 2
  givenname: Pieter
  surname: Abbeel
  fullname: Abbeel, Pieter
  email: pabbeel@cs.berkeley.edu
  organization: Dept. of Electr. Eng. & Comput. Sci., Univ. of California at Berkeley, Berkeley, CA, USA
– sequence: 3
  givenname: Alexandre
  surname: Bayen
  fullname: Bayen, Alexandre
  email: bayen@berkeley.edu
  organization: Dept. of Electr. Eng. & Comput. Sci., Univ. of California at Berkeley, Berkeley, CA, USA
BookMark eNp9kU1rGzEQhkVIIYnbHxByEfTSy7oaSbur7a1N82FwSCB2r0I7nq1l1itXkin591nj0EMOPYgRM-87MzxzwU6HMBBjlyCmAKL5upgtnqdSgJpKaaQq5Qk7h7I0hRBQnR7-UheNKMUZu0hpM2Z1CXDOlos18SeX13w2dBRpQOK3vs8Uv_GHsKK--OESrfg8_C3mLo_1F_7gduPLuPbDbx46_hRDS_wXrT32xH-67D6yD53rE316ixO2vL1ZXN8X88e72fX3eYGqkblA2TrRtq3WQtcNOtEg1KoFp5UUqtaIzhkk6mrVAcjWCNRVq9GgNooA1YR9OfbdxfBnTynbrU9Ife8GCvtkoaoaU0ItzCj9_E66Cfs4jNtZKEErZWCkN2FwVGEMKUXq7C76rYsvFoQ9gLYH0PYA2r6BHj31Ow_67LIPQ47O9_91Xh2dnoj-TaoqLcdDqVfAdIrk
CODEN ITISFG
CitedBy_id crossref_primary_10_1111_mice_12595
crossref_primary_10_1016_j_compag_2023_108529
crossref_primary_10_1016_j_ins_2019_10_060
crossref_primary_10_1109_TITS_2021_3058123
crossref_primary_10_1109_LRA_2019_2891488
crossref_primary_10_1080_21680566_2020_1852128
crossref_primary_10_1109_TITS_2018_2812147
crossref_primary_10_1016_j_heliyon_2023_e21368
crossref_primary_10_1007_s11116_016_9734_2
crossref_primary_10_1080_13658816_2015_1086922
crossref_primary_10_1109_TRO_2020_3046419
crossref_primary_10_1109_TITS_2017_2647967
crossref_primary_10_3390_ijgi5110204
crossref_primary_10_9728_dcs_2025_26_8_2191
crossref_primary_10_3390_aerospace12080721
crossref_primary_10_1109_TITS_2018_2883217
crossref_primary_10_3390_su132011450
crossref_primary_10_1109_LRA_2021_3056032
crossref_primary_10_1109_ACCESS_2024_3432590
crossref_primary_10_1016_j_ress_2021_108090
crossref_primary_10_1109_JSYST_2022_3150267
crossref_primary_10_1016_j_trc_2022_103707
crossref_primary_10_1016_j_trc_2019_09_019
crossref_primary_10_1109_TITS_2014_2357835
crossref_primary_10_1109_TITS_2017_2697439
crossref_primary_10_1109_MITS_2017_2709804
crossref_primary_10_1109_TITS_2023_3346649
crossref_primary_10_1016_j_trc_2016_10_011
crossref_primary_10_1016_j_neucom_2020_07_150
crossref_primary_10_1080_13658816_2015_1049540
crossref_primary_10_1109_TITS_2023_3280114
crossref_primary_10_1145_3130800_3130847
crossref_primary_10_1016_j_artint_2018_12_008
crossref_primary_10_1109_TCCN_2019_2961660
crossref_primary_10_1145_3329676
crossref_primary_10_1016_j_trc_2018_05_013
crossref_primary_10_3390_ijgi10050333
crossref_primary_10_1111_mice_12251
crossref_primary_10_3390_s20185143
crossref_primary_10_4018_IJWSR_306243
crossref_primary_10_3390_su132212820
crossref_primary_10_1109_TITS_2016_2604484
crossref_primary_10_1109_MITS_2018_2806630
crossref_primary_10_1109_ACCESS_2019_2958982
crossref_primary_10_1186_s12544_021_00516_z
crossref_primary_10_1109_TITS_2021_3113710
crossref_primary_10_1109_TITS_2014_2353302
crossref_primary_10_1177_03611981241283461
crossref_primary_10_1109_JSAC_2023_3322841
crossref_primary_10_1007_s10586_017_0869_5
crossref_primary_10_1016_j_trc_2019_10_001
crossref_primary_10_1016_j_trc_2023_104283
crossref_primary_10_1109_TITS_2014_2331758
crossref_primary_10_1049_iet_its_2018_0007
crossref_primary_10_1109_TITS_2017_2743206
crossref_primary_10_1016_j_trc_2020_01_023
crossref_primary_10_1177_1550147719830552
crossref_primary_10_1080_21680566_2017_1353449
crossref_primary_10_1109_TKDE_2023_3287739
crossref_primary_10_1016_j_eswa_2017_08_027
crossref_primary_10_3233_JIFS_202292
crossref_primary_10_3390_s22010247
crossref_primary_10_1016_j_trc_2017_10_012
crossref_primary_10_1007_s11831_023_09962_5
crossref_primary_10_1109_TITS_2018_2867834
crossref_primary_10_1016_j_trc_2021_103265
crossref_primary_10_1016_j_trc_2018_03_004
crossref_primary_10_1016_j_trc_2015_07_003
crossref_primary_10_1016_j_trpro_2024_12_045
crossref_primary_10_1109_TITS_2021_3077904
crossref_primary_10_3390_s17030550
Cites_doi 10.1145/2038916.2038944
10.1109/SSDBM.2006.11
10.1109/78.978396
10.1145/1869983.1869993
10.1007/s10291-003-0069-z
10.1109/ITSC.2004.1398868
10.1109/CDC.2008.4739016
10.1109/ITSC.2012.6338641
10.1109/TRA.2002.807557
10.1016/j.trc.2010.06.001
10.1016/j.trc.2007.05.002
10.1016/S0968-090X(00)00026-7
10.1016/j.trc.2012.08.001
10.1007/BF00263991
10.1109/MDM.2010.14
10.1016/j.trc.2007.07.007
10.1109/PROC.1973.9030
10.1109/TSSC.1968.300136
10.1017/CBO9780511804441
10.1007/s10514-005-0609-1
10.1145/1378600.1378604
10.1109/TITS.2012.2187196
10.1109/TITS.2012.2200474
10.1145/504729.504754
10.1145/1644038.1644048
10.1109/79.543975
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7TB
F28
DOI 10.1109/TITS.2013.2282352
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Mechanical & Transportation Engineering Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Mechanical & Transportation Engineering Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Civil Engineering Abstracts
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 529
ExternalDocumentID 3271246031
10_1109_TITS_2013_2282352
6642050
Genre orig-research
GeographicLocations San Francisco California
GeographicLocations_xml – name: San Francisco California
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7TB
F28
ID FETCH-LOGICAL-c392t-c2ba0bbb440479ca09c173b1a4320374ccaa8ceef73f112b80c46b4c8c483e1c3
IEDL.DBID RIE
ISICitedReferencesCount 91
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000334584800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Sun Nov 23 09:52:14 EST 2025
Sun Nov 09 06:41:42 EST 2025
Sat Nov 29 06:34:48 EST 2025
Tue Nov 18 22:18:25 EST 2025
Tue Aug 26 16:49:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords route choice modeling
GPS data
path observation generation
network-free data
probabilistic map matching
Expectation-maximization algorithms
filtering
maximum likelihood estimation
Markov random fields
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-c2ba0bbb440479ca09c173b1a4320374ccaa8ceef73f112b80c46b4c8c483e1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1514338101
PQPubID 75735
PageCount 23
ParticipantIDs crossref_primary_10_1109_TITS_2013_2282352
ieee_primary_6642050
crossref_citationtrail_10_1109_TITS_2013_2282352
proquest_miscellaneous_1669851708
proquest_journals_1514338101
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
lafferty (ref24) 2001
ref14
ref33
ref32
ref10
schrank (ref35) 2009
greenfeld (ref16) 0
ref39
seymore (ref36) 1999
ref17
bayen (ref2) 2011
(ref9) 0
ref19
ref18
zheng (ref48) 0
(ref1) 0
murphy (ref28) 1994
miwa (ref26) 2004; 2
brakatsoulas (ref8) 2005
bilmes (ref6) 1998; 4
downs (ref11) 2004
pyo (ref31) 2001
rogers (ref34) 2000
ref46
ref45
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
(ref38) 0
liu (ref25) 2008; 6
giovannini (ref15) 2011
ref27
ochieng (ref30) 2003; 55
(ref29) 0
ref7
ref4
ref3
ref5
ref40
syed (ref37) 2004; 1
(ref23) 0
References_xml – ident: ref22
  doi: 10.1145/2038916.2038944
– volume: 4
  start-page: 1
  year: 1998
  ident: ref6
  article-title: A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models
  publication-title: Int Comput Sci Inst
– start-page: 853
  year: 2005
  ident: ref8
  article-title: On map-matching vehicle tracking data
  publication-title: Proc Int Conf On Very Large Data Bases
– ident: ref43
  doi: 10.1109/SSDBM.2006.11
– ident: ref17
  doi: 10.1109/78.978396
– ident: ref39
  doi: 10.1145/1869983.1869993
– ident: ref33
  doi: 10.1007/s10291-003-0069-z
– start-page: 37
  year: 1999
  ident: ref36
  article-title: Learning hidden Markov model structure for information extraction
  publication-title: Proc AAAI Workshop Mach Learning Inf Extraction
– ident: ref12
  doi: 10.1109/ITSC.2004.1398868
– year: 2004
  ident: ref11
  publication-title: Still stuck in traffic Coping with peak-hour traffic congestion
– ident: ref45
  doi: 10.1109/CDC.2008.4739016
– ident: ref19
  doi: 10.1109/ITSC.2012.6338641
– year: 0
  ident: ref38
  publication-title: Telenav Inc
– ident: ref10
  doi: 10.1109/TRA.2002.807557
– ident: ref47
  doi: 10.1016/j.trc.2010.06.001
– ident: ref32
  doi: 10.1016/j.trc.2007.05.002
– volume: 1
  start-page: 982
  year: 2004
  ident: ref37
  article-title: Fuzzy logic-based map matching algorithm for vehicle navigation system in urban canyons
  publication-title: Proc ION Nat Tech Meeting
– ident: ref44
  doi: 10.1016/S0968-090X(00)00026-7
– ident: ref4
  doi: 10.1016/j.trc.2012.08.001
– year: 1994
  ident: ref28
  publication-title: Dynamic Bayesian Networks Representation Inference and Learning
– ident: ref3
  doi: 10.1007/BF00263991
– ident: ref46
  doi: 10.1109/MDM.2010.14
– year: 2011
  ident: ref15
  publication-title: A Novel Map-matching Procedure for Low-sampling Gps Data with Applicatins to Traffic Flow Analysis
– ident: ref5
  doi: 10.1016/j.trc.2007.07.007
– ident: ref14
  doi: 10.1109/PROC.1973.9030
– ident: ref18
  doi: 10.1109/TSSC.1968.300136
– start-page: 125
  year: 2000
  ident: ref34
  article-title: Creating and evaluating highly accurate maps with probe vehicles
  publication-title: Proc IEEE Intell Transp Syst
– ident: ref7
  doi: 10.1017/CBO9780511804441
– volume: 6
  start-page: 29
  year: 2008
  ident: ref25
  article-title: Study on the cost-effectiveness of a probe vehicle system at lower polling frequencies
  publication-title: Int'l J ITS Research
– volume: 2
  start-page: 21
  year: 2004
  ident: ref26
  article-title: Route identification and travel time prediction using probe-car data
  publication-title: Int J
– year: 0
  ident: ref1
  publication-title: Supporting Code for the Path Inference Filter
– year: 0
  ident: ref48
  article-title: Weight-based shortest-path aided map-matching algorithm for low-frequency positioning data
– year: 2011
  ident: ref2
  publication-title: Mobile millennium final report
– ident: ref13
  doi: 10.1007/s10514-005-0609-1
– ident: ref21
  doi: 10.1145/1378600.1378604
– year: 0
  ident: ref29
  publication-title: NAVTEQ Inc
– ident: ref42
  doi: 10.1109/TITS.2012.2187196
– year: 0
  ident: ref23
  publication-title: Inrix Inc
– start-page: 282
  year: 2001
  ident: ref24
  article-title: Conditional random fields: Probabilistic models for segmenting and labeling sequence data
  publication-title: Proc 18th ICML
– year: 2009
  ident: ref35
  publication-title: 2009 urban mobility report
– volume: 55
  start-page: 1
  year: 2003
  ident: ref30
  article-title: Map-matching in complex urban road networks
  publication-title: Revista Brasileira de Cartografia
– ident: ref20
  doi: 10.1109/TITS.2012.2200474
– year: 0
  ident: ref16
  article-title: Matching GPS observations to locations on a digital map
– ident: ref41
  doi: 10.1145/504729.504754
– year: 0
  ident: ref9
  publication-title: The Cabspotting Program
– ident: ref40
  doi: 10.1145/1644038.1644048
– ident: ref27
  doi: 10.1109/79.543975
– start-page: 23
  year: 2001
  ident: ref31
  article-title: Development of a map matching method using the multiple hypothesis technique
  publication-title: Proc IEEE Intell Transp Syst
SSID ssj0014511
Score 2.4313064
Snippet We consider the problem of reconstructing vehicle trajectories from sparse sequences of GPS points, for which the sampling interval is between 1 s and 2 min....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 507
SubjectTerms Algorithms
Expectation-maximization algorithms
filtering
Global Positioning System
GPS data
Inference
Intelligent transportation systems
Markov random fields
Matching
maximum likelihood estimation
Mobile communication
network-free data
path observation generation
probabilistic map matching
Probability distribution
Probes
Real time
Roads
route choice modeling
Sampling
State of the art
Traffic information
Trajectory
Vehicles
Title The Path Inference Filter: Model-Based Low-Latency Map Matching of Probe Vehicle Data
URI https://ieeexplore.ieee.org/document/6642050
https://www.proquest.com/docview/1514338101
https://www.proquest.com/docview/1669851708
Volume 15
WOSCitedRecordID wos000334584800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9swED66softYeuWjaVrhwZ9GlUrWbJk7a3dFlZIS6DJ6JuRZJkWQhxap6X_fjrFMYWNwR4MBp8to5N83_nuvgM4EDZ3KhScKmcElbnn1Ngqp7LiLuSZrFmdupaM9cVFcXVlJltw2NfChBBS8lk4wtMUy68av8JfZccqgmWGDvozrfW6VquPGCDPVuJGzSQ1UaiLYHJmjqdn00tM4hJHWXQwUo3RExuUmqr88SVO5mX0-v9ebAdedTCSnKz1_ga2wuItvHxCLjiAWVwBZBIBHjnbFPWR0Q0Gx78S7IA2p6fRglVk3DzQsUXo_EjO7TIebcqvJE1NJlgsRH6FaxyFfLetfQez0Y_pt5-0a6JAfYQ-LfWZs8w5hzyA2njLjOdaOG6lyJB7JmrQFtFS1lrUEXu5gnmpnPSFl4UI3Iv3sL1oFuEDkCCsEXWOXKK1jLDR6sxVhRLMc2WUzIfANtNa-o5hHBtdzMvkaTBToiZK1ETZaWIIX_pblmt6jX8JD3Dqe8Fu1oewt9Fd2W3Au5IjEEzsZUP43F-OWwfjIXYRmlWUUcpEwKlZsfv3J3-EF3H8LlFnD7bb21XYh-f-vr25u_2U1t9vkn3VJg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RS9xAEB7EFqwPta0tXmvbFfpUXN3NbjZZ37Tt4WE8DjzFt7C72VBBLqK5iv--O3u5IFSEPgQCmSTLzm7mm8zMNwDfhEmt8jmnympBZeo41aZKqay49Wkia1bHriVFNh7nl5d6sgK7fS2M9z4mn_k9PI2x_Kpxc_xVtq8CWGbooL9IpUz4olqrjxkg01ZkR00k1UGsi2Fypveno-kZpnGJvSS4GLHK6JEVim1V_vkWRwMz3Pi_ob2B1x2QJIcLzb-FFT97B-uP6AU34TysATIJEI-MlmV9ZHiF4fEDgj3QrulRsGEVKZp7WhgEzw_k1NyEo40ZlqSpyQTLhciF_41vIT9Na97D-fDX9Mcx7dooUBfAT0tdYg2z1iITYKadYdrxTFhupEiQfSbo0OTBVtaZqAP6sjlzUlnpcidz4bkTH2B11sz8FhAvjBZ1imyitQzA0WSJrXIlmONKK5kOgC2ntXQdxzi2urguo6_BdImaKFETZaeJAXzvb7lZEGw8J7yJU98LdrM-gO2l7spuC96VHKFg5C8bwE5_OWwejIiYmW_mQUYpHSBnxvKPTz_5K6wdT0-LshiNTz7BqzCWLm1nG1bb27n_DC_dn_bq7vZLXIt_AdOg2G0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Path+Inference+Filter%3A+Model-Based+Low-Latency+Map+Matching+of+Probe+Vehicle+Data&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Hunter%2C+Timothy&rft.au=Abbeel%2C+Pieter&rft.au=Bayen%2C+Alexandre&rft.date=2014-04-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=15&rft.issue=2&rft.spage=507&rft.epage=529&rft_id=info:doi/10.1109%2FTITS.2013.2282352&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon