Neural-network-based nonlinear model predictive tracking control of a pneumatic muscle actuator-driven exoskeleton

Pneumatic muscle actuators &#x0028 PMAs &#x0029 are compliant and suitable for robotic devices that have been shown to be effective in assisting patients with neurologic injuries, such as strokes, spinal cord injuries, etc., to accomplish rehabilitation tasks. However, because PMAs have nonl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/CAA journal of automatica sinica Vol. 7; no. 6; pp. 1478 - 1488
Main Authors: Cao, Yu, Huang, Jian
Format: Journal Article
Language:English
Published: Piscataway Chinese Association of Automation (CAA) 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
Subjects:
ISSN:2329-9266, 2329-9274
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Pneumatic muscle actuators &#x0028 PMAs &#x0029 are compliant and suitable for robotic devices that have been shown to be effective in assisting patients with neurologic injuries, such as strokes, spinal cord injuries, etc., to accomplish rehabilitation tasks. However, because PMAs have nonlinearities, hysteresis, and uncertainties, etc., complex mechanisms are rarely involved in the study of PMA-driven robotic systems. In this paper, we use nonlinear model predictive control &#x0028 NMPC &#x0029 and an extension of the echo state network called an echo state Gaussian process &#x0028 ESGP &#x0029 to design a tracking controller for a PMA-driven lower limb exoskeleton. The dynamics of the system include the PMA actuation and mechanism of the leg orthoses; thus, the system is represented by two nonlinear uncertain subsystems. To facilitate the design of the controller, joint angles of leg orthoses are forecasted based on the universal approximation ability of the ESGP. A gradient descent algorithm is employed to solve the optimization problem and generate the control signal. The stability of the closed-loop system is guaranteed when the ESGP is capable of approximating system dynamics. Simulations and experiments are conducted to verify the approximation ability of the ESGP and achieve gait pattern training with four healthy subjects.
AbstractList Pneumatic muscle actuators ( PMAs ) are compliant and suitable for robotic devices that have been shown to be effective in assisting patients with neurologic injuries, such as strokes, spinal cord injuries, etc., to accomplish rehabilitation tasks. However, because PMAs have nonlinearities, hysteresis, and uncertainties, etc., complex mechanisms are rarely involved in the study of PMA-driven robotic systems. In this paper, we use nonlinear model predictive control ( NMPC ) and an extension of the echo state network called an echo state Gaussian process ( ESGP ) to design a tracking controller for a PMA-driven lower limb exoskeleton. The dynamics of the system include the PMA actuation and mechanism of the leg orthoses; thus, the system is represented by two nonlinear uncertain subsystems. To facilitate the design of the controller, joint angles of leg orthoses are forecasted based on the universal approximation ability of the ESGP. A gradient descent algorithm is employed to solve the optimization problem and generate the control signal. The stability of the closed-loop system is guaranteed when the ESGP is capable of approximating system dynamics. Simulations and experiments are conducted to verify the approximation ability of the ESGP and achieve gait pattern training with four healthy subjects.
Pneumatic muscle actuators &#x0028 PMAs &#x0029 are compliant and suitable for robotic devices that have been shown to be effective in assisting patients with neurologic injuries, such as strokes, spinal cord injuries, etc., to accomplish rehabilitation tasks. However, because PMAs have nonlinearities, hysteresis, and uncertainties, etc., complex mechanisms are rarely involved in the study of PMA-driven robotic systems. In this paper, we use nonlinear model predictive control &#x0028 NMPC &#x0029 and an extension of the echo state network called an echo state Gaussian process &#x0028 ESGP &#x0029 to design a tracking controller for a PMA-driven lower limb exoskeleton. The dynamics of the system include the PMA actuation and mechanism of the leg orthoses; thus, the system is represented by two nonlinear uncertain subsystems. To facilitate the design of the controller, joint angles of leg orthoses are forecasted based on the universal approximation ability of the ESGP. A gradient descent algorithm is employed to solve the optimization problem and generate the control signal. The stability of the closed-loop system is guaranteed when the ESGP is capable of approximating system dynamics. Simulations and experiments are conducted to verify the approximation ability of the ESGP and achieve gait pattern training with four healthy subjects.
Pneumatic muscle actuators (PMAs) are compliantand suitable for robotic devices that have been shown to be effective in assisting patients with neurologic injuries, such as strokes, spinal cord injuries, etc., to accomplish rehabilitation tasks. However, because PMAs have nonlinearities, hysteresis, and uncertainties, etc., complex mechanisms are rarely involved in the study of PMA-driven robotic systems. In this paper, we use nonlinear model predictive control (NMPC) and an extension of the echo state network called an echo state Gaussian process (ESGP) to design a tracking controller for a PMA-driven lower limb exoskeleton. The dynamics of the system include the PMA actuation and mechanism of the leg orthoses; thus, the system is represented by two nonlinear uncertain subsystems. To facilitate the design of the controller, joint angles of leg orthoses are forecasted based on the universal approximation ability of the ESGP. A gradient descent algorithm is employed to solve the optimization problem and generate the control signal. The stability of the closed-loop system is guaranteed when the ESGP is capable of approximating system dynamics. Simulations and experiments are conducted to verify the approximation ability of the ESGP and achieve gait pattern training with four healthy subjects.
Author Cao, Yu
Huang, Jian
AuthorAffiliation Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
AuthorAffiliation_xml – name: Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
Author_xml – sequence: 1
  givenname: Yu
  surname: Cao
  fullname: Cao, Yu
  organization: Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 2
  givenname: Jian
  surname: Huang
  fullname: Huang, Jian
  organization: Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
BookMark eNp9kc1r3DAQxUVJoWmSe6EXQW8Fp6MPy9YxhH4khObQ9ixkeZwq65W2kpxN8tdXy4YUeshpZuD93sB7b8lBiAEJecfglDHQny7Pfpxy4PUCEKJlr8ghF1w3mnfy4HlX6g05yfkWABhvO6XlIUnfcUl2bgKWbUyrZrAZR1rtZx_QJrqOI850k3D0rvg7pCVZt_LhhroYSoozjRO1dBNwWdviHV0v2c1IrSuLLTE1Y6pUoHgf8wpnLDEck9eTnTOePM0j8uvL55_n35qr668X52dXjROal8ZxbQerFe9aN40omNPYt6pTbpLIQbJBIQD2DAQbQdhBCVS6ayVKjdgLcUQ-7n23Nkw23JjbuKRQP5rH8ff9YB62wy4zUAC8ij_sxZsU_yyYyz81l63omZK9rCrYq1yKOSeczCb5tU0PhoHZNWFqE2bnap6aqIj6D3G-1KR26Vk_vwS-34MeEZ__aC4kKCn-Am52mN4
CODEN IJASJC
CitedBy_id crossref_primary_10_1016_j_mechatronics_2023_102952
crossref_primary_10_1109_TASE_2021_3072339
crossref_primary_10_1109_TITS_2023_3319815
crossref_primary_10_20965_jrm_2025_p0123
crossref_primary_10_1109_JAS_2021_1004284
crossref_primary_10_3390_machines11060619
crossref_primary_10_1002_advs_202304402
crossref_primary_10_3389_fnbot_2024_1443010
crossref_primary_10_1108_RIA_05_2023_0062
crossref_primary_10_1109_TCSI_2024_3522885
crossref_primary_10_3390_act14030108
crossref_primary_10_1007_s11071_024_10296_5
crossref_primary_10_1017_S0263574722001229
crossref_primary_10_1049_cth2_70045
crossref_primary_10_1007_s12555_023_0511_7
crossref_primary_10_1109_TASE_2025_3560600
crossref_primary_10_1186_s40648_024_00276_0
crossref_primary_10_1007_s12555_024_1128_1
crossref_primary_10_3390_act10020035
crossref_primary_10_3390_machines10010021
crossref_primary_10_1007_s42835_021_00842_1
crossref_primary_10_1016_j_aei_2022_101553
crossref_primary_10_1109_TMECH_2025_3562670
crossref_primary_10_1109_TASE_2025_3608042
crossref_primary_10_1109_TNNLS_2021_3105646
crossref_primary_10_1109_ACCESS_2021_3133864
crossref_primary_10_1109_TMECH_2024_3366276
crossref_primary_10_20965_jrm_2023_p1038
crossref_primary_10_1007_s00521_021_06745_6
crossref_primary_10_1016_j_robot_2025_105128
crossref_primary_10_1016_j_measurement_2025_117512
crossref_primary_10_1109_TIE_2023_3273270
crossref_primary_10_1109_TFUZZ_2022_3162700
crossref_primary_10_1109_TMECH_2022_3172715
crossref_primary_10_3390_machines10060425
crossref_primary_10_1109_TMECH_2020_3042774
crossref_primary_10_1007_s40815_025_02005_0
crossref_primary_10_1140_epjp_s13360_021_01382_3
crossref_primary_10_1109_JAS_2022_105620
crossref_primary_10_1016_j_conengprac_2024_106182
crossref_primary_10_3390_s22030884
crossref_primary_10_1109_TCYB_2022_3222564
crossref_primary_10_1007_s40747_024_01488_y
crossref_primary_10_1016_j_isatra_2024_06_001
crossref_primary_10_1109_JAS_2021_1004198
crossref_primary_10_1016_j_mechatronics_2025_103359
crossref_primary_10_1109_TII_2025_3538111
crossref_primary_10_1017_S0263574722001321
crossref_primary_10_1016_j_conengprac_2021_104769
crossref_primary_10_3389_fnbot_2023_1178006
crossref_primary_10_3390_s23052830
crossref_primary_10_1007_s40430_023_04635_7
crossref_primary_10_1007_s40430_025_05625_7
crossref_primary_10_1109_TASE_2023_3263535
crossref_primary_10_3390_app112110174
crossref_primary_10_1016_j_ifacsc_2023_100222
crossref_primary_10_3390_biomimetics10040208
crossref_primary_10_1109_ACCESS_2021_3090773
crossref_primary_10_1109_TFUZZ_2023_3319392
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1109/JAS.2020.1003351
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2329-9274
EndPage 1488
ExternalDocumentID zdhxb_ywb202006002
10_1109_JAS_2020_1003351
9234064
Genre orig-research
GrantInformation_xml – fundername: (This work was supported in part by the National Natural Science Foundation of China); (the International Science and TechnologyCooperation Program of China); (and the Fundamental Research Funds for the Central Universities)
  funderid: (This work was supported in part by the National Natural Science Foundation of China); (the International Science and TechnologyCooperation Program of China); (and the Fundamental Research Funds for the Central Universities)
GroupedDBID -0I
-0Y
-SI
-S~
0R~
4.4
5VR
6IK
92M
97E
9D9
9DI
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AFUIB
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAJEI
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
Q--
RIA
RIE
RT9
T8Y
TCJ
TGT
U1F
U1G
U5I
U5S
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
R-I
RIG
ID FETCH-LOGICAL-c392t-c29aba96275cfde31c9e85676cf4e2041b6e00e81031d03ab63e69754e49ee833
IEDL.DBID RIE
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000583489600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2329-9266
IngestDate Thu May 29 04:10:31 EDT 2025
Sun Nov 09 08:13:33 EST 2025
Tue Nov 18 21:50:12 EST 2025
Sat Nov 29 03:31:05 EST 2025
Wed Aug 27 02:17:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords model predictive control
Echo state Gaussian process
neural network
pneumatic muscle actuators-driven exoskeleton
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-c29aba96275cfde31c9e85676cf4e2041b6e00e81031d03ab63e69754e49ee833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2453816484
PQPubID 2040495
PageCount 11
ParticipantIDs wanfang_journals_zdhxb_ywb202006002
ieee_primary_9234064
crossref_citationtrail_10_1109_JAS_2020_1003351
proquest_journals_2453816484
crossref_primary_10_1109_JAS_2020_1003351
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE/CAA journal of automatica sinica
PublicationTitleAbbrev JAS
PublicationTitle_FL IEEE/CAA Journal of Automatica Sinica
PublicationYear 2020
Publisher Chinese Association of Automation (CAA)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
Publisher_xml – name: Chinese Association of Automation (CAA)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
SSID ssj0001257694
Score 2.430203
Snippet Pneumatic muscle actuators &#x0028 PMAs &#x0029 are compliant and suitable for robotic devices that have been shown to be effective in assisting patients with...
Pneumatic muscle actuators ( PMAs ) are compliant and suitable for robotic devices that have been shown to be effective in assisting patients with neurologic...
Pneumatic muscle actuators (PMAs) are compliantand suitable for robotic devices that have been shown to be effective in assisting patients with neurologic...
SourceID wanfang
proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1478
SubjectTerms Actuation
Actuators
Algorithms
Approximation
Control stability
Control systems design
Controllers
Exoskeletons
Feedback control
Gait
Gaussian process
Gaussian processes
Legged locomotion
Mathematical analysis
Muscles
Neural networks
Nonlinear control
Optimization
Orthoses
Predictive control
Predictive models
Rehabilitation
Spinal cord injuries
Subsystems
System dynamics
Task complexity
Tracking control
Training
Title Neural-network-based nonlinear model predictive tracking control of a pneumatic muscle actuator-driven exoskeleton
URI https://ieeexplore.ieee.org/document/9234064
https://www.proquest.com/docview/2453816484
https://d.wanfangdata.com.cn/periodical/zdhxb-ywb202006002
Volume 7
WOSCitedRecordID wos000583489600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2329-9274
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257694
  issn: 2329-9266
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB9ULNSH1taWXqsSaF8KTS97yX7kUYoiIiK0Bd-WbHbSirp37N2p7V_fmeze9QQp9G0h2WzIZDO_yXz8AD7U7KojM1kGZ6002ihZKeckqmAqLieSYGQtOc3PzoqLC3u-Bp-WuTCIGIPP8DM_Rl9-PfZzviob0qikf8w6rOd51uVqrdynEHKOvIeEEay0pHgWXkllhycHX8kWHMWgAK3T5IEWirQqDxDmkzvXBNf8WFE1R8__b5Lb8KyHlOKg2wMvYA2bl7C1UmhwB1quweGuZdMFfUvWXbVoujIZrhWRD0dMWvba8PknZq3zfIku-lB2MQ7CiUmD81jiVdzMp_Qt4Tj9hKx2Wbd8agq8H0-vSJERoHwF348Ov305lj3bgvSEkWbSj6yrHHPxpD7UqBNvsUizPPPB4EiZpMpQKSyYF6JW2lWZxszmqUFjEQutX8MGzRvfgEi8DgQUrQ2k_JxVVqkq89ZkNZmPGPIBDBerX_q-FDkzYlyX0SRRtiR5lSyvspfXAD4u35h0ZTj-0XeHpbLs1wtkALsLAZf9fzotRyZlz6kpqPl9L_S_rb_rn_dV-euu4uEVezDfPj72O3jKXbocxV3YmLVz3INNfzu7nLb7caP-ActV5d8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NAYI98DUQ3QZYghckvDq1k8aP08Q0oFRIDGlvluOcYdpIq7Rlg78en-OWTkJIvEWy41g-x_c738cP4FVNrrpgJnNvteZKKsErYS1H4VVF5UQyjKwlo-F4XJ6e6k8b8GaVC4OIMfgM9-kx-vLriVvQVVk_jBr0j7oBN4k5K2Vrrd2oBOwcmQ8DStBcB9Wz9EsK3X9_8DlYg4MYFiBlnl3TQ5FY5RrGvH1pG2-br2vK5uj-_03zAdxLoJIddLvgIWxg8wi21koNbkNLVTjsBW-6sG9O2qtmTVcow7YsMuKwaUt-GzoB2by1jq7RWQpmZxPPLJs2uIhFXtn3xSx8i1lKQAl2O69bOjcZXk1m50GVBUj5GL4cvT05POaJb4G7gJLm3A20rSyx8eTO1ygzp7HMi2HhvMKBUFlVoBBYEjNELaStComFHuYKlUYspXwCm2He-BRY5qQPUFFrH9Sf1UILURVOq6IOBiT6YQ_6y9U3LhUjJ06MCxONEqFNkJcheZkkrx68Xr0x7Qpx_KPvNkll1S8JpAd7SwGb9KfOzEDl5DtVZWh-mYT-p_VX_e2qMj8vKxpekA9z5-9jv4A7xycfR2b0bvxhF-5S9y5jcQ825-0Cn8Et92N-Nmufx037G-j_6Sg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural-Network-Based+Nonlinear+Model+Predictive+Tracking+Control+of+a+Pneumatic+Muscle+Actuator-Driven+Exoskeleton&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Yu+Cao&rft.au=Jian+Huang&rft.date=2020-11-01&rft.pub=Key+Laboratory+of+Image+Processing+and+Intelligent+Control%2C+School+of+Artificial+Intelligence+and+Automation%2C+Huazhong+University+of+Science+and+Technology%2C+Wuhan+430074%2C+China&rft.issn=2329-9266&rft.volume=7&rft.issue=6&rft.spage=1478&rft.epage=1488&rft_id=info:doi/10.1109%2FJAS.2020.1003351&rft.externalDocID=zdhxb_ywb202006002
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb-ywb%2Fzdhxb-ywb.jpg