Neural-network-based nonlinear model predictive tracking control of a pneumatic muscle actuator-driven exoskeleton
Pneumatic muscle actuators ( PMAs ) are compliant and suitable for robotic devices that have been shown to be effective in assisting patients with neurologic injuries, such as strokes, spinal cord injuries, etc., to accomplish rehabilitation tasks. However, because PMAs have nonl...
Gespeichert in:
| Veröffentlicht in: | IEEE/CAA journal of automatica sinica Jg. 7; H. 6; S. 1478 - 1488 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
Chinese Association of Automation (CAA)
01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China |
| Schlagworte: | |
| ISSN: | 2329-9266, 2329-9274 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Pneumatic muscle actuators ( PMAs ) are compliant and suitable for robotic devices that have been shown to be effective in assisting patients with neurologic injuries, such as strokes, spinal cord injuries, etc., to accomplish rehabilitation tasks. However, because PMAs have nonlinearities, hysteresis, and uncertainties, etc., complex mechanisms are rarely involved in the study of PMA-driven robotic systems. In this paper, we use nonlinear model predictive control ( NMPC ) and an extension of the echo state network called an echo state Gaussian process ( ESGP ) to design a tracking controller for a PMA-driven lower limb exoskeleton. The dynamics of the system include the PMA actuation and mechanism of the leg orthoses; thus, the system is represented by two nonlinear uncertain subsystems. To facilitate the design of the controller, joint angles of leg orthoses are forecasted based on the universal approximation ability of the ESGP. A gradient descent algorithm is employed to solve the optimization problem and generate the control signal. The stability of the closed-loop system is guaranteed when the ESGP is capable of approximating system dynamics. Simulations and experiments are conducted to verify the approximation ability of the ESGP and achieve gait pattern training with four healthy subjects. |
|---|---|
| AbstractList | Pneumatic muscle actuators ( PMAs ) are compliant and suitable for robotic devices that have been shown to be effective in assisting patients with neurologic injuries, such as strokes, spinal cord injuries, etc., to accomplish rehabilitation tasks. However, because PMAs have nonlinearities, hysteresis, and uncertainties, etc., complex mechanisms are rarely involved in the study of PMA-driven robotic systems. In this paper, we use nonlinear model predictive control ( NMPC ) and an extension of the echo state network called an echo state Gaussian process ( ESGP ) to design a tracking controller for a PMA-driven lower limb exoskeleton. The dynamics of the system include the PMA actuation and mechanism of the leg orthoses; thus, the system is represented by two nonlinear uncertain subsystems. To facilitate the design of the controller, joint angles of leg orthoses are forecasted based on the universal approximation ability of the ESGP. A gradient descent algorithm is employed to solve the optimization problem and generate the control signal. The stability of the closed-loop system is guaranteed when the ESGP is capable of approximating system dynamics. Simulations and experiments are conducted to verify the approximation ability of the ESGP and achieve gait pattern training with four healthy subjects. Pneumatic muscle actuators ( PMAs ) are compliant and suitable for robotic devices that have been shown to be effective in assisting patients with neurologic injuries, such as strokes, spinal cord injuries, etc., to accomplish rehabilitation tasks. However, because PMAs have nonlinearities, hysteresis, and uncertainties, etc., complex mechanisms are rarely involved in the study of PMA-driven robotic systems. In this paper, we use nonlinear model predictive control ( NMPC ) and an extension of the echo state network called an echo state Gaussian process ( ESGP ) to design a tracking controller for a PMA-driven lower limb exoskeleton. The dynamics of the system include the PMA actuation and mechanism of the leg orthoses; thus, the system is represented by two nonlinear uncertain subsystems. To facilitate the design of the controller, joint angles of leg orthoses are forecasted based on the universal approximation ability of the ESGP. A gradient descent algorithm is employed to solve the optimization problem and generate the control signal. The stability of the closed-loop system is guaranteed when the ESGP is capable of approximating system dynamics. Simulations and experiments are conducted to verify the approximation ability of the ESGP and achieve gait pattern training with four healthy subjects. Pneumatic muscle actuators (PMAs) are compliantand suitable for robotic devices that have been shown to be effective in assisting patients with neurologic injuries, such as strokes, spinal cord injuries, etc., to accomplish rehabilitation tasks. However, because PMAs have nonlinearities, hysteresis, and uncertainties, etc., complex mechanisms are rarely involved in the study of PMA-driven robotic systems. In this paper, we use nonlinear model predictive control (NMPC) and an extension of the echo state network called an echo state Gaussian process (ESGP) to design a tracking controller for a PMA-driven lower limb exoskeleton. The dynamics of the system include the PMA actuation and mechanism of the leg orthoses; thus, the system is represented by two nonlinear uncertain subsystems. To facilitate the design of the controller, joint angles of leg orthoses are forecasted based on the universal approximation ability of the ESGP. A gradient descent algorithm is employed to solve the optimization problem and generate the control signal. The stability of the closed-loop system is guaranteed when the ESGP is capable of approximating system dynamics. Simulations and experiments are conducted to verify the approximation ability of the ESGP and achieve gait pattern training with four healthy subjects. |
| Author | Cao, Yu Huang, Jian |
| AuthorAffiliation | Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China |
| AuthorAffiliation_xml | – name: Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China |
| Author_xml | – sequence: 1 givenname: Yu surname: Cao fullname: Cao, Yu organization: Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 2 givenname: Jian surname: Huang fullname: Huang, Jian organization: Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China |
| BookMark | eNp9kc1r3DAQxUVJoWmSe6EXQW8Fp6MPy9YxhH4khObQ9ixkeZwq65W2kpxN8tdXy4YUeshpZuD93sB7b8lBiAEJecfglDHQny7Pfpxy4PUCEKJlr8ghF1w3mnfy4HlX6g05yfkWABhvO6XlIUnfcUl2bgKWbUyrZrAZR1rtZx_QJrqOI850k3D0rvg7pCVZt_LhhroYSoozjRO1dBNwWdviHV0v2c1IrSuLLTE1Y6pUoHgf8wpnLDEck9eTnTOePM0j8uvL55_n35qr668X52dXjROal8ZxbQerFe9aN40omNPYt6pTbpLIQbJBIQD2DAQbQdhBCVS6ayVKjdgLcUQ-7n23Nkw23JjbuKRQP5rH8ff9YB62wy4zUAC8ij_sxZsU_yyYyz81l63omZK9rCrYq1yKOSeczCb5tU0PhoHZNWFqE2bnap6aqIj6D3G-1KR26Vk_vwS-34MeEZ__aC4kKCn-Am52mN4 |
| CODEN | IJASJC |
| CitedBy_id | crossref_primary_10_1016_j_mechatronics_2023_102952 crossref_primary_10_1109_TASE_2021_3072339 crossref_primary_10_1109_TITS_2023_3319815 crossref_primary_10_20965_jrm_2025_p0123 crossref_primary_10_1109_JAS_2021_1004284 crossref_primary_10_3390_machines11060619 crossref_primary_10_1002_advs_202304402 crossref_primary_10_3389_fnbot_2024_1443010 crossref_primary_10_1108_RIA_05_2023_0062 crossref_primary_10_1109_TCSI_2024_3522885 crossref_primary_10_3390_act14030108 crossref_primary_10_1007_s11071_024_10296_5 crossref_primary_10_1017_S0263574722001229 crossref_primary_10_1049_cth2_70045 crossref_primary_10_1007_s12555_023_0511_7 crossref_primary_10_1109_TASE_2025_3560600 crossref_primary_10_1186_s40648_024_00276_0 crossref_primary_10_1007_s12555_024_1128_1 crossref_primary_10_3390_act10020035 crossref_primary_10_3390_machines10010021 crossref_primary_10_1007_s42835_021_00842_1 crossref_primary_10_1016_j_aei_2022_101553 crossref_primary_10_1109_TMECH_2025_3562670 crossref_primary_10_1109_TASE_2025_3608042 crossref_primary_10_1109_TNNLS_2021_3105646 crossref_primary_10_1109_ACCESS_2021_3133864 crossref_primary_10_1109_TMECH_2024_3366276 crossref_primary_10_20965_jrm_2023_p1038 crossref_primary_10_1007_s00521_021_06745_6 crossref_primary_10_1016_j_robot_2025_105128 crossref_primary_10_1016_j_measurement_2025_117512 crossref_primary_10_1109_TIE_2023_3273270 crossref_primary_10_1109_TFUZZ_2022_3162700 crossref_primary_10_1109_TMECH_2022_3172715 crossref_primary_10_3390_machines10060425 crossref_primary_10_1109_TMECH_2020_3042774 crossref_primary_10_1007_s40815_025_02005_0 crossref_primary_10_1140_epjp_s13360_021_01382_3 crossref_primary_10_1109_JAS_2022_105620 crossref_primary_10_1016_j_conengprac_2024_106182 crossref_primary_10_3390_s22030884 crossref_primary_10_1109_TCYB_2022_3222564 crossref_primary_10_1007_s40747_024_01488_y crossref_primary_10_1016_j_isatra_2024_06_001 crossref_primary_10_1109_JAS_2021_1004198 crossref_primary_10_1016_j_mechatronics_2025_103359 crossref_primary_10_1109_TII_2025_3538111 crossref_primary_10_1017_S0263574722001321 crossref_primary_10_1016_j_conengprac_2021_104769 crossref_primary_10_3389_fnbot_2023_1178006 crossref_primary_10_3390_s23052830 crossref_primary_10_1007_s40430_023_04635_7 crossref_primary_10_1007_s40430_025_05625_7 crossref_primary_10_1109_TASE_2023_3263535 crossref_primary_10_3390_app112110174 crossref_primary_10_1016_j_ifacsc_2023_100222 crossref_primary_10_3390_biomimetics10040208 crossref_primary_10_1109_ACCESS_2021_3090773 crossref_primary_10_1109_TFUZZ_2023_3319392 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.1109/JAS.2020.1003351 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2329-9274 |
| EndPage | 1488 |
| ExternalDocumentID | zdhxb_ywb202006002 10_1109_JAS_2020_1003351 9234064 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: (This work was supported in part by the National Natural Science Foundation of China); (the International Science and TechnologyCooperation Program of China); (and the Fundamental Research Funds for the Central Universities) funderid: (This work was supported in part by the National Natural Science Foundation of China); (the International Science and TechnologyCooperation Program of China); (and the Fundamental Research Funds for the Central Universities) |
| GroupedDBID | -0I -0Y -SI -S~ 0R~ 4.4 5VR 6IK 92M 97E 9D9 9DI AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AFUIB AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CAJEI EBS EJD IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ Q-- RIA RIE RT9 T8Y TCJ TGT U1F U1G U5I U5S AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 2B. 4A8 92I 93N PSX R-I RIG |
| ID | FETCH-LOGICAL-c392t-c29aba96275cfde31c9e85676cf4e2041b6e00e81031d03ab63e69754e49ee833 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 70 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000583489600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2329-9266 |
| IngestDate | Thu May 29 04:10:31 EDT 2025 Sun Nov 09 08:13:33 EST 2025 Tue Nov 18 21:50:12 EST 2025 Sat Nov 29 03:31:05 EST 2025 Wed Aug 27 02:17:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | model predictive control Echo state Gaussian process neural network pneumatic muscle actuators-driven exoskeleton |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c392t-c29aba96275cfde31c9e85676cf4e2041b6e00e81031d03ab63e69754e49ee833 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2453816484 |
| PQPubID | 2040495 |
| PageCount | 11 |
| ParticipantIDs | wanfang_journals_zdhxb_ywb202006002 ieee_primary_9234064 crossref_citationtrail_10_1109_JAS_2020_1003351 proquest_journals_2453816484 crossref_primary_10_1109_JAS_2020_1003351 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-01 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE/CAA journal of automatica sinica |
| PublicationTitleAbbrev | JAS |
| PublicationTitle_FL | IEEE/CAA Journal of Automatica Sinica |
| PublicationYear | 2020 |
| Publisher | Chinese Association of Automation (CAA) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China |
| Publisher_xml | – name: Chinese Association of Automation (CAA) – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China |
| SSID | ssj0001257694 |
| Score | 2.430121 |
| Snippet | Pneumatic muscle actuators ( PMAs ) are compliant and suitable for robotic devices that have been shown to be effective in assisting patients with... Pneumatic muscle actuators ( PMAs ) are compliant and suitable for robotic devices that have been shown to be effective in assisting patients with neurologic... Pneumatic muscle actuators (PMAs) are compliantand suitable for robotic devices that have been shown to be effective in assisting patients with neurologic... |
| SourceID | wanfang proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1478 |
| SubjectTerms | Actuation Actuators Algorithms Approximation Control stability Control systems design Controllers Exoskeletons Feedback control Gait Gaussian process Gaussian processes Legged locomotion Mathematical analysis Muscles Neural networks Nonlinear control Optimization Orthoses Predictive control Predictive models Rehabilitation Spinal cord injuries Subsystems System dynamics Task complexity Tracking control Training |
| Title | Neural-network-based nonlinear model predictive tracking control of a pneumatic muscle actuator-driven exoskeleton |
| URI | https://ieeexplore.ieee.org/document/9234064 https://www.proquest.com/docview/2453816484 https://d.wanfangdata.com.cn/periodical/zdhxb-ywb202006002 |
| Volume | 7 |
| WOSCitedRecordID | wos000583489600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2329-9274 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257694 issn: 2329-9266 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_uDgV98OsUV08J6Itg3HbTpsnjIR7iwyGocG8lHxMVz-7S3fVO_3pn0u66ByL4UgpN0tBfmvnNTGYG4Lmpo6liIARUw6abiNKEspY-RR_QJ4zK52ITzempOTuz7_fg5TYWBhHz4TN8xbfZlx_nYc2msimREZI_1T7sN40eYrV27CnEnHPdQ-IIVloSPBuvZGGn744_kC44y4cClKrLK1Iol1W5wjCvX7guue7zjqg5uf1_k7wDt0ZKKY6HNXAX9rC7Bzd3Eg0eQs85ONy57IZD35JlVxTdkCbD9SLXwxGLnr02vP-JVe8CG9HFeJRdzJNwYtHhOqd4Fd_XS3qXcBx-Qlq7jD3vmgIv58tvJMiIUN6HTydvPr5-K8dqCzIQR1rJMLPOO67FU4cUUZXBoql1o0OqcFZUpddYFGi4LkQslPNaobZNXWFlEY1SD-CA5o0PQSRfcC9tE11J_-OchLU2rkw6RqJsE5huvn4bxlTkXBHjvM0qSWFbwqtlvNoRrwm82PZYDGk4_tH2kFHZthsBmcDRBuB2_E-X7ayq2XNaGXr8bAT9z9Nf8culb39eeB6-YA_mo7-P_RhucJMhRvEIDlb9Gp_AtfBj9XXZP80L9Td1m-eu |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-1KtoHv6p4tWpAXwTTy26ye8ljEUvVeghW6FvIx0TFunfs3fXDv95Mdu-8ggi-LAubZMP-spnfzGRmCHmpqqBk8AkBMULTTQCmfFExF4Pz4CIE4XKxidF4rE5O9KcN8noVCwMA-fAZ7OFt9uWHiV-gqWyYyEiSP_IauV5JWfIuWmvNopK4c658mFiCZjqJnqVfkuvh-_3PSRss87EAIariihzKhVWucMyb57aJtvm6JmwO7v7fNO-ROz2ppPvdKrhPNqB5QLbWUg1ukxazcNhT1nTHvhlKr0CbLlGGbWmuiEOnLfptcAek89Z6NKPT_jA7nURq6bSBRU7ySn8uZuld1GIAStLbWWhx36RwMZn9SKIsUcqH5MvB2-M3h6yvt8B8Yklz5kttncVqPJWPAUThNaiqHtU-Sii5LFwNnIPCyhCBC-tqAbUeVRKkBlBCPCKbad7wmNDoOPaqdUzXpAFiVsKqVraIdQiJtA3IcPn1je-TkWNNjFOTlRKuTcLLIF6mx2tAXq16TLtEHP9ou42orNr1gAzI7hJg0_-pM1PKCn2nUqXHL3rQ_zz9Fb5dOHN57nB4jj7Mnb-P_ZzcOjz-eGSO3o0_PCG3sXkXsbhLNuftAp6SG_5s_n3WPsuL9jemXOr1 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural-network-based+nonlinear+model+predictive+tracking+control+of+a+pneumatic+muscle+actuator-driven+exoskeleton&rft.jtitle=IEEE%2FCAA+journal+of+automatica+sinica&rft.au=Cao%2C+Yu&rft.au=Huang%2C+Jian&rft.date=2020-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2329-9266&rft.eissn=2329-9274&rft.volume=7&rft.issue=6&rft.spage=1478&rft_id=info:doi/10.1109%2FJAS.2020.1003351&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb-ywb%2Fzdhxb-ywb.jpg |