Incorporating hierarchical information into multiple instance learning for patient phenotype prediction with single-cell RNA-sequencing data

Multiple instance learning (MIL) provides a structured approach to patient phenotype prediction with single-cell RNA-sequencing (scRNA-seq) data. However, existing MIL methods tend to overlook the hierarchical structure inherent in scRNA-seq data, especially the biological groupings of cells or cell...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bioinformatics (Oxford, England) Ročník 41; číslo Supplement_1; s. i96 - i104
Hlavní autoři: Do, Chau, Lähdesmäki, Harri
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Oxford Publishing Limited (England) 01.07.2025
Oxford University Press
Témata:
ISSN:1367-4803, 1367-4811, 1367-4811
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Multiple instance learning (MIL) provides a structured approach to patient phenotype prediction with single-cell RNA-sequencing (scRNA-seq) data. However, existing MIL methods tend to overlook the hierarchical structure inherent in scRNA-seq data, especially the biological groupings of cells or cell types. This limitation may lead to suboptimal performance and poor interpretability at higher levels of cellular division. To address this gap, we present a novel approach to incorporate hierarchical information into the attention-based MIL framework. Specifically, our model applies the attention-based aggregation mechanism over both cells and cell types, thus enforcing a hierarchical structure on the flow of information throughout the model. Across extensive experiments, our proposed approach demonstrates highly competitive performance and shows robustness against limited sample sizes. Moreover, ablation test results show that simply applying the attention mechanism on cell types instead of cells leads to improved performance, underscoring the benefits of incorporating the hierarchical groupings. By identifying the critical cell types that are most relevant for prediction, we show that our model is capable of capturing biologically meaningful associations, suggesting its potential to facilitate biological discoveries. Our source code is available at https://github.com/minhchaudo/hier-mil. All datasets used in this study are publicly available online.
AbstractList Multiple instance learning (MIL) provides a structured approach to patient phenotype prediction with single-cell RNA-sequencing (scRNA-seq) data. However, existing MIL methods tend to overlook the hierarchical structure inherent in scRNA-seq data, especially the biological groupings of cells or cell types. This limitation may lead to suboptimal performance and poor interpretability at higher levels of cellular division. To address this gap, we present a novel approach to incorporate hierarchical information into the attention-based MIL framework. Specifically, our model applies the attention-based aggregation mechanism over both cells and cell types, thus enforcing a hierarchical structure on the flow of information throughout the model. Across extensive experiments, our proposed approach demonstrates highly competitive performance and shows robustness against limited sample sizes. Moreover, ablation test results show that simply applying the attention mechanism on cell types instead of cells leads to improved performance, underscoring the benefits of incorporating the hierarchical groupings. By identifying the critical cell types that are most relevant for prediction, we show that our model is capable of capturing biologically meaningful associations, suggesting its potential to facilitate biological discoveries. Our source code is available at https://github.com/minhchaudo/hier-mil. All datasets used in this study are publicly available online.
Motivation Multiple instance learning (MIL) provides a structured approach to patient phenotype prediction with single-cell RNA-sequencing (scRNA-seq) data. However, existing MIL methods tend to overlook the hierarchical structure inherent in scRNA-seq data, especially the biological groupings of cells or cell types. This limitation may lead to suboptimal performance and poor interpretability at higher levels of cellular division. Results To address this gap, we present a novel approach to incorporate hierarchical information into the attention-based MIL framework. Specifically, our model applies the attention-based aggregation mechanism over both cells and cell types, thus enforcing a hierarchical structure on the flow of information throughout the model. Across extensive experiments, our proposed approach demonstrates highly competitive performance and shows robustness against limited sample sizes. Moreover, ablation test results show that simply applying the attention mechanism on cell types instead of cells leads to improved performance, underscoring the benefits of incorporating the hierarchical groupings. By identifying the critical cell types that are most relevant for prediction, we show that our model is capable of capturing biologically meaningful associations, suggesting its potential to facilitate biological discoveries. Availability and implementation Our source code is available at https://github.com/minhchaudo/hier-mil. All datasets used in this study are publicly available online.
Multiple instance learning (MIL) provides a structured approach to patient phenotype prediction with single-cell RNA-sequencing (scRNA-seq) data. However, existing MIL methods tend to overlook the hierarchical structure inherent in scRNA-seq data, especially the biological groupings of cells or cell types. This limitation may lead to suboptimal performance and poor interpretability at higher levels of cellular division.MOTIVATIONMultiple instance learning (MIL) provides a structured approach to patient phenotype prediction with single-cell RNA-sequencing (scRNA-seq) data. However, existing MIL methods tend to overlook the hierarchical structure inherent in scRNA-seq data, especially the biological groupings of cells or cell types. This limitation may lead to suboptimal performance and poor interpretability at higher levels of cellular division.To address this gap, we present a novel approach to incorporate hierarchical information into the attention-based MIL framework. Specifically, our model applies the attention-based aggregation mechanism over both cells and cell types, thus enforcing a hierarchical structure on the flow of information throughout the model. Across extensive experiments, our proposed approach demonstrates highly competitive performance and shows robustness against limited sample sizes. Moreover, ablation test results show that simply applying the attention mechanism on cell types instead of cells leads to improved performance, underscoring the benefits of incorporating the hierarchical groupings. By identifying the critical cell types that are most relevant for prediction, we show that our model is capable of capturing biologically meaningful associations, suggesting its potential to facilitate biological discoveries.RESULTSTo address this gap, we present a novel approach to incorporate hierarchical information into the attention-based MIL framework. Specifically, our model applies the attention-based aggregation mechanism over both cells and cell types, thus enforcing a hierarchical structure on the flow of information throughout the model. Across extensive experiments, our proposed approach demonstrates highly competitive performance and shows robustness against limited sample sizes. Moreover, ablation test results show that simply applying the attention mechanism on cell types instead of cells leads to improved performance, underscoring the benefits of incorporating the hierarchical groupings. By identifying the critical cell types that are most relevant for prediction, we show that our model is capable of capturing biologically meaningful associations, suggesting its potential to facilitate biological discoveries.Our source code is available at https://github.com/minhchaudo/hier-mil. All datasets used in this study are publicly available online.AVAILABILITY AND IMPLEMENTATIONOur source code is available at https://github.com/minhchaudo/hier-mil. All datasets used in this study are publicly available online.
Author Lähdesmäki, Harri
Do, Chau
Author_xml – sequence: 1
  givenname: Chau
  surname: Do
  fullname: Do, Chau
– sequence: 2
  givenname: Harri
  surname: Lähdesmäki
  fullname: Lähdesmäki, Harri
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40662783$$D View this record in MEDLINE/PubMed
BookMark eNpdkttqHiEUhaUk5NS8QhB605tpPM3pqoTQQyA0UNprcZxtxuDoVJ2WvEMfuk7y96fpjW7xc-29cJ2iAx88IHRByTtKen452GC9CXFW2ep0OWRlmKCv0AnlTVuJjtKDfU34MTpN6YEQUpO6OULHgjQNazt-gn7feB3iEmLR8fd4shBV1JPVyuF9g-BLnQOeV5ft4qCcUlZeA3agot8eFhIvBQWf8TKBD_lxAbxEGK1-Evhl84RTQR1UGpzDX79cVQl-rOD1JjCqrF6jQ6NcgvPdfoa-f_zw7fpzdXv36eb66rbSvGe50lR1A4WB9kS3wig6imbsGt4BbwfN-VBrQ1peCyLGUZDOsN5QrVrRm1GYAfgZev-su6zDDKMuQ0fl5BLtrOKjDMrKlzfeTvI-_JSUsYYKKorC251CDMVCynK2abOlPIQ1Sc44YZSLmhf0zX_oQ1ijL_6eqJqVdaMu_h1pP8vfnypA8wzoGFKKYPYIJXKLhHwZCbmLBP8DLVu0YQ
Cites_doi 10.1016/j.cell.2023.11.037
10.1016/j.clim.2022.109177
10.1093/bioinformatics/btae067
10.1016/j.cell.2021.07.023
10.1038/s41423-024-01167-5
10.1093/bioinformatics/btad493
10.1038/s41467-021-24521-x
10.1101/2024.01.17.576110
10.1158/2326-6066.CIR-21-0870
10.1186/s13059-019-1790-4
10.1038/s41586-022-04817-8
10.1073/pnas.0506580102
10.3324/haematol.2013.094243
10.1038/nature11247
10.1038/s41591-021-01323-8
10.1038/s41592-024-02201-0
10.1172/JCI148517
10.1038/s41467-020-17796-z
10.1142/9789811250477_0031
10.1038/s41590-018-0276-y
10.1186/1471-2164-14-632
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press.
The Author(s) 2025. Published by Oxford University Press. 2025
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press.
– notice: The Author(s) 2025. Published by Oxford University Press. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1093/bioinformatics/btaf241
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
EndPage i104
ExternalDocumentID PMC12261414
40662783
10_1093_bioinformatics_btaf241
Genre Journal Article
GrantInformation_xml – fundername: Sigrid Jusélius Foundation
– fundername: Research Council of Finland
  grantid: 359135
– fundername: Cancer Foundation of Finland
– fundername: ;
– fundername: ;
  grantid: 359135
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRTK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DILTD
DU5
D~K
EBD
EBS
EE~
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c392t-c1a8b1eb190c74fa1d46d8638e37bc33b5cf0735404dd408f29f1ca749fd4fbe3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001528738400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4803
1367-4811
IngestDate Thu Aug 21 18:22:36 EDT 2025
Tue Jul 15 17:30:26 EDT 2025
Mon Oct 06 17:42:42 EDT 2025
Sun Jul 20 01:30:44 EDT 2025
Sat Nov 29 07:45:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Supplement_1
Language English
License https://creativecommons.org/licenses/by/4.0
The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c392t-c1a8b1eb190c74fa1d46d8638e37bc33b5cf0735404dd408f29f1ca749fd4fbe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://dx.doi.org/10.1093/bioinformatics/btaf241
PMID 40662783
PQID 3230523233
PQPubID 36124
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12261414
proquest_miscellaneous_3230213453
proquest_journals_3230523233
pubmed_primary_40662783
crossref_primary_10_1093_bioinformatics_btaf241
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2025
Publisher Oxford Publishing Limited (England)
Oxford University Press
Publisher_xml – name: Oxford Publishing Limited (England)
– name: Oxford University Press
References Pozniak (2025071509033795000_btaf241-B18) 2024; 187
Xiong (2025071509033795000_btaf241-B22) 2023; 39
Ziegler (2025071509033795000_btaf241-B24) 2021; 184
Alvarez-Breckenridge (2025071509033795000_btaf241-B3) 2022; 10
Ilse (2025071509033795000_btaf241-B12) 2018
Ahn (2025071509033795000_btaf241-B1) 2021; 131
Chaffin (2025071509033795000_btaf241-B6) 2022; 608
Ngo (2025071509033795000_btaf241-B16) 2024; 21
Robinot (2025071509033795000_btaf241-B19) 2021; 12
Mabbott (2025071509033795000_btaf241-B13) 2013; 14
Alahdal (2025071509033795000_btaf241-B2) 2022; 245
Nguyen (2025071509033795000_btaf241-B17) 2019; 20
Engelmann (2025071509033795000_btaf241-B8) 2024
Zhu (2025071509033795000_btaf241-B23) 2020; 11
Cui (2025071509033795000_btaf241-B7) 2024; 21
Martens (2025071509033795000_btaf241-B15) 2013; 98
Hajj (2025071509033795000_btaf241-B10) 2024
Mao (2025071509033795000_btaf241-B14) 2024; 40
He (2025071509033795000_btaf241-B11) 2022; 27
Gondal (2025071509033795000_btaf241-B9) 2024
The ENCODE Project Consortium (2025071509033795000_btaf241-B21) 2012; 489
Subramanian (2025071509033795000_btaf241-B20) 2005; 102
Aran (2025071509033795000_btaf241-B4) 2019; 20
Bassez (2025071509033795000_btaf241-B5) 2021; 27
References_xml – volume: 187
  start-page: 166
  year: 2024
  ident: 2025071509033795000_btaf241-B18
  article-title: A tcf4-dependent gene regulatory network confers resistance to immunotherapy in melanoma
  publication-title: Cell
  doi: 10.1016/j.cell.2023.11.037
– volume: 245
  start-page: 109177
  year: 2022
  ident: 2025071509033795000_btaf241-B2
  article-title: Exhaustion and over-activation of immune cells in covid-19: challenges and therapeutic opportunities
  publication-title: Clin Immunol
  doi: 10.1016/j.clim.2022.109177
– volume: 40
  year: 2024
  ident: 2025071509033795000_btaf241-B14
  article-title: Phenotype prediction from single-cell RNA-seq data using attention-based neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btae067
– volume: 184
  start-page: 4713
  year: 2021
  ident: 2025071509033795000_btaf241-B24
  article-title: Impaired local intrinsic immunity to SARS-CoV-2 infection in severe covid-19
  publication-title: Cell
  doi: 10.1016/j.cell.2021.07.023
– volume: 21
  start-page: 1008
  year: 2024
  ident: 2025071509033795000_btaf241-B16
  article-title: The role of plasmacytoid dendritic cells (PDCs) in immunity during viral infections and beyond
  publication-title: Cell Mol Immunol
  doi: 10.1038/s41423-024-01167-5
– volume: 39
  start-page: btad493
  year: 2023
  ident: 2025071509033795000_btaf241-B22
  article-title: Protocell4p: an explainable prototype-based neural network for patient classification using single-cell RNA-seq
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad493
– volume: 12
  start-page: 4354
  year: 2021
  ident: 2025071509033795000_btaf241-B19
  article-title: SARS-CoV-2 infection induces the dedifferentiation of multiciliated cells and impairs mucociliary clearance
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-24521-x
– year: 2024
  ident: 2025071509033795000_btaf241-B10
– year: 2024
  ident: 2025071509033795000_btaf241-B8
– year: 2024
  ident: 2025071509033795000_btaf241-B9
  doi: 10.1101/2024.01.17.576110
– volume: 10
  start-page: 996
  year: 2022
  ident: 2025071509033795000_btaf241-B3
  article-title: Microenvironmental landscape of human melanoma brain metastases in response to immune checkpoint inhibition
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-21-0870
– volume: 20
  start-page: 203
  year: 2019
  ident: 2025071509033795000_btaf241-B17
  article-title: Identifying significantly impacted pathways: a comprehensive review and assessment
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1790-4
– volume: 608
  start-page: 174
  year: 2022
  ident: 2025071509033795000_btaf241-B6
  article-title: Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy
  publication-title: Nature
  doi: 10.1038/s41586-022-04817-8
– volume: 102
  start-page: 15545
  year: 2005
  ident: 2025071509033795000_btaf241-B20
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0506580102
– volume: 98
  start-page: 1487
  year: 2013
  ident: 2025071509033795000_btaf241-B15
  article-title: Blueprint: mapping human blood cell epigenomes
  publication-title: Haematologica
  doi: 10.3324/haematol.2013.094243
– volume: 489
  start-page: 57
  year: 2012
  ident: 2025071509033795000_btaf241-B21
  article-title: An integrated encyclopedia of DNA elements in the human genome
  publication-title: Nature
  doi: 10.1038/nature11247
– volume: 27
  start-page: 820
  year: 2021
  ident: 2025071509033795000_btaf241-B5
  article-title: A single-cell map of intratumoral changes during anti-pd1 treatment of patients with breast cancer
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01323-8
– volume: 21
  start-page: 1470
  year: 2024
  ident: 2025071509033795000_btaf241-B7
  article-title: Scgpt: toward building a foundation model for single-cell multi-omics using generative ai
  publication-title: Nat Methods
  doi: 10.1038/s41592-024-02201-0
– volume: 131
  start-page: e148517
  year: 2021
  ident: 2025071509033795000_btaf241-B1
  article-title: Nasal ciliated cells are primary targets for SARS-CoV-2 replication in the early stage of COVID-19
  publication-title: J Clin Invest
  doi: 10.1172/JCI148517
– volume: 11
  start-page: 3910
  year: 2020
  ident: 2025071509033795000_btaf241-B23
  article-title: Morphogenesis and cytopathic effect of SARS-CoV-2 infection in human airway epithelial cells
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17796-z
– volume: 27
  start-page: 337
  year: 2022
  ident: 2025071509033795000_btaf241-B11
  article-title: Cloudpred: predicting patient phenotypes from single-cell RNA-seq
  publication-title: Pac Symp Biocomput
  doi: 10.1142/9789811250477_0031
– volume: 20
  start-page: 163
  year: 2019
  ident: 2025071509033795000_btaf241-B4
  article-title: Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage
  publication-title: Nat Immunol
  doi: 10.1038/s41590-018-0276-y
– volume: 14
  start-page: 632
  year: 2013
  ident: 2025071509033795000_btaf241-B13
  article-title: An expression atlas of human primary cells: inference of gene function from coexpression networks
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-632
– year: 2018
  ident: 2025071509033795000_btaf241-B12
SSID ssj0005056
Score 2.4844117
Snippet Multiple instance learning (MIL) provides a structured approach to patient phenotype prediction with single-cell RNA-sequencing (scRNA-seq) data. However,...
Motivation Multiple instance learning (MIL) provides a structured approach to patient phenotype prediction with single-cell RNA-sequencing (scRNA-seq) data....
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage i96
SubjectTerms Ablation
Algorithms
Availability
Biomedical Informatics
Computational Biology - methods
Gene sequencing
Humans
Information flow
Learning
Machine Learning
Multiple-Instance Learning Algorithms
Phenotype
Phenotypes
Predictions
RNA-Seq - methods
Sequence Analysis, RNA - methods
Single-Cell Analysis - methods
Source code
Title Incorporating hierarchical information into multiple instance learning for patient phenotype prediction with single-cell RNA-sequencing data
URI https://www.ncbi.nlm.nih.gov/pubmed/40662783
https://www.proquest.com/docview/3230523233
https://www.proquest.com/docview/3230213453
https://pubmed.ncbi.nlm.nih.gov/PMC12261414
Volume 41
WOSCitedRecordID wos001528738400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9QwFA6zq4Iv4t3RdYjg21KmbdImeVy8oCCjyAjzVto0ZQuz7TCXZf0P_jn_kSeXpu0uiPvgSylJOCU9X05yTs4FobdlVRSSFCpgcVoGNOFhwEtYeIUQKocdJy5soPAXtljw1Up8m0x-d7Ewl2vWNPzqSmz-K6uhDZitQ2dvwW5PFBrgHZgOT2A7PP-J8Z91ZkqTnVhbAXSpa3NZIE12DR-rqPNEtL07YW1OibDG152pRLsfuqSrp9oPrDXG2s1WX-wYAta5HYauVaDN_6ffF2eB88zWBFzUW39lXLf--9LYem2wopHGtpTIwCzxvnXOAAfvMmTu9Ol5qXYX9tVV3M6323povIgT7-jayVui067z0Mo4NWxzMtgJaRoNwGgKnhrraRYNhG8t0sE-Xru6xjf2CJs_qxhNWjfs8yp2nxml5b62XXonRnt9T7IxpczROUJ3YpYI7WW4_LrqvY5CU1DYz7sLWhdkPqYzd3TG56UbStB1X97B4Wj5ED1wWg0-s2h8hCaqeYzu2TqnP5-gXyNM4iEm8QCTWGMSd5jEHSZxh0kMI7HDJPaYxD0mscYkHmASjzGJNSafoh8fPyzffQpcGZBAwuF9H8go50UEZwoRSkarPCppWnLYNxRhIGdIkcgKNipQPWhZ0pBXsagimTMqqpJWhSLP0HHTNuoFwkRVKRMhk4lQoDnkgvI0ISWPJFNVnsgpmnc_O9vYbC_Z39k8RScdTzInBHYZAb0-AVWFkCl647tBbuuZ541qD3aMzqaYwJjnloX-k9SUZeDQw0fM9QN0TvhxT1Ofm9zwEahTEY3oy1vP5BW636_QE3S83x7Ua3RXXu7r3XaGjtiKz4zFamYQ_QcZWuzj
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporating+hierarchical+information+into+multiple+instance+learning+for+patient+phenotype+prediction+with+single-cell+RNA-sequencing+data&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Do%2C+Chau&rft.au=L%C3%A4hdesm%C3%A4ki%2C+Harri&rft.date=2025-07-01&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=41&rft.issue=Supplement_1&rft.spage=i96&rft.epage=i104&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaf241&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btaf241
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon