Incorporating hierarchical information into multiple instance learning for patient phenotype prediction with single-cell RNA-sequencing data
Multiple instance learning (MIL) provides a structured approach to patient phenotype prediction with single-cell RNA-sequencing (scRNA-seq) data. However, existing MIL methods tend to overlook the hierarchical structure inherent in scRNA-seq data, especially the biological groupings of cells or cell...
Uložené v:
| Vydané v: | Bioinformatics (Oxford, England) Ročník 41; číslo Supplement_1; s. i96 - i104 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Oxford Publishing Limited (England)
01.07.2025
Oxford University Press |
| Predmet: | |
| ISSN: | 1367-4803, 1367-4811, 1367-4811 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Multiple instance learning (MIL) provides a structured approach to patient phenotype prediction with single-cell RNA-sequencing (scRNA-seq) data. However, existing MIL methods tend to overlook the hierarchical structure inherent in scRNA-seq data, especially the biological groupings of cells or cell types. This limitation may lead to suboptimal performance and poor interpretability at higher levels of cellular division.
To address this gap, we present a novel approach to incorporate hierarchical information into the attention-based MIL framework. Specifically, our model applies the attention-based aggregation mechanism over both cells and cell types, thus enforcing a hierarchical structure on the flow of information throughout the model. Across extensive experiments, our proposed approach demonstrates highly competitive performance and shows robustness against limited sample sizes. Moreover, ablation test results show that simply applying the attention mechanism on cell types instead of cells leads to improved performance, underscoring the benefits of incorporating the hierarchical groupings. By identifying the critical cell types that are most relevant for prediction, we show that our model is capable of capturing biologically meaningful associations, suggesting its potential to facilitate biological discoveries.
Our source code is available at https://github.com/minhchaudo/hier-mil. All datasets used in this study are publicly available online. |
|---|---|
| AbstractList | Multiple instance learning (MIL) provides a structured approach to patient phenotype prediction with single-cell RNA-sequencing (scRNA-seq) data. However, existing MIL methods tend to overlook the hierarchical structure inherent in scRNA-seq data, especially the biological groupings of cells or cell types. This limitation may lead to suboptimal performance and poor interpretability at higher levels of cellular division.MOTIVATIONMultiple instance learning (MIL) provides a structured approach to patient phenotype prediction with single-cell RNA-sequencing (scRNA-seq) data. However, existing MIL methods tend to overlook the hierarchical structure inherent in scRNA-seq data, especially the biological groupings of cells or cell types. This limitation may lead to suboptimal performance and poor interpretability at higher levels of cellular division.To address this gap, we present a novel approach to incorporate hierarchical information into the attention-based MIL framework. Specifically, our model applies the attention-based aggregation mechanism over both cells and cell types, thus enforcing a hierarchical structure on the flow of information throughout the model. Across extensive experiments, our proposed approach demonstrates highly competitive performance and shows robustness against limited sample sizes. Moreover, ablation test results show that simply applying the attention mechanism on cell types instead of cells leads to improved performance, underscoring the benefits of incorporating the hierarchical groupings. By identifying the critical cell types that are most relevant for prediction, we show that our model is capable of capturing biologically meaningful associations, suggesting its potential to facilitate biological discoveries.RESULTSTo address this gap, we present a novel approach to incorporate hierarchical information into the attention-based MIL framework. Specifically, our model applies the attention-based aggregation mechanism over both cells and cell types, thus enforcing a hierarchical structure on the flow of information throughout the model. Across extensive experiments, our proposed approach demonstrates highly competitive performance and shows robustness against limited sample sizes. Moreover, ablation test results show that simply applying the attention mechanism on cell types instead of cells leads to improved performance, underscoring the benefits of incorporating the hierarchical groupings. By identifying the critical cell types that are most relevant for prediction, we show that our model is capable of capturing biologically meaningful associations, suggesting its potential to facilitate biological discoveries.Our source code is available at https://github.com/minhchaudo/hier-mil. All datasets used in this study are publicly available online.AVAILABILITY AND IMPLEMENTATIONOur source code is available at https://github.com/minhchaudo/hier-mil. All datasets used in this study are publicly available online. Multiple instance learning (MIL) provides a structured approach to patient phenotype prediction with single-cell RNA-sequencing (scRNA-seq) data. However, existing MIL methods tend to overlook the hierarchical structure inherent in scRNA-seq data, especially the biological groupings of cells or cell types. This limitation may lead to suboptimal performance and poor interpretability at higher levels of cellular division. To address this gap, we present a novel approach to incorporate hierarchical information into the attention-based MIL framework. Specifically, our model applies the attention-based aggregation mechanism over both cells and cell types, thus enforcing a hierarchical structure on the flow of information throughout the model. Across extensive experiments, our proposed approach demonstrates highly competitive performance and shows robustness against limited sample sizes. Moreover, ablation test results show that simply applying the attention mechanism on cell types instead of cells leads to improved performance, underscoring the benefits of incorporating the hierarchical groupings. By identifying the critical cell types that are most relevant for prediction, we show that our model is capable of capturing biologically meaningful associations, suggesting its potential to facilitate biological discoveries. Our source code is available at https://github.com/minhchaudo/hier-mil. All datasets used in this study are publicly available online. Motivation Multiple instance learning (MIL) provides a structured approach to patient phenotype prediction with single-cell RNA-sequencing (scRNA-seq) data. However, existing MIL methods tend to overlook the hierarchical structure inherent in scRNA-seq data, especially the biological groupings of cells or cell types. This limitation may lead to suboptimal performance and poor interpretability at higher levels of cellular division. Results To address this gap, we present a novel approach to incorporate hierarchical information into the attention-based MIL framework. Specifically, our model applies the attention-based aggregation mechanism over both cells and cell types, thus enforcing a hierarchical structure on the flow of information throughout the model. Across extensive experiments, our proposed approach demonstrates highly competitive performance and shows robustness against limited sample sizes. Moreover, ablation test results show that simply applying the attention mechanism on cell types instead of cells leads to improved performance, underscoring the benefits of incorporating the hierarchical groupings. By identifying the critical cell types that are most relevant for prediction, we show that our model is capable of capturing biologically meaningful associations, suggesting its potential to facilitate biological discoveries. Availability and implementation Our source code is available at https://github.com/minhchaudo/hier-mil. All datasets used in this study are publicly available online. |
| Author | Lähdesmäki, Harri Do, Chau |
| Author_xml | – sequence: 1 givenname: Chau surname: Do fullname: Do, Chau – sequence: 2 givenname: Harri surname: Lähdesmäki fullname: Lähdesmäki, Harri |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40662783$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdkttqHiEUhaUk5NS8QhB605tpPM3pqoTQQyA0UNprcZxtxuDoVJ2WvEMfuk7y96fpjW7xc-29cJ2iAx88IHRByTtKen452GC9CXFW2ep0OWRlmKCv0AnlTVuJjtKDfU34MTpN6YEQUpO6OULHgjQNazt-gn7feB3iEmLR8fd4shBV1JPVyuF9g-BLnQOeV5ft4qCcUlZeA3agot8eFhIvBQWf8TKBD_lxAbxEGK1-Evhl84RTQR1UGpzDX79cVQl-rOD1JjCqrF6jQ6NcgvPdfoa-f_zw7fpzdXv36eb66rbSvGe50lR1A4WB9kS3wig6imbsGt4BbwfN-VBrQ1peCyLGUZDOsN5QrVrRm1GYAfgZev-su6zDDKMuQ0fl5BLtrOKjDMrKlzfeTvI-_JSUsYYKKorC251CDMVCynK2abOlPIQ1Sc44YZSLmhf0zX_oQ1ijL_6eqJqVdaMu_h1pP8vfnypA8wzoGFKKYPYIJXKLhHwZCbmLBP8DLVu0YQ |
| Cites_doi | 10.1016/j.cell.2023.11.037 10.1016/j.clim.2022.109177 10.1093/bioinformatics/btae067 10.1016/j.cell.2021.07.023 10.1038/s41423-024-01167-5 10.1093/bioinformatics/btad493 10.1038/s41467-021-24521-x 10.1101/2024.01.17.576110 10.1158/2326-6066.CIR-21-0870 10.1186/s13059-019-1790-4 10.1038/s41586-022-04817-8 10.1073/pnas.0506580102 10.3324/haematol.2013.094243 10.1038/nature11247 10.1038/s41591-021-01323-8 10.1038/s41592-024-02201-0 10.1172/JCI148517 10.1038/s41467-020-17796-z 10.1142/9789811250477_0031 10.1038/s41590-018-0276-y 10.1186/1471-2164-14-632 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025. Published by Oxford University Press. The Author(s) 2025. Published by Oxford University Press. 2025 |
| Copyright_xml | – notice: The Author(s) 2025. Published by Oxford University Press. – notice: The Author(s) 2025. Published by Oxford University Press. 2025 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 5PM |
| DOI | 10.1093/bioinformatics/btaf241 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Oncogenes and Growth Factors Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1367-4811 |
| EndPage | i104 |
| ExternalDocumentID | PMC12261414 40662783 10_1093_bioinformatics_btaf241 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Sigrid Jusélius Foundation – fundername: Research Council of Finland grantid: 359135 – fundername: Cancer Foundation of Finland – fundername: ; – fundername: ; grantid: 359135 |
| GroupedDBID | --- -E4 -~X .2P .DC .I3 0R~ 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADEZT ADFTL ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRTK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DILTD DU5 D~K EBD EBS EE~ EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNS ROL ROX RPM RUSNO RW1 RXO SV3 TEORI TJP TLC TOX TR2 WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 5PM |
| ID | FETCH-LOGICAL-c392t-c1a8b1eb190c74fa1d46d8638e37bc33b5cf0735404dd408f29f1ca749fd4fbe3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001528738400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1367-4803 1367-4811 |
| IngestDate | Thu Aug 21 18:22:36 EDT 2025 Tue Jul 15 17:30:26 EDT 2025 Mon Oct 06 17:42:42 EDT 2025 Sun Jul 20 01:30:44 EDT 2025 Sat Nov 29 07:45:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Supplement_1 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 The Author(s) 2025. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c392t-c1a8b1eb190c74fa1d46d8638e37bc33b5cf0735404dd408f29f1ca749fd4fbe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://dx.doi.org/10.1093/bioinformatics/btaf241 |
| PMID | 40662783 |
| PQID | 3230523233 |
| PQPubID | 36124 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12261414 proquest_miscellaneous_3230213453 proquest_journals_3230523233 pubmed_primary_40662783 crossref_primary_10_1093_bioinformatics_btaf241 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Bioinformatics (Oxford, England) |
| PublicationTitleAlternate | Bioinformatics |
| PublicationYear | 2025 |
| Publisher | Oxford Publishing Limited (England) Oxford University Press |
| Publisher_xml | – name: Oxford Publishing Limited (England) – name: Oxford University Press |
| References | Pozniak (2025071509033795000_btaf241-B18) 2024; 187 Xiong (2025071509033795000_btaf241-B22) 2023; 39 Ziegler (2025071509033795000_btaf241-B24) 2021; 184 Alvarez-Breckenridge (2025071509033795000_btaf241-B3) 2022; 10 Ilse (2025071509033795000_btaf241-B12) 2018 Ahn (2025071509033795000_btaf241-B1) 2021; 131 Chaffin (2025071509033795000_btaf241-B6) 2022; 608 Ngo (2025071509033795000_btaf241-B16) 2024; 21 Robinot (2025071509033795000_btaf241-B19) 2021; 12 Mabbott (2025071509033795000_btaf241-B13) 2013; 14 Alahdal (2025071509033795000_btaf241-B2) 2022; 245 Nguyen (2025071509033795000_btaf241-B17) 2019; 20 Engelmann (2025071509033795000_btaf241-B8) 2024 Zhu (2025071509033795000_btaf241-B23) 2020; 11 Cui (2025071509033795000_btaf241-B7) 2024; 21 Martens (2025071509033795000_btaf241-B15) 2013; 98 Hajj (2025071509033795000_btaf241-B10) 2024 Mao (2025071509033795000_btaf241-B14) 2024; 40 He (2025071509033795000_btaf241-B11) 2022; 27 Gondal (2025071509033795000_btaf241-B9) 2024 The ENCODE Project Consortium (2025071509033795000_btaf241-B21) 2012; 489 Subramanian (2025071509033795000_btaf241-B20) 2005; 102 Aran (2025071509033795000_btaf241-B4) 2019; 20 Bassez (2025071509033795000_btaf241-B5) 2021; 27 |
| References_xml | – volume: 187 start-page: 166 year: 2024 ident: 2025071509033795000_btaf241-B18 article-title: A tcf4-dependent gene regulatory network confers resistance to immunotherapy in melanoma publication-title: Cell doi: 10.1016/j.cell.2023.11.037 – volume: 245 start-page: 109177 year: 2022 ident: 2025071509033795000_btaf241-B2 article-title: Exhaustion and over-activation of immune cells in covid-19: challenges and therapeutic opportunities publication-title: Clin Immunol doi: 10.1016/j.clim.2022.109177 – volume: 40 year: 2024 ident: 2025071509033795000_btaf241-B14 article-title: Phenotype prediction from single-cell RNA-seq data using attention-based neural networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btae067 – volume: 184 start-page: 4713 year: 2021 ident: 2025071509033795000_btaf241-B24 article-title: Impaired local intrinsic immunity to SARS-CoV-2 infection in severe covid-19 publication-title: Cell doi: 10.1016/j.cell.2021.07.023 – volume: 21 start-page: 1008 year: 2024 ident: 2025071509033795000_btaf241-B16 article-title: The role of plasmacytoid dendritic cells (PDCs) in immunity during viral infections and beyond publication-title: Cell Mol Immunol doi: 10.1038/s41423-024-01167-5 – volume: 39 start-page: btad493 year: 2023 ident: 2025071509033795000_btaf241-B22 article-title: Protocell4p: an explainable prototype-based neural network for patient classification using single-cell RNA-seq publication-title: Bioinformatics doi: 10.1093/bioinformatics/btad493 – volume: 12 start-page: 4354 year: 2021 ident: 2025071509033795000_btaf241-B19 article-title: SARS-CoV-2 infection induces the dedifferentiation of multiciliated cells and impairs mucociliary clearance publication-title: Nat Commun doi: 10.1038/s41467-021-24521-x – year: 2024 ident: 2025071509033795000_btaf241-B10 – year: 2024 ident: 2025071509033795000_btaf241-B8 – year: 2024 ident: 2025071509033795000_btaf241-B9 doi: 10.1101/2024.01.17.576110 – volume: 10 start-page: 996 year: 2022 ident: 2025071509033795000_btaf241-B3 article-title: Microenvironmental landscape of human melanoma brain metastases in response to immune checkpoint inhibition publication-title: Cancer Immunol Res doi: 10.1158/2326-6066.CIR-21-0870 – volume: 20 start-page: 203 year: 2019 ident: 2025071509033795000_btaf241-B17 article-title: Identifying significantly impacted pathways: a comprehensive review and assessment publication-title: Genome Biol doi: 10.1186/s13059-019-1790-4 – volume: 608 start-page: 174 year: 2022 ident: 2025071509033795000_btaf241-B6 article-title: Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy publication-title: Nature doi: 10.1038/s41586-022-04817-8 – volume: 102 start-page: 15545 year: 2005 ident: 2025071509033795000_btaf241-B20 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0506580102 – volume: 98 start-page: 1487 year: 2013 ident: 2025071509033795000_btaf241-B15 article-title: Blueprint: mapping human blood cell epigenomes publication-title: Haematologica doi: 10.3324/haematol.2013.094243 – volume: 489 start-page: 57 year: 2012 ident: 2025071509033795000_btaf241-B21 article-title: An integrated encyclopedia of DNA elements in the human genome publication-title: Nature doi: 10.1038/nature11247 – volume: 27 start-page: 820 year: 2021 ident: 2025071509033795000_btaf241-B5 article-title: A single-cell map of intratumoral changes during anti-pd1 treatment of patients with breast cancer publication-title: Nat Med doi: 10.1038/s41591-021-01323-8 – volume: 21 start-page: 1470 year: 2024 ident: 2025071509033795000_btaf241-B7 article-title: Scgpt: toward building a foundation model for single-cell multi-omics using generative ai publication-title: Nat Methods doi: 10.1038/s41592-024-02201-0 – volume: 131 start-page: e148517 year: 2021 ident: 2025071509033795000_btaf241-B1 article-title: Nasal ciliated cells are primary targets for SARS-CoV-2 replication in the early stage of COVID-19 publication-title: J Clin Invest doi: 10.1172/JCI148517 – volume: 11 start-page: 3910 year: 2020 ident: 2025071509033795000_btaf241-B23 article-title: Morphogenesis and cytopathic effect of SARS-CoV-2 infection in human airway epithelial cells publication-title: Nat Commun doi: 10.1038/s41467-020-17796-z – volume: 27 start-page: 337 year: 2022 ident: 2025071509033795000_btaf241-B11 article-title: Cloudpred: predicting patient phenotypes from single-cell RNA-seq publication-title: Pac Symp Biocomput doi: 10.1142/9789811250477_0031 – volume: 20 start-page: 163 year: 2019 ident: 2025071509033795000_btaf241-B4 article-title: Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage publication-title: Nat Immunol doi: 10.1038/s41590-018-0276-y – volume: 14 start-page: 632 year: 2013 ident: 2025071509033795000_btaf241-B13 article-title: An expression atlas of human primary cells: inference of gene function from coexpression networks publication-title: BMC Genomics doi: 10.1186/1471-2164-14-632 – year: 2018 ident: 2025071509033795000_btaf241-B12 |
| SSID | ssj0005056 |
| Score | 2.4843364 |
| Snippet | Multiple instance learning (MIL) provides a structured approach to patient phenotype prediction with single-cell RNA-sequencing (scRNA-seq) data. However,... Motivation Multiple instance learning (MIL) provides a structured approach to patient phenotype prediction with single-cell RNA-sequencing (scRNA-seq) data.... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| StartPage | i96 |
| SubjectTerms | Ablation Algorithms Availability Biomedical Informatics Computational Biology - methods Gene sequencing Humans Information flow Learning Machine Learning Multiple-Instance Learning Algorithms Phenotype Phenotypes Predictions RNA-Seq - methods Sequence Analysis, RNA - methods Single-Cell Analysis - methods Source code |
| Title | Incorporating hierarchical information into multiple instance learning for patient phenotype prediction with single-cell RNA-sequencing data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40662783 https://www.proquest.com/docview/3230523233 https://www.proquest.com/docview/3230213453 https://pubmed.ncbi.nlm.nih.gov/PMC12261414 |
| Volume | 41 |
| WOSCitedRecordID | wos001528738400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6C0hcEG8KS2UkxGUVtY7tJjmuYFcgVV2Euqi3KHZsbaSSlD5Wy3_gn_AnGT_yYjksBy5RZFt20_k8tscz3yD0lkmdT5niQRxKHjCdsEAITYKp4BzmOWPC0jF8nUXzebxcJp8Hg191LMzVKirL-Po6Wf9XUUMZCNuEzv6DuJtOoQDeQejwBLHD81aC_2SYKS07sbECmFTX9rJAWnaNJlbR8ERUrTthYXeJMMdXtanEuB960tVj4wdWWWPtemMudmwHzrkdmq5UYMz_x1_mJ4H3zDYd-Ki39sq4qJrxpbX1umBFq41dKpGOWeJD5Z0B9o3LkL3TZ5e52n5zrz7jdrbZFF3jRcgbR9da31JDux57fav-UuaVNCMdMNqEp9Z6mpKO8i1cbtwbi4IjzBK9rzQFu0yHvt8eD_f8PD27mM3Sxely8W79PTApysxVvs_XcoDuhBFPjP_g4nzZ-hNNbKrg5tfX4egJHfeHHvuB-zuhG8ebP710O9uexUP0wJ9X8InD2SM0UOVjdM9lMP3xBP3soQ130YY7aMMGbbhGG67Rhmu0YWiJPdpwgzbcog0btOEO2nAfbdig7Sm6ODtdvP8Y-AQfgYRt-S6QJIsFgd1CMpER0xnJ2TSPYUVQNBKSUsGlhiUIDhUsz9kk1mGiicwiluicaaHoM3RYVqV6gbDkUgmR0YjlJjY6z1SYRArUENGay0QM0bj-s9O143FJnf8FTfviSb14huiolknqp_c2pXBi53AIoXSI3jTVoJHNl2elqvaujeFJ5NDmuRNhMySzCRdiqIl7wm0aGLb3fk1ZXFrWdwIHJcIIe3mLgV-h--1sO0KHu81evUZ35dWu2G5G6CBaxiNrfRpZDP8Gd4HbjQ |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporating+hierarchical+information+into+multiple+instance+learning+for+patient+phenotype+prediction+with+single-cell+RNA-sequencing+data&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Do%2C+Chau&rft.au=L%C3%A4hdesm%C3%A4ki%2C+Harri&rft.date=2025-07-01&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=41&rft.issue=Supplement_1&rft.spage=i96&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaf241&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |