Kriging Surrogate Model-Based Constraint Multiobjective Particle Swarm Optimization Algorithm

The main challenge when solving constrained multiobjective optimization problems (CMOPs) with intricate constraints and high dimensionality is how to overcome a problem of irregular and variable-shaped objective search regions. Such regions can lead to problems of local optimization and uneven distr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on cybernetics Ročník 55; číslo 3; s. 1224 - 1237
Hlavní autoři: Wang, Hui, Cai, Tie, Pedrycz, Witold
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.03.2025
Témata:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The main challenge when solving constrained multiobjective optimization problems (CMOPs) with intricate constraints and high dimensionality is how to overcome a problem of irregular and variable-shaped objective search regions. Such regions can lead to problems of local optimization and uneven distribution of feasible solutions. To overcome these challenges, an efficacious search method is usually needed to improve the efficiency of searching optimal solution and utilization of data structure used to store nondominated vectors. The originality of this work comes with a creative and novel design of Kriging surrogate model-based simplex crossover operator (KSCO) and Kriging surrogate model-based local search of simplex crossover operator (KLSSCO). KSCO is used to calculate the speed update equation, as well as the coefficients of the equation. KLSSCO is employed to decide which particle is treated as third particle participating in the speed update equation. A constrained multiobjective particle swarm optimization (PSO) based on KSCO and KLSSCO is proposed to solve the CMOP with local optimization and uneven distribution problems, namely KSCO and KLSSCO-based constrained multiobjective PSO algorithm (KCMOPSO). This ensures that the algorithm can search the infeasible and feasible regions of constrained multiobjective problems accurately and accelerate the convergence of the algorithm. The experimental results show that the proposed algorithm is more effective compared with the existing elite method.
AbstractList The main challenge when solving constrained multiobjective optimization problems (CMOPs) with intricate constraints and high dimensionality is how to overcome a problem of irregular and variable-shaped objective search regions. Such regions can lead to problems of local optimization and uneven distribution of feasible solutions. To overcome these challenges, an efficacious search method is usually needed to improve the efficiency of searching optimal solution and utilization of data structure used to store nondominated vectors. The originality of this work comes with a creative and novel design of Kriging surrogate model-based simplex crossover operator (KSCO) and Kriging surrogate model-based local search of simplex crossover operator (KLSSCO). KSCO is used to calculate the speed update equation, as well as the coefficients of the equation. KLSSCO is employed to decide which particle is treated as third particle participating in the speed update equation. A constrained multiobjective particle swarm optimization (PSO) based on KSCO and KLSSCO is proposed to solve the CMOP with local optimization and uneven distribution problems, namely KSCO and KLSSCO-based constrained multiobjective PSO algorithm (KCMOPSO). This ensures that the algorithm can search the infeasible and feasible regions of constrained multiobjective problems accurately and accelerate the convergence of the algorithm. The experimental results show that the proposed algorithm is more effective compared with the existing elite method.The main challenge when solving constrained multiobjective optimization problems (CMOPs) with intricate constraints and high dimensionality is how to overcome a problem of irregular and variable-shaped objective search regions. Such regions can lead to problems of local optimization and uneven distribution of feasible solutions. To overcome these challenges, an efficacious search method is usually needed to improve the efficiency of searching optimal solution and utilization of data structure used to store nondominated vectors. The originality of this work comes with a creative and novel design of Kriging surrogate model-based simplex crossover operator (KSCO) and Kriging surrogate model-based local search of simplex crossover operator (KLSSCO). KSCO is used to calculate the speed update equation, as well as the coefficients of the equation. KLSSCO is employed to decide which particle is treated as third particle participating in the speed update equation. A constrained multiobjective particle swarm optimization (PSO) based on KSCO and KLSSCO is proposed to solve the CMOP with local optimization and uneven distribution problems, namely KSCO and KLSSCO-based constrained multiobjective PSO algorithm (KCMOPSO). This ensures that the algorithm can search the infeasible and feasible regions of constrained multiobjective problems accurately and accelerate the convergence of the algorithm. The experimental results show that the proposed algorithm is more effective compared with the existing elite method.
The main challenge when solving constrained multiobjective optimization problems (CMOPs) with intricate constraints and high dimensionality is how to overcome a problem of irregular and variable-shaped objective search regions. Such regions can lead to problems of local optimization and uneven distribution of feasible solutions. To overcome these challenges, an efficacious search method is usually needed to improve the efficiency of searching optimal solution and utilization of data structure used to store nondominated vectors. The originality of this work comes with a creative and novel design of Kriging surrogate model-based simplex crossover operator (KSCO) and Kriging surrogate model-based local search of simplex crossover operator (KLSSCO). KSCO is used to calculate the speed update equation, as well as the coefficients of the equation. KLSSCO is employed to decide which particle is treated as third particle participating in the speed update equation. A constrained multiobjective particle swarm optimization (PSO) based on KSCO and KLSSCO is proposed to solve the CMOP with local optimization and uneven distribution problems, namely KSCO and KLSSCO-based constrained multiobjective PSO algorithm (KCMOPSO). This ensures that the algorithm can search the infeasible and feasible regions of constrained multiobjective problems accurately and accelerate the convergence of the algorithm. The experimental results show that the proposed algorithm is more effective compared with the existing elite method.
Author Pedrycz, Witold
Wang, Hui
Cai, Tie
Author_xml – sequence: 1
  givenname: Hui
  orcidid: 0000-0002-2594-3043
  surname: Wang
  fullname: Wang, Hui
  email: hnndwh@sina.com
  organization: School of Computer Science and Software Engineering, Shenzhen Institute of Information Technology, Shenzhen, China
– sequence: 2
  givenname: Tie
  surname: Cai
  fullname: Cai, Tie
  email: cait@sziit.edu.cn
  organization: School of Computer Science and Software Engineering, Shenzhen Institute of Information Technology, Shenzhen, China
– sequence: 3
  givenname: Witold
  orcidid: 0000-0002-9335-9930
  surname: Pedrycz
  fullname: Pedrycz, Witold
  email: wpedrycz@ualberta.ca
  organization: Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40030931$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LxDAQhoMofv8AQaRHL13z1TY96uIXKgrqwYOENJ2skbZZk1TRX2_XXUU8OJcZhucdmGcDLXeuA4R2CB4RgsuDu_HD0Yhiykcso5xnxRJapyQXKaVFtvwz58Ua2g7hGQ8lhlUpVtEax5jhkpF19Hjh7cR2k-S2995NVITkytXQpEcqQJ2MXReiV7aLyVXfROuqZ9DRvkJyo3y0uoHk9k35NrmeRtvaDzUgXXLYTJy38andQitGNQG2F30T3Z8c343P0svr0_Px4WWqWUljWoEyNVe5MiYnNZQMRIlNVmtNsCLC1JrnvKIVF0RrrEpecZMJpnKhchCGsE20P7879e6lhxBla4OGplEduD5IRgrGMS-ZGNC9BdpXLdRy6m2r_Lv8VjIAxRzQ3oXgwUht49dfMxGNJFjO_MuZfznzLxf-hyT5k_w-_l9md56xAPCLF5wVnLJPB0OSDQ
CODEN ITCEB8
CitedBy_id crossref_primary_10_3390_math13172867
crossref_primary_10_3390_math13071191
Cites_doi 10.1016/j.swevo.2019.100619
10.1016/j.ins.2014.10.035
10.1109/TEVC.2013.2281534
10.1007/s10898-016-0427-3
10.1016/j.swevo.2018.08.017
10.1007/s00521-022-07950-7
10.1016/j.swevo.2019.100569
10.1016/j.swevo.2022.101055
10.1109/TCYB.2020.3031642
10.1109/CEC.2010.5586545
10.1109/TEVC.2020.2987804
10.1109/TCYB.2020.2983871
10.1016/j.asoc.2017.06.053
10.1109/TITS.2020.3016054
10.1162/evco_a_00294
10.1016/j.swevo.2020.100676
10.1109/TITS.2020.3010296
10.1016/j.swevo.2020.100651
10.1016/j.swevo.2019.100577
10.1109/ICNN.1995.488968
10.1109/TCYB.2018.2809430
10.1109/TEVC.2003.817236
10.1109/TCSS.2019.2914935
10.1109/TEVC.2017.2669098
10.1109/TSMC.2020.3043642
10.1109/TEVC.2018.2855411
10.1109/TITS.2020.3025796
10.1109/TSMCB.2006.886164
10.1016/j.future.2018.12.068
10.1109/TEVC.2007.902851
10.1016/j.knosys.2021.107263
10.1109/TCYB.2021.3103778
10.1109/TEVC.2019.2894743
10.1109/TCYB.2018.2819208
10.1109/4235.996017
10.1109/4235.873238
10.1016/j.energy.2017.12.057
10.1016/j.ins.2013.03.002
10.3390/mca10010045
10.1016/j.knosys.2021.107131
10.1016/j.ins.2023.03.023
10.1109/TEVC.2022.3175065
10.1016/j.knosys.2023.110554
10.1109/TEVC.2006.872344
10.1007/s00500-017-2603-x
10.1016/j.ins.2022.11.164
10.1007/s00366-019-00733-0
10.1109/TCYB.2021.3079346
10.1007/s00500-012-0816-6
10.1109/CEC.2012.6252868
10.1109/CEC.2009.4983265
10.1007/s40860-021-00157-y
10.1016/j.asoc.2020.106104
10.1016/j.neucom.2023.126290
10.1109/JAS.2023.123180
10.1109/TCYB.2015.2461651
10.1016/j.swevo.2020.100791
10.1007/s00500-017-2940-9
10.1007/s00500-015-1588-6
10.1016/j.neucom.2018.09.001
10.1109/TSMCA.2009.2013333
10.1016/S0045-7825(99)00389-8
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TCYB.2024.3524457
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 1237
ExternalDocumentID 40030931
10_1109_TCYB_2024_3524457
10843742
Genre orig-research
Journal Article
GrantInformation_xml – fundername: School-Level Key Projects
  grantid: SZIIT2024KJ035
– fundername: National Natural Science Foundation Youth Fund Project of China
  grantid: 62203310; 62076182
  funderid: 10.13039/501100001809
– fundername: Engineering Technology Research Center of Guangdong Provincial Department of Education PT2024C001
– fundername: Shenzhen Fundamental Research Fund
  grantid: 0220820010535001
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2022A1515011447
  funderid: 10.13039/501100001321
– fundername: Chongqing Municipal Key Project of Technology Innovation and Application Development
  grantid: CSTB2024TIADKPX0015
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7X8
ID FETCH-LOGICAL-c392t-beafd4a6aff61de93e890f5dcc10a18fdc464b2b481cc0a94b4f583a68a6e8f13
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001400155800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Thu Oct 02 03:42:43 EDT 2025
Mon Jul 21 05:59:26 EDT 2025
Sat Nov 29 08:15:46 EST 2025
Tue Nov 18 21:27:20 EST 2025
Wed Aug 27 01:48:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-beafd4a6aff61de93e890f5dcc10a18fdc464b2b481cc0a94b4f583a68a6e8f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9335-9930
0000-0002-2594-3043
PMID 40030931
PQID 3173404938
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_3173404938
pubmed_primary_40030931
ieee_primary_10843742
crossref_citationtrail_10_1109_TCYB_2024_3524457
crossref_primary_10_1109_TCYB_2024_3524457
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
Papliński (ref54) 2015; 23
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Perrone (ref56) 2022; 56
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
Belakaria (ref57) 2020
References_xml – ident: ref46
  doi: 10.1016/j.swevo.2019.100619
– ident: ref47
  doi: 10.1016/j.ins.2014.10.035
– ident: ref50
  doi: 10.1109/TEVC.2013.2281534
– ident: ref55
  doi: 10.1007/s10898-016-0427-3
– ident: ref39
  doi: 10.1016/j.swevo.2018.08.017
– ident: ref10
  doi: 10.1007/s00521-022-07950-7
– ident: ref19
  doi: 10.1016/j.swevo.2019.100569
– ident: ref65
  doi: 10.1016/j.swevo.2022.101055
– ident: ref60
  doi: 10.1109/TCYB.2020.3031642
– ident: ref27
  doi: 10.1109/CEC.2010.5586545
– ident: ref42
  doi: 10.1109/TEVC.2020.2987804
– ident: ref2
  doi: 10.1109/TCYB.2020.2983871
– ident: ref52
  doi: 10.1016/j.asoc.2017.06.053
– volume: 56
  start-page: 57
  issue: 1
  year: 2022
  ident: ref56
  article-title: Constrained Bayesian optimization with max-value entropy search
  publication-title: J. Global Optim.
– ident: ref15
  doi: 10.1109/TITS.2020.3016054
– ident: ref8
  doi: 10.1162/evco_a_00294
– ident: ref44
  doi: 10.1016/j.swevo.2020.100676
– ident: ref13
  doi: 10.1109/TITS.2020.3010296
– ident: ref40
  doi: 10.1016/j.swevo.2020.100651
– ident: ref18
  doi: 10.1016/j.swevo.2019.100577
– ident: ref9
  doi: 10.1109/ICNN.1995.488968
– ident: ref35
  doi: 10.1109/TCYB.2018.2809430
– ident: ref48
  doi: 10.1109/TEVC.2003.817236
– ident: ref14
  doi: 10.1109/TCSS.2019.2914935
– ident: ref36
  doi: 10.1109/TEVC.2017.2669098
– ident: ref37
  doi: 10.1109/TSMC.2020.3043642
– ident: ref49
  doi: 10.1109/TEVC.2018.2855411
– ident: ref5
  doi: 10.1109/TITS.2020.3025796
– ident: ref29
  doi: 10.1109/TSMCB.2006.886164
– ident: ref12
  doi: 10.1016/j.future.2018.12.068
– ident: ref33
  doi: 10.1109/TEVC.2007.902851
– ident: ref64
  doi: 10.1016/j.knosys.2021.107263
– ident: ref41
  doi: 10.1109/TCYB.2021.3103778
– ident: ref34
  doi: 10.1109/TEVC.2019.2894743
– ident: ref43
  doi: 10.1109/TCYB.2018.2819208
– ident: ref20
  doi: 10.1109/4235.996017
– ident: ref26
  doi: 10.1109/4235.873238
– ident: ref17
  doi: 10.1016/j.energy.2017.12.057
– ident: ref30
  doi: 10.1016/j.ins.2013.03.002
– ident: ref22
  doi: 10.3390/mca10010045
– ident: ref45
  doi: 10.1016/j.knosys.2021.107131
– ident: ref61
  doi: 10.1016/j.ins.2023.03.023
– ident: ref63
  doi: 10.1109/TEVC.2022.3175065
– ident: ref59
  doi: 10.1016/j.knosys.2023.110554
– ident: ref28
  doi: 10.1109/TEVC.2006.872344
– ident: ref31
  doi: 10.1007/s00500-017-2603-x
– ident: ref1
  doi: 10.1016/j.ins.2022.11.164
– ident: ref16
  doi: 10.1007/s00366-019-00733-0
– ident: ref3
  doi: 10.1109/TCYB.2021.3079346
– ident: ref51
  doi: 10.1007/s00500-012-0816-6
– ident: ref21
  doi: 10.1109/CEC.2012.6252868
– ident: ref32
  doi: 10.1109/CEC.2009.4983265
– ident: ref6
  doi: 10.1007/s40860-021-00157-y
– ident: ref62
  doi: 10.1016/j.asoc.2020.106104
– ident: ref58
  doi: 10.1016/j.neucom.2023.126290
– ident: ref4
  doi: 10.1109/JAS.2023.123180
– volume: 23
  start-page: 337
  issue: 6
  year: 2015
  ident: ref54
  article-title: The genetic algorithm with simplex crossover for identification of time delays
  publication-title: Intell. Inf. Syst.
– ident: ref53
  doi: 10.1109/TCYB.2015.2461651
– ident: ref38
  doi: 10.1016/j.swevo.2020.100791
– year: 2020
  ident: ref57
  article-title: Max-value entropy search for multi-objective Bayesian optimization with constraints
  publication-title: arXiv:2009.01721
– ident: ref11
  doi: 10.1007/s00500-017-2940-9
– ident: ref24
  doi: 10.1007/s00500-015-1588-6
– ident: ref7
  doi: 10.1016/j.neucom.2018.09.001
– ident: ref23
  doi: 10.1109/TSMCA.2009.2013333
– ident: ref25
  doi: 10.1016/S0045-7825(99)00389-8
SSID ssj0000816898
Score 2.417931
Snippet The main challenge when solving constrained multiobjective optimization problems (CMOPs) with intricate constraints and high dimensionality is how to overcome...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1224
SubjectTerms Bayes methods
Constraint multiobjective particle swarm optimization (PSO) algorithm
Costs
Entropy
Kriging model
Kriging surrogate model-based local search of simplex crossover operator (KLSSCO)
Mathematical models
Optimization
Particle swarm optimization
Robustness
Scalability
Search problems
Shape
simple cross-over
Title Kriging Surrogate Model-Based Constraint Multiobjective Particle Swarm Optimization Algorithm
URI https://ieeexplore.ieee.org/document/10843742
https://www.ncbi.nlm.nih.gov/pubmed/40030931
https://www.proquest.com/docview/3173404938
Volume 55
WOSCitedRecordID wos001400155800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELYAceDCUmChy0NeiQMghc3DdSZHikBIrAAJkMoBRbYz4aG2WaXp8vcZO6biAhI3H-zIzow933g88zG2J6QyaaYxQNCZLaoNgQYdB6UpMDUQYqRcEde_6eUlDAbZtU9Wd7kwiOgen-GRbbpYflGZqb0qox0OIiFfbp7Np6lsk7VmFyqOQcJx38bUCAhWpD6KGYXZn9uT-z55g7E4IsQhhLVGH-yQI1b5HGM6W3P245uzXGHLHlTy41YLOmwOx6us47fthO_72tIHa-zhwhFhPfKbaV1X9gqNWza0YdAna1ZwS9_pSCMa7jJzK_3SHoj82qsYv3lV9Yhf0Ukz8imc_Hj4WNXPzdNond2dnd6enAeeYSEwhIuaQKMqC6GkKksZFZglCFlY9gpjolBFUBZGSKFjLSAyJlSZ0KLsQaIkKIlQRslPtjCuxrjJOBhIhJSxkrR8HfcAFRByl8IQZpIxdFn4_r9z48uP2wUNc-eGhFluRZRbEeVeRF12OBvyr6298VXndSuKDx1bKXTZ73ep5rRzbDhEjbGaTnJCTokgBymhuW204p6NFm2IOPr1yVe32FJsiYDdY7RtttDUU9xhi-Z_8zypd0k9B7Dr1PMNckjg_Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7BQIIXYLCx8tNIPABSRuJc3cvjNjENrZRJK9J4QJHtXMamtkFpCv8-tuNVexkSb36wIzt39n3n890H8BaVtqPCcMJkCl9UmxJDRia1rXhkKeVMhyKu49FkQmdnxUlMVg-5MMwcHp_xrm-GWH7V2JW_KnM7nDB3vtxtuDNElGmfrrW-UgkcEoH9VrpG4oDFKMYxs7T4OD34vu_8QYm7DnMgent0zRIFapWbUWawNocP_3Oej-BBhJVir9eDTbjFi8ewGTfuUryL1aXfP4Efx4EK61ycrtq28ZdowvOhzZJ9Z88q4Qk8A21EJ0JubmMu-yNRnEQlE6d_dDsXX91ZM49JnGJvdt60F93P-RZ8O_w0PThKIsdCYh0y6hLDuq5QK13XKqu4yJmKtB5W1mapzqiuLCo00iBl1qa6QIP1kHKtSCumOsu3YWPRLHgHBFnKUSmplVu-kUNiTQ67K7QONSlJA0iv_ndpYwFyv6BZGRyRtCi9iEovojKKaAAf1kN-9dU3_tV5y4viWsdeCgN4cyXV0u0dHxDRC25Wy9Jhpxydi5S7uT3txb0ejX2QOHt2w1dfw72j6ZdxOf48OX4O96WnBQ5P017ARteu-CXctb-7i2X7KijpX_7S41w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kriging+Surrogate+Model-Based+Constraint+Multiobjective+Particle+Swarm+Optimization+Algorithm&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Wang%2C+Hui&rft.au=Cai%2C+Tie&rft.au=Pedrycz%2C+Witold&rft.date=2025-03-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=55&rft.issue=3&rft.spage=1224&rft.epage=1237&rft_id=info:doi/10.1109%2FTCYB.2024.3524457&rft.externalDocID=10843742
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon