Evolutionary Multi-Objective Workflow Scheduling in Cloud

Cloud computing provides promising platforms for executing large applications with enormous computational resources to offer on demand. In a Cloud model, users are charged based on their usage of resources and the required quality of service (QoS) specifications. Although there are many existing wor...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on parallel and distributed systems Ročník 27; číslo 5; s. 1344 - 1357
Hlavní autori: Zhu, Zhaomeng, Zhang, Gongxuan, Li, Miqing, Liu, Xiaohui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.05.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1045-9219, 1558-2183
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Cloud computing provides promising platforms for executing large applications with enormous computational resources to offer on demand. In a Cloud model, users are charged based on their usage of resources and the required quality of service (QoS) specifications. Although there are many existing workflow scheduling algorithms in traditional distributed or heterogeneous computing environments, they have difficulties in being directly applied to the Cloud environments since Cloud differs from traditional heterogeneous environments by its service-based resource managing method and pay-per-use pricing strategies. In this paper, we highlight such difficulties, and model the workflow scheduling problem which optimizes both makespan and cost as a Multi-objective Optimization Problem (MOP) for the Cloud environments. We propose an evolutionary multi-objective optimization (EMO)-based algorithm to solve this workflow scheduling problem on an infrastructure as a service (IaaS) platform. Novel schemes for problem-specific encoding and population initialization, fitness evaluation and genetic operators are proposed in this algorithm. Extensive experiments on real world workflows and randomly generated workflows show that the schedules produced by our evolutionary algorithm present more stability on most of the workflows with the instance-based IaaS computing and pricing models. The results also show that our algorithm can achieve significantly better solutions than existing state-of-the-art QoS optimization scheduling algorithms in most cases. The conducted experiments are based on the on-demand instance types of Amazon EC2; however, the proposed algorithm are easy to be extended to the resources and pricing models of other IaaS services.
AbstractList Cloud computing provides promising platforms for executing large applications with enormous computational resources to offer on demand. In a Cloud model, users are charged based on their usage of resources and the required quality of service (QoS) specifications. Although there are many existing workflow scheduling algorithms in traditional distributed or heterogeneous computing environments, they have difficulties in being directly applied to the Cloud environments since Cloud differs from traditional heterogeneous environments by its service-based resource managing method and pay-per-use pricing strategies. In this paper, we highlight such difficulties, and model the workflow scheduling problem which optimizes both makespan and cost as a Multi-objective Optimization Problem (MOP) for the Cloud environments. We propose an evolutionary multi-objective optimization (EMO)-based algorithm to solve this workflow scheduling problem on an infrastructure as a service (IaaS) platform. Novel schemes for problem-specific encoding and population initialization, fitness evaluation and genetic operators are proposed in this algorithm. Extensive experiments on real world workflows and randomly generated workflows show that the schedules produced by our evolutionary algorithm present more stability on most of the workflows with the instance-based IaaS computing and pricing models. The results also show that our algorithm can achieve significantly better solutions than existing state-of-the-art QoS optimization scheduling algorithms in most cases. The conducted experiments are based on the on-demand instance types of Amazon EC2; however, the proposed algorithm are easy to be extended to the resources and pricing models of other IaaS services.
Author Gongxuan Zhang
Miqing Li
Zhaomeng Zhu
Xiaohui Liu
Author_xml – sequence: 1
  givenname: Zhaomeng
  surname: Zhu
  fullname: Zhu, Zhaomeng
– sequence: 2
  givenname: Gongxuan
  surname: Zhang
  fullname: Zhang, Gongxuan
– sequence: 3
  givenname: Miqing
  surname: Li
  fullname: Li, Miqing
– sequence: 4
  givenname: Xiaohui
  surname: Liu
  fullname: Liu, Xiaohui
BookMark eNp9kLlOAzEQhi0EEuF4AESzEg3NBo9vlyiEQwKBRBCl5Tiz4GDWsAeIt2ejIAoKqpni_-b4dshmnWsk5ADoGIDak9nd2f2YUZBjJoQS0m6QEUhpSgaGbw49FbK0DOw22WnbJaUgJBUjYqcfOfVdzLVvvoqbPnWxvJ0vMXTxA4vH3LxUKX8W9-EZF32K9VMR62KScr_YI1uVTy3u_9Rd8nA-nU0uy-vbi6vJ6XUZuGVd6Q1XqHgASxE0UlNVIShvlKVCVMqi8lzwObdzpmQw1htJmUbDRdBSLoDvkuP13Lcmv_fYdu41tgFT8jXmvnVgQFE2DFND9OhPdJn7ph6uc6CNhkGF0EMK1qnQ5LZtsHJvTXwd3ndA3UqmW8l0K5nuR-bA6D9MiJ1faesaH9O_5OGajIj4u0kD0xQ0_wZ9mIHR
CODEN ITDSEO
CitedBy_id crossref_primary_10_1109_TSC_2022_3174112
crossref_primary_10_1177_1550147720949142
crossref_primary_10_1007_s11227_020_03273_3
crossref_primary_10_3390_app13031980
crossref_primary_10_1016_j_future_2020_11_002
crossref_primary_10_1080_02286203_2024_2437828
crossref_primary_10_1007_s10696_018_9309_y
crossref_primary_10_1016_j_eswa_2023_121833
crossref_primary_10_1016_j_eswa_2023_122009
crossref_primary_10_1109_ACCESS_2021_3091310
crossref_primary_10_1109_TCC_2022_3188672
crossref_primary_10_1007_s00521_022_06925_y
crossref_primary_10_1007_s40747_023_01137_w
crossref_primary_10_1109_TPDS_2020_2981306
crossref_primary_10_1016_j_swevo_2024_101751
crossref_primary_10_1016_j_engappai_2024_109907
crossref_primary_10_1007_s10619_017_7215_z
crossref_primary_10_1080_01605682_2023_2195426
crossref_primary_10_1109_TSC_2023_3311785
crossref_primary_10_1109_ACCESS_2023_3266294
crossref_primary_10_1109_JIOT_2024_3406591
crossref_primary_10_1155_2017_5342727
crossref_primary_10_1016_j_future_2019_03_005
crossref_primary_10_1016_j_jnca_2018_03_028
crossref_primary_10_1109_JSYST_2023_3239118
crossref_primary_10_1016_j_neucom_2019_06_075
crossref_primary_10_1109_TASE_2021_3054501
crossref_primary_10_1109_TPDS_2017_2678507
crossref_primary_10_1016_j_jss_2018_09_067
crossref_primary_10_1016_j_swevo_2021_101008
crossref_primary_10_1051_itmconf_20235401005
crossref_primary_10_1007_s11859_017_1276_8
crossref_primary_10_1002_int_23090
crossref_primary_10_3390_pr12050869
crossref_primary_10_1186_s13638_019_1557_3
crossref_primary_10_1155_2024_4737604
crossref_primary_10_1016_j_comcom_2021_02_005
crossref_primary_10_1080_17517575_2019_1585578
crossref_primary_10_1002_cpe_7002
crossref_primary_10_1186_s13677_023_00392_z
crossref_primary_10_1007_s11761_021_00330_4
crossref_primary_10_1016_j_future_2018_10_046
crossref_primary_10_3390_fi10010005
crossref_primary_10_1109_TSC_2021_3106260
crossref_primary_10_1109_TCC_2024_3450858
crossref_primary_10_1016_j_future_2019_03_011
crossref_primary_10_1016_j_sysarc_2020_101799
crossref_primary_10_1007_s11518_024_5606_z
crossref_primary_10_1109_TR_2023_3234036
crossref_primary_10_1111_tgis_12479
crossref_primary_10_1016_j_procs_2019_09_275
crossref_primary_10_1016_j_ins_2017_01_035
crossref_primary_10_1109_TASE_2022_3183681
crossref_primary_10_1109_TMC_2024_3490835
crossref_primary_10_1109_TSC_2024_3463423
crossref_primary_10_1109_ACCESS_2023_3294095
crossref_primary_10_26634_jcc_11_2_21509
crossref_primary_10_1109_TASE_2021_3093341
crossref_primary_10_1007_s10586_023_04022_w
crossref_primary_10_1007_s10723_020_09533_z
crossref_primary_10_1109_TASE_2022_3204313
crossref_primary_10_3390_su11133634
crossref_primary_10_1177_10692509251363797
crossref_primary_10_1016_j_future_2017_12_004
crossref_primary_10_1007_s10586_021_03351_y
crossref_primary_10_1007_s10723_024_09770_6
crossref_primary_10_1007_s42044_020_00071_1
crossref_primary_10_1109_JAS_2021_1003982
crossref_primary_10_1007_s11047_025_10023_y
crossref_primary_10_1016_j_jss_2017_10_001
crossref_primary_10_1007_s10586_021_03464_4
crossref_primary_10_1016_j_eswa_2023_120972
crossref_primary_10_1109_TCC_2020_2993250
crossref_primary_10_1007_s00521_020_04878_8
crossref_primary_10_1007_s11277_022_10072_x
crossref_primary_10_1109_ACCESS_2019_2939294
crossref_primary_10_1109_TPDS_2023_3245089
crossref_primary_10_1109_TSC_2021_3062383
crossref_primary_10_1002_cpe_5006
crossref_primary_10_1109_TCYB_2018_2832640
crossref_primary_10_51583_IJLTEMAS_2025_140500082
crossref_primary_10_1007_s11227_022_04616_y
crossref_primary_10_4018_IJISMD_2019070104
crossref_primary_10_3233_JIFS_190355
crossref_primary_10_1016_j_cie_2020_106649
crossref_primary_10_1016_j_future_2019_07_043
crossref_primary_10_1007_s13369_021_05774_6
crossref_primary_10_1109_ACCESS_2020_2970475
crossref_primary_10_1109_TSC_2022_3196620
crossref_primary_10_1016_j_jnca_2019_02_005
crossref_primary_10_1016_j_swevo_2023_101291
crossref_primary_10_1016_j_future_2024_107633
crossref_primary_10_1016_j_future_2024_04_004
crossref_primary_10_1109_TCC_2021_3137881
crossref_primary_10_1002_cpe_4949
crossref_primary_10_1016_j_asoc_2022_108791
crossref_primary_10_1109_TNSM_2022_3224158
crossref_primary_10_1016_j_future_2023_10_015
crossref_primary_10_1002_rnc_4940
crossref_primary_10_1016_j_sysarc_2020_101916
crossref_primary_10_1016_j_aei_2022_101528
crossref_primary_10_1007_s11277_022_09526_z
crossref_primary_10_4018_IJWSR_2019100101
crossref_primary_10_1007_s10586_017_0751_5
crossref_primary_10_1007_s10922_024_09863_3
crossref_primary_10_1109_TPDS_2019_2961098
crossref_primary_10_1016_j_swevo_2021_100841
crossref_primary_10_1109_TCC_2021_3087642
crossref_primary_10_1007_s11227_022_04962_x
crossref_primary_10_1109_TASE_2022_3217666
crossref_primary_10_1007_s11227_017_2151_2
crossref_primary_10_1007_s10586_021_03269_5
crossref_primary_10_1111_coin_12197
crossref_primary_10_1007_s11227_019_02877_8
crossref_primary_10_1002_ett_4690
crossref_primary_10_4018_IJGHPC_304907
crossref_primary_10_1007_s10951_024_00820_1
crossref_primary_10_1186_s13677_023_00389_8
crossref_primary_10_1002_cpe_4041
crossref_primary_10_1016_j_engappai_2022_104879
crossref_primary_10_1109_TPDS_2017_2696942
crossref_primary_10_1049_iet_ifs_2018_5279
crossref_primary_10_1007_s11227_024_06114_9
crossref_primary_10_1016_j_jnca_2022_103400
crossref_primary_10_1109_TC_2022_3191733
crossref_primary_10_1155_2016_8239239
crossref_primary_10_1016_S1005_8885_16_60064_X
crossref_primary_10_1016_j_matpr_2020_08_337
crossref_primary_10_1007_s11277_020_08001_x
crossref_primary_10_1016_j_cie_2022_108033
crossref_primary_10_1016_j_future_2021_07_023
crossref_primary_10_1186_s13677_017_0091_2
crossref_primary_10_1016_j_comnet_2020_107340
crossref_primary_10_1016_j_ins_2021_03_003
crossref_primary_10_1109_TCYB_2020_2988896
crossref_primary_10_1016_j_aei_2025_103173
crossref_primary_10_1002_spe_3153
crossref_primary_10_1109_TPDS_2019_2929389
crossref_primary_10_1007_s11227_018_2465_8
crossref_primary_10_1007_s11227_023_05330_z
crossref_primary_10_1016_j_future_2019_05_002
crossref_primary_10_1109_ACCESS_2019_2957998
crossref_primary_10_1007_s10586_020_03079_1
crossref_primary_10_1007_s11227_022_04681_3
crossref_primary_10_1109_TII_2019_2959258
crossref_primary_10_1109_TFUZZ_2020_2968864
crossref_primary_10_1007_s12652_021_03666_z
crossref_primary_10_1109_ACCESS_2023_3323445
crossref_primary_10_7717_peerj_cs_509
crossref_primary_10_3390_math11010038
crossref_primary_10_1002_cpe_3942
crossref_primary_10_1007_s00521_019_04693_w
crossref_primary_10_1016_j_comnet_2024_110628
crossref_primary_10_1109_ACCESS_2018_2869827
crossref_primary_10_4018_IJCAC_324809
crossref_primary_10_1109_TASE_2020_3046673
crossref_primary_10_4018_IJWSR_2018100105
crossref_primary_10_1016_j_asoc_2023_111142
crossref_primary_10_1109_TVT_2018_2868942
crossref_primary_10_3390_math11092126
crossref_primary_10_1007_s11227_020_03183_4
crossref_primary_10_1016_j_asoc_2023_110966
crossref_primary_10_1016_j_jksuci_2017_10_009
crossref_primary_10_1007_s13369_018_3664_6
crossref_primary_10_1007_s10586_020_03176_1
crossref_primary_10_1155_2021_5585062
crossref_primary_10_1016_j_sysarc_2020_101837
crossref_primary_10_32604_cmes_2023_024871
crossref_primary_10_1109_TASE_2023_3247973
crossref_primary_10_3233_JIFS_17148
crossref_primary_10_1016_j_future_2022_09_013
crossref_primary_10_1016_j_future_2018_11_001
crossref_primary_10_1016_j_future_2018_03_018
crossref_primary_10_1016_j_asoc_2020_106960
crossref_primary_10_1109_TCYB_2017_2679705
crossref_primary_10_1016_j_eswa_2024_124559
crossref_primary_10_1155_2022_2033644
crossref_primary_10_1109_TASE_2019_2918691
crossref_primary_10_1109_TCC_2024_3449771
crossref_primary_10_1016_j_jksuci_2020_02_006
crossref_primary_10_1016_j_future_2023_11_030
crossref_primary_10_1109_ACCESS_2020_2971351
crossref_primary_10_1016_j_simpat_2023_102835
crossref_primary_10_1109_TBDATA_2018_2874469
crossref_primary_10_1109_TPDS_2018_2837743
crossref_primary_10_1109_TPDS_2017_2687923
crossref_primary_10_1016_j_asoc_2020_106895
crossref_primary_10_1016_j_ins_2022_05_053
crossref_primary_10_1007_s11042_023_17088_w
crossref_primary_10_1007_s11227_020_03606_2
crossref_primary_10_1007_s12652_021_03632_9
crossref_primary_10_1142_S2196888820500104
crossref_primary_10_1007_s11277_022_09704_z
crossref_primary_10_3390_electronics10060737
crossref_primary_10_1016_j_measen_2022_100436
crossref_primary_10_3390_app13021101
crossref_primary_10_1109_TPDS_2016_2597826
crossref_primary_10_1007_s13198_023_02068_y
crossref_primary_10_1016_j_procs_2020_05_129
crossref_primary_10_1002_spe_2939
crossref_primary_10_1007_s11047_023_09950_5
crossref_primary_10_1109_TPDS_2017_2735400
crossref_primary_10_1002_ett_3844
crossref_primary_10_1016_j_simpat_2021_102328
crossref_primary_10_1016_j_future_2019_08_012
crossref_primary_10_3390_app8040538
crossref_primary_10_1016_j_engappai_2022_105345
crossref_primary_10_1016_j_jpdc_2024_104968
crossref_primary_10_1109_TPDS_2017_2748578
crossref_primary_10_3390_sym15112047
crossref_primary_10_1109_TPDS_2020_3011979
crossref_primary_10_1155_2021_9923326
crossref_primary_10_32604_cmc_2022_021410
crossref_primary_10_1049_cit2_12041
crossref_primary_10_1109_ACCESS_2025_3554995
crossref_primary_10_1016_j_future_2018_03_028
crossref_primary_10_1002_ett_4703
crossref_primary_10_1007_s11227_018_2561_9
crossref_primary_10_1002_spe_2802
crossref_primary_10_1109_TCYB_2020_2975530
crossref_primary_10_1109_TNSM_2023_3241450
crossref_primary_10_1007_s12083_021_01267_3
crossref_primary_10_1155_2018_1934784
crossref_primary_10_3390_electronics12194123
crossref_primary_10_1109_ACCESS_2016_2593903
crossref_primary_10_1109_TPDS_2025_3585821
crossref_primary_10_1007_s00607_017_0566_5
crossref_primary_10_1007_s42044_021_00082_6
crossref_primary_10_1016_j_asoc_2023_110655
crossref_primary_10_1016_j_eswa_2022_116824
crossref_primary_10_1109_TSC_2024_3407595
crossref_primary_10_1007_s10586_020_03223_x
crossref_primary_10_1109_ACCESS_2019_2950110
crossref_primary_10_1109_TPDS_2021_3122428
crossref_primary_10_1109_TSC_2020_2975774
crossref_primary_10_1007_s10586_021_03512_z
crossref_primary_10_1109_TPDS_2023_3243634
crossref_primary_10_1109_ACCESS_2023_3337832
crossref_primary_10_1109_TMC_2022_3188770
crossref_primary_10_1109_TPDS_2024_3492210
crossref_primary_10_1007_s12652_020_02833_y
crossref_primary_10_1016_j_simpat_2025_103127
crossref_primary_10_1145_3325097
crossref_primary_10_1142_S0218126625503633
Cites_doi 10.1109/HICSS.2012.186
10.1109/GCE.2008.4738445
10.1109/4235.996017
10.1007/978-3-642-27172-4_23
10.1109/4235.797969
10.1109/71.993206
10.1109/GRID.2005.1542733
10.1109/JCSSE.2012.6261985
10.1016/j.jpdc.2013.12.004
10.1007/s10586-013-0325-0
10.1109/TEVC.2007.892759
10.1109/GRID.2007.4354110
10.1109/TEVC.2008.925798
10.1109/TCYB.2013.2282503
10.1007/s10723-013-9257-4
10.1007/s10723-014-9294-7
10.1109/TEVC.2013.2262178
10.1109/MCSE.2013.44
10.1109/WORKS.2008.4723958
10.1109/CloudCom.2011.12
10.1155/2005/128026
10.1016/j.future.2012.08.015
10.1002/cpe.1417
10.1162/EVCO_a_00106
10.1007/978-3-642-15871-1_10
10.1016/j.future.2012.05.004
10.1109/ComManTel.2013.6482401
10.1016/j.future.2008.09.002
10.1109/SC.2012.38
10.1016/j.parco.2013.03.002
10.1007/3-540-45105-6_4
10.1007/978-0-387-47658-2_14
10.1109/TSMCC.2008.2001722
10.1007/s11227-013-1059-8
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TPDS.2015.2446459
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2183
EndPage 1357
ExternalDocumentID 4046743841
10_1109_TPDS_2015_2446459
7127017
Genre orig-research
GrantInformation_xml – fundername: Provincial Science Foundation of Jiangsu
  grantid: BK2011022
  funderid: 10.13039/501100004608
– fundername: National Science Foundation of China
  grantid: 61272420
  funderid: 10.13039/501100001809
GroupedDBID --Z
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
TWZ
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
F28
FR3
ID FETCH-LOGICAL-c392t-a836e63c190e17e08ffcc6a869044f69e6a343b39b265c89a85027e834c755d13
IEDL.DBID RIE
ISICitedReferencesCount 312
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374238100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1045-9219
IngestDate Thu Oct 02 11:37:37 EDT 2025
Sun Jun 29 15:34:15 EDT 2025
Tue Nov 18 22:26:35 EST 2025
Sat Nov 29 03:36:09 EST 2025
Wed Aug 27 02:52:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Cloud computing
infrastructure as a service
workflow scheduling
multi-objective optimization
evolutionary algorithm
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-a836e63c190e17e08ffcc6a869044f69e6a343b39b265c89a85027e834c755d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1787118347
PQPubID 85437
PageCount 14
ParticipantIDs proquest_journals_1787118347
ieee_primary_7127017
proquest_miscellaneous_1816020446
crossref_primary_10_1109_TPDS_2015_2446459
crossref_citationtrail_10_1109_TPDS_2015_2446459
PublicationCentury 2000
PublicationDate 2016-May-1
2016-5-1
20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-May-1
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on parallel and distributed systems
PublicationTitleAbbrev TPDS
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref37
ref15
ref36
ref14
ref33
ref11
ref32
ref10
ref2
rosoff (ref28) 2015
ref17
(ref29) 2014
ref38
ref16
ref19
ref18
liu (ref27) 2014
zitzler (ref39) 2001
(ref31) 2014
(ref26) 2013
zhu (ref12) 0
ref24
ref23
ref25
ref20
ref42
ref41
ref22
ref21
ref43
(ref30) 2014
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
mell (ref1) 2009
References_xml – ident: ref2
  doi: 10.1109/HICSS.2012.186
– ident: ref25
  doi: 10.1109/GCE.2008.4738445
– ident: ref32
  doi: 10.1109/4235.996017
– ident: ref11
  doi: 10.1007/978-3-642-27172-4_23
– year: 2009
  ident: ref1
  article-title: The NIST definition of cloud computing
– ident: ref41
  doi: 10.1109/4235.797969
– ident: ref23
  doi: 10.1109/71.993206
– ident: ref4
  doi: 10.1109/GRID.2005.1542733
– ident: ref13
  doi: 10.1109/JCSSE.2012.6261985
– ident: ref20
  doi: 10.1016/j.jpdc.2013.12.004
– ident: ref22
  doi: 10.1007/s10586-013-0325-0
– ident: ref38
  doi: 10.1109/TEVC.2007.892759
– ident: ref6
  doi: 10.1109/GRID.2007.4354110
– ident: ref33
  doi: 10.1109/TEVC.2008.925798
– ident: ref43
  doi: 10.1109/TCYB.2013.2282503
– year: 2015
  ident: ref28
– ident: ref16
  doi: 10.1007/s10723-013-9257-4
– ident: ref19
  doi: 10.1007/s10723-014-9294-7
– year: 2014
  ident: ref27
– ident: ref35
  doi: 10.1109/TEVC.2013.2262178
– ident: ref5
  doi: 10.1109/MCSE.2013.44
– start-page: 256
  year: 0
  ident: ref12
  article-title: A cost-effective scheduling algorithm for scientific workflows in clouds
  publication-title: Proc 31th IEEE Int Perform Comput Commun Conf
– ident: ref36
  doi: 10.1109/WORKS.2008.4723958
– ident: ref10
  doi: 10.1109/CloudCom.2011.12
– ident: ref3
  doi: 10.1155/2005/128026
– year: 2013
  ident: ref26
– ident: ref37
  doi: 10.1016/j.future.2012.08.015
– year: 2001
  ident: ref39
  article-title: Spea2: Improving the strength pareto evolutionary algorithm
– year: 2014
  ident: ref29
– ident: ref9
  doi: 10.1002/cpe.1417
– ident: ref42
  doi: 10.1162/EVCO_a_00106
– ident: ref34
  doi: 10.1007/978-3-642-15871-1_10
– ident: ref18
  doi: 10.1016/j.future.2012.05.004
– year: 2014
  ident: ref31
– ident: ref17
  doi: 10.1109/ComManTel.2013.6482401
– ident: ref7
  doi: 10.1016/j.future.2008.09.002
– ident: ref14
  doi: 10.1109/SC.2012.38
– ident: ref15
  doi: 10.1016/j.parco.2013.03.002
– ident: ref40
  doi: 10.1007/3-540-45105-6_4
– ident: ref24
  doi: 10.1007/978-0-387-47658-2_14
– year: 2014
  ident: ref30
– ident: ref8
  doi: 10.1109/TSMCC.2008.2001722
– ident: ref21
  doi: 10.1007/s11227-013-1059-8
SSID ssj0014504
Score 2.61339
Snippet Cloud computing provides promising platforms for executing large applications with enormous computational resources to offer on demand. In a Cloud model, users...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1344
SubjectTerms Algorithms
Cloud computing
Computation
Computational modeling
Encoding
evolutionary algorithm
Infrastructure as a Service
multi-objective optimization
Optimization
Platforms
Pricing
Processor scheduling
Production scheduling
Quality of service
Schedules
Scheduling
Scheduling algorithms
Workflow
workflow scheduling
Title Evolutionary Multi-Objective Workflow Scheduling in Cloud
URI https://ieeexplore.ieee.org/document/7127017
https://www.proquest.com/docview/1787118347
https://www.proquest.com/docview/1816020446
Volume 27
WOSCitedRecordID wos000374238100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2183
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014504
  issn: 1045-9219
  databaseCode: RIE
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B6qE9QAutWB5VkHqqGojr9xHxUE-AVCpxi2xnolKtkmrZBfHvGTveiIqqUm-RbCfxjMfj8Tw-gE-NQOO4l6XyzJei5W1pA1kpkrXGYmUaEvYENqEvLszNjb1agS9jLgwipuAzPIyPyZff9GERr8qOdHSTMr0Kq1rrIVdr9BgImaACybqQpSUxzB5MVtmj66vT7zGISx6SLovFU_7QQQlU5cVOnNTL-cb__dhbWM_HyOJ44Ps7WMFuEzaWEA1FlthNePOs3uAW2LP7vNLc7LFIubflpf817HlFvDdvp_0Djf5JCijmqRe3XXEy7RfNe_hxfnZ98q3M2AlloBPPvHSGK1Q8kL5HponobRuCchF_SohWWVSOC-659V-VDMY6I8lARcNF0FI2jH-Ata7vcBsKZ1DpgA0qOlwJ63yQyBwToaFZe19NoFpSsw65sHjEt5jWycCobB0ZUEcG1JkBE_g8Dvk9VNX4V-etSPGxYyb2BPaWLKuz3N3VjPYfMpm4oOaDsZkkJrpBXIf9gvoYpmJKsFA7f3_zLrym76shrHEP1uazBe7Dq3A_v72bfUzL7gkdOdQu
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3raxQxEB9qK1g_WO0DT2tdwU_itpvmsclH6YOK9Sx4Qr8tSXYWK8euXO8q_e87yeYWRSn4bSEPsjOZTCbz-AG8rQVqy53MlWMuFw1vcuPJSpGs0QYLXZOwR7CJcjzWl5fmYgXeD7kwiBiDz3A_fEZfft35RXgqOyiDm5SVD2BNCnHI-mytwWcgZAQLJPtC5oYEMfkwWWEOJhfHX0MYl9wnbRbKp_yhhSKsyl9ncVQwpxv_t7Sn8CRdJLMPPeefwQq2m7CxBGnIksxuwuPfKg5ugTm5SXvNzm6zmH2bf3E_-lMvCy_nzbT7RaO_kwoKmerZVZsdTbtFvQ3fTk8mR2d5Qk_IPd155rnVXKHinjQ-spLI3jTeKxsQqIRolEFlueCOG3eopNfGakkmKmoufCllzfgOrLZdi88hsxpV6bFGRdcrYazzEpllwtf0184VIyiW1Kx8Ki0eEC6mVTQxClMFBlSBAVViwAjeDUN-9nU17uu8FSg-dEzEHsHukmVVkrzritEJREYTF9T8ZmgmmQmOENtit6A-mqmQFCzUi3_P_BoenU0-n1fnH8efXsI6rUX1QY67sDqfLfAVPPQ386vr2V7cgndQf9d1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+Multi-Objective+Workflow+Scheduling+in+Cloud&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Zhu%2C+Zhaomeng&rft.au=Zhang%2C+Gongxuan&rft.au=Li%2C+Miqing&rft.au=Liu%2C+Xiaohui&rft.date=2016-05-01&rft.issn=1045-9219&rft.volume=27&rft.issue=5&rft.spage=1344&rft.epage=1357&rft_id=info:doi/10.1109%2FTPDS.2015.2446459&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon