Evolutionary Multi-Objective Workflow Scheduling in Cloud
Cloud computing provides promising platforms for executing large applications with enormous computational resources to offer on demand. In a Cloud model, users are charged based on their usage of resources and the required quality of service (QoS) specifications. Although there are many existing wor...
Uložené v:
| Vydané v: | IEEE transactions on parallel and distributed systems Ročník 27; číslo 5; s. 1344 - 1357 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.05.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1045-9219, 1558-2183 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Cloud computing provides promising platforms for executing large applications with enormous computational resources to offer on demand. In a Cloud model, users are charged based on their usage of resources and the required quality of service (QoS) specifications. Although there are many existing workflow scheduling algorithms in traditional distributed or heterogeneous computing environments, they have difficulties in being directly applied to the Cloud environments since Cloud differs from traditional heterogeneous environments by its service-based resource managing method and pay-per-use pricing strategies. In this paper, we highlight such difficulties, and model the workflow scheduling problem which optimizes both makespan and cost as a Multi-objective Optimization Problem (MOP) for the Cloud environments. We propose an evolutionary multi-objective optimization (EMO)-based algorithm to solve this workflow scheduling problem on an infrastructure as a service (IaaS) platform. Novel schemes for problem-specific encoding and population initialization, fitness evaluation and genetic operators are proposed in this algorithm. Extensive experiments on real world workflows and randomly generated workflows show that the schedules produced by our evolutionary algorithm present more stability on most of the workflows with the instance-based IaaS computing and pricing models. The results also show that our algorithm can achieve significantly better solutions than existing state-of-the-art QoS optimization scheduling algorithms in most cases. The conducted experiments are based on the on-demand instance types of Amazon EC2; however, the proposed algorithm are easy to be extended to the resources and pricing models of other IaaS services. |
|---|---|
| AbstractList | Cloud computing provides promising platforms for executing large applications with enormous computational resources to offer on demand. In a Cloud model, users are charged based on their usage of resources and the required quality of service (QoS) specifications. Although there are many existing workflow scheduling algorithms in traditional distributed or heterogeneous computing environments, they have difficulties in being directly applied to the Cloud environments since Cloud differs from traditional heterogeneous environments by its service-based resource managing method and pay-per-use pricing strategies. In this paper, we highlight such difficulties, and model the workflow scheduling problem which optimizes both makespan and cost as a Multi-objective Optimization Problem (MOP) for the Cloud environments. We propose an evolutionary multi-objective optimization (EMO)-based algorithm to solve this workflow scheduling problem on an infrastructure as a service (IaaS) platform. Novel schemes for problem-specific encoding and population initialization, fitness evaluation and genetic operators are proposed in this algorithm. Extensive experiments on real world workflows and randomly generated workflows show that the schedules produced by our evolutionary algorithm present more stability on most of the workflows with the instance-based IaaS computing and pricing models. The results also show that our algorithm can achieve significantly better solutions than existing state-of-the-art QoS optimization scheduling algorithms in most cases. The conducted experiments are based on the on-demand instance types of Amazon EC2; however, the proposed algorithm are easy to be extended to the resources and pricing models of other IaaS services. |
| Author | Gongxuan Zhang Miqing Li Zhaomeng Zhu Xiaohui Liu |
| Author_xml | – sequence: 1 givenname: Zhaomeng surname: Zhu fullname: Zhu, Zhaomeng – sequence: 2 givenname: Gongxuan surname: Zhang fullname: Zhang, Gongxuan – sequence: 3 givenname: Miqing surname: Li fullname: Li, Miqing – sequence: 4 givenname: Xiaohui surname: Liu fullname: Liu, Xiaohui |
| BookMark | eNp9kLlOAzEQhi0EEuF4AESzEg3NBo9vlyiEQwKBRBCl5Tiz4GDWsAeIt2ejIAoKqpni_-b4dshmnWsk5ADoGIDak9nd2f2YUZBjJoQS0m6QEUhpSgaGbw49FbK0DOw22WnbJaUgJBUjYqcfOfVdzLVvvoqbPnWxvJ0vMXTxA4vH3LxUKX8W9-EZF32K9VMR62KScr_YI1uVTy3u_9Rd8nA-nU0uy-vbi6vJ6XUZuGVd6Q1XqHgASxE0UlNVIShvlKVCVMqi8lzwObdzpmQw1htJmUbDRdBSLoDvkuP13Lcmv_fYdu41tgFT8jXmvnVgQFE2DFND9OhPdJn7ph6uc6CNhkGF0EMK1qnQ5LZtsHJvTXwd3ndA3UqmW8l0K5nuR-bA6D9MiJ1faesaH9O_5OGajIj4u0kD0xQ0_wZ9mIHR |
| CODEN | ITDSEO |
| CitedBy_id | crossref_primary_10_1109_TSC_2022_3174112 crossref_primary_10_1177_1550147720949142 crossref_primary_10_1007_s11227_020_03273_3 crossref_primary_10_3390_app13031980 crossref_primary_10_1016_j_future_2020_11_002 crossref_primary_10_1080_02286203_2024_2437828 crossref_primary_10_1007_s10696_018_9309_y crossref_primary_10_1016_j_eswa_2023_121833 crossref_primary_10_1016_j_eswa_2023_122009 crossref_primary_10_1109_ACCESS_2021_3091310 crossref_primary_10_1109_TCC_2022_3188672 crossref_primary_10_1007_s00521_022_06925_y crossref_primary_10_1007_s40747_023_01137_w crossref_primary_10_1109_TPDS_2020_2981306 crossref_primary_10_1016_j_swevo_2024_101751 crossref_primary_10_1016_j_engappai_2024_109907 crossref_primary_10_1007_s10619_017_7215_z crossref_primary_10_1080_01605682_2023_2195426 crossref_primary_10_1109_TSC_2023_3311785 crossref_primary_10_1109_ACCESS_2023_3266294 crossref_primary_10_1109_JIOT_2024_3406591 crossref_primary_10_1155_2017_5342727 crossref_primary_10_1016_j_future_2019_03_005 crossref_primary_10_1016_j_jnca_2018_03_028 crossref_primary_10_1109_JSYST_2023_3239118 crossref_primary_10_1016_j_neucom_2019_06_075 crossref_primary_10_1109_TASE_2021_3054501 crossref_primary_10_1109_TPDS_2017_2678507 crossref_primary_10_1016_j_jss_2018_09_067 crossref_primary_10_1016_j_swevo_2021_101008 crossref_primary_10_1051_itmconf_20235401005 crossref_primary_10_1007_s11859_017_1276_8 crossref_primary_10_1002_int_23090 crossref_primary_10_3390_pr12050869 crossref_primary_10_1186_s13638_019_1557_3 crossref_primary_10_1155_2024_4737604 crossref_primary_10_1016_j_comcom_2021_02_005 crossref_primary_10_1080_17517575_2019_1585578 crossref_primary_10_1002_cpe_7002 crossref_primary_10_1186_s13677_023_00392_z crossref_primary_10_1007_s11761_021_00330_4 crossref_primary_10_1016_j_future_2018_10_046 crossref_primary_10_3390_fi10010005 crossref_primary_10_1109_TSC_2021_3106260 crossref_primary_10_1109_TCC_2024_3450858 crossref_primary_10_1016_j_future_2019_03_011 crossref_primary_10_1016_j_sysarc_2020_101799 crossref_primary_10_1007_s11518_024_5606_z crossref_primary_10_1109_TR_2023_3234036 crossref_primary_10_1111_tgis_12479 crossref_primary_10_1016_j_procs_2019_09_275 crossref_primary_10_1016_j_ins_2017_01_035 crossref_primary_10_1109_TASE_2022_3183681 crossref_primary_10_1109_TMC_2024_3490835 crossref_primary_10_1109_TSC_2024_3463423 crossref_primary_10_1109_ACCESS_2023_3294095 crossref_primary_10_26634_jcc_11_2_21509 crossref_primary_10_1109_TASE_2021_3093341 crossref_primary_10_1007_s10586_023_04022_w crossref_primary_10_1007_s10723_020_09533_z crossref_primary_10_1109_TASE_2022_3204313 crossref_primary_10_3390_su11133634 crossref_primary_10_1177_10692509251363797 crossref_primary_10_1016_j_future_2017_12_004 crossref_primary_10_1007_s10586_021_03351_y crossref_primary_10_1007_s10723_024_09770_6 crossref_primary_10_1007_s42044_020_00071_1 crossref_primary_10_1109_JAS_2021_1003982 crossref_primary_10_1007_s11047_025_10023_y crossref_primary_10_1016_j_jss_2017_10_001 crossref_primary_10_1007_s10586_021_03464_4 crossref_primary_10_1016_j_eswa_2023_120972 crossref_primary_10_1109_TCC_2020_2993250 crossref_primary_10_1007_s00521_020_04878_8 crossref_primary_10_1007_s11277_022_10072_x crossref_primary_10_1109_ACCESS_2019_2939294 crossref_primary_10_1109_TPDS_2023_3245089 crossref_primary_10_1109_TSC_2021_3062383 crossref_primary_10_1002_cpe_5006 crossref_primary_10_1109_TCYB_2018_2832640 crossref_primary_10_51583_IJLTEMAS_2025_140500082 crossref_primary_10_1007_s11227_022_04616_y crossref_primary_10_4018_IJISMD_2019070104 crossref_primary_10_3233_JIFS_190355 crossref_primary_10_1016_j_cie_2020_106649 crossref_primary_10_1016_j_future_2019_07_043 crossref_primary_10_1007_s13369_021_05774_6 crossref_primary_10_1109_ACCESS_2020_2970475 crossref_primary_10_1109_TSC_2022_3196620 crossref_primary_10_1016_j_jnca_2019_02_005 crossref_primary_10_1016_j_swevo_2023_101291 crossref_primary_10_1016_j_future_2024_107633 crossref_primary_10_1016_j_future_2024_04_004 crossref_primary_10_1109_TCC_2021_3137881 crossref_primary_10_1002_cpe_4949 crossref_primary_10_1016_j_asoc_2022_108791 crossref_primary_10_1109_TNSM_2022_3224158 crossref_primary_10_1016_j_future_2023_10_015 crossref_primary_10_1002_rnc_4940 crossref_primary_10_1016_j_sysarc_2020_101916 crossref_primary_10_1016_j_aei_2022_101528 crossref_primary_10_1007_s11277_022_09526_z crossref_primary_10_4018_IJWSR_2019100101 crossref_primary_10_1007_s10586_017_0751_5 crossref_primary_10_1007_s10922_024_09863_3 crossref_primary_10_1109_TPDS_2019_2961098 crossref_primary_10_1016_j_swevo_2021_100841 crossref_primary_10_1109_TCC_2021_3087642 crossref_primary_10_1007_s11227_022_04962_x crossref_primary_10_1109_TASE_2022_3217666 crossref_primary_10_1007_s11227_017_2151_2 crossref_primary_10_1007_s10586_021_03269_5 crossref_primary_10_1111_coin_12197 crossref_primary_10_1007_s11227_019_02877_8 crossref_primary_10_1002_ett_4690 crossref_primary_10_4018_IJGHPC_304907 crossref_primary_10_1007_s10951_024_00820_1 crossref_primary_10_1186_s13677_023_00389_8 crossref_primary_10_1002_cpe_4041 crossref_primary_10_1016_j_engappai_2022_104879 crossref_primary_10_1109_TPDS_2017_2696942 crossref_primary_10_1049_iet_ifs_2018_5279 crossref_primary_10_1007_s11227_024_06114_9 crossref_primary_10_1016_j_jnca_2022_103400 crossref_primary_10_1109_TC_2022_3191733 crossref_primary_10_1155_2016_8239239 crossref_primary_10_1016_S1005_8885_16_60064_X crossref_primary_10_1016_j_matpr_2020_08_337 crossref_primary_10_1007_s11277_020_08001_x crossref_primary_10_1016_j_cie_2022_108033 crossref_primary_10_1016_j_future_2021_07_023 crossref_primary_10_1186_s13677_017_0091_2 crossref_primary_10_1016_j_comnet_2020_107340 crossref_primary_10_1016_j_ins_2021_03_003 crossref_primary_10_1109_TCYB_2020_2988896 crossref_primary_10_1016_j_aei_2025_103173 crossref_primary_10_1002_spe_3153 crossref_primary_10_1109_TPDS_2019_2929389 crossref_primary_10_1007_s11227_018_2465_8 crossref_primary_10_1007_s11227_023_05330_z crossref_primary_10_1016_j_future_2019_05_002 crossref_primary_10_1109_ACCESS_2019_2957998 crossref_primary_10_1007_s10586_020_03079_1 crossref_primary_10_1007_s11227_022_04681_3 crossref_primary_10_1109_TII_2019_2959258 crossref_primary_10_1109_TFUZZ_2020_2968864 crossref_primary_10_1007_s12652_021_03666_z crossref_primary_10_1109_ACCESS_2023_3323445 crossref_primary_10_7717_peerj_cs_509 crossref_primary_10_3390_math11010038 crossref_primary_10_1002_cpe_3942 crossref_primary_10_1007_s00521_019_04693_w crossref_primary_10_1016_j_comnet_2024_110628 crossref_primary_10_1109_ACCESS_2018_2869827 crossref_primary_10_4018_IJCAC_324809 crossref_primary_10_1109_TASE_2020_3046673 crossref_primary_10_4018_IJWSR_2018100105 crossref_primary_10_1016_j_asoc_2023_111142 crossref_primary_10_1109_TVT_2018_2868942 crossref_primary_10_3390_math11092126 crossref_primary_10_1007_s11227_020_03183_4 crossref_primary_10_1016_j_asoc_2023_110966 crossref_primary_10_1016_j_jksuci_2017_10_009 crossref_primary_10_1007_s13369_018_3664_6 crossref_primary_10_1007_s10586_020_03176_1 crossref_primary_10_1155_2021_5585062 crossref_primary_10_1016_j_sysarc_2020_101837 crossref_primary_10_32604_cmes_2023_024871 crossref_primary_10_1109_TASE_2023_3247973 crossref_primary_10_3233_JIFS_17148 crossref_primary_10_1016_j_future_2022_09_013 crossref_primary_10_1016_j_future_2018_11_001 crossref_primary_10_1016_j_future_2018_03_018 crossref_primary_10_1016_j_asoc_2020_106960 crossref_primary_10_1109_TCYB_2017_2679705 crossref_primary_10_1016_j_eswa_2024_124559 crossref_primary_10_1155_2022_2033644 crossref_primary_10_1109_TASE_2019_2918691 crossref_primary_10_1109_TCC_2024_3449771 crossref_primary_10_1016_j_jksuci_2020_02_006 crossref_primary_10_1016_j_future_2023_11_030 crossref_primary_10_1109_ACCESS_2020_2971351 crossref_primary_10_1016_j_simpat_2023_102835 crossref_primary_10_1109_TBDATA_2018_2874469 crossref_primary_10_1109_TPDS_2018_2837743 crossref_primary_10_1109_TPDS_2017_2687923 crossref_primary_10_1016_j_asoc_2020_106895 crossref_primary_10_1016_j_ins_2022_05_053 crossref_primary_10_1007_s11042_023_17088_w crossref_primary_10_1007_s11227_020_03606_2 crossref_primary_10_1007_s12652_021_03632_9 crossref_primary_10_1142_S2196888820500104 crossref_primary_10_1007_s11277_022_09704_z crossref_primary_10_3390_electronics10060737 crossref_primary_10_1016_j_measen_2022_100436 crossref_primary_10_3390_app13021101 crossref_primary_10_1109_TPDS_2016_2597826 crossref_primary_10_1007_s13198_023_02068_y crossref_primary_10_1016_j_procs_2020_05_129 crossref_primary_10_1002_spe_2939 crossref_primary_10_1007_s11047_023_09950_5 crossref_primary_10_1109_TPDS_2017_2735400 crossref_primary_10_1002_ett_3844 crossref_primary_10_1016_j_simpat_2021_102328 crossref_primary_10_1016_j_future_2019_08_012 crossref_primary_10_3390_app8040538 crossref_primary_10_1016_j_engappai_2022_105345 crossref_primary_10_1016_j_jpdc_2024_104968 crossref_primary_10_1109_TPDS_2017_2748578 crossref_primary_10_3390_sym15112047 crossref_primary_10_1109_TPDS_2020_3011979 crossref_primary_10_1155_2021_9923326 crossref_primary_10_32604_cmc_2022_021410 crossref_primary_10_1049_cit2_12041 crossref_primary_10_1109_ACCESS_2025_3554995 crossref_primary_10_1016_j_future_2018_03_028 crossref_primary_10_1002_ett_4703 crossref_primary_10_1007_s11227_018_2561_9 crossref_primary_10_1002_spe_2802 crossref_primary_10_1109_TCYB_2020_2975530 crossref_primary_10_1109_TNSM_2023_3241450 crossref_primary_10_1007_s12083_021_01267_3 crossref_primary_10_1155_2018_1934784 crossref_primary_10_3390_electronics12194123 crossref_primary_10_1109_ACCESS_2016_2593903 crossref_primary_10_1109_TPDS_2025_3585821 crossref_primary_10_1007_s00607_017_0566_5 crossref_primary_10_1007_s42044_021_00082_6 crossref_primary_10_1016_j_asoc_2023_110655 crossref_primary_10_1016_j_eswa_2022_116824 crossref_primary_10_1109_TSC_2024_3407595 crossref_primary_10_1007_s10586_020_03223_x crossref_primary_10_1109_ACCESS_2019_2950110 crossref_primary_10_1109_TPDS_2021_3122428 crossref_primary_10_1109_TSC_2020_2975774 crossref_primary_10_1007_s10586_021_03512_z crossref_primary_10_1109_TPDS_2023_3243634 crossref_primary_10_1109_ACCESS_2023_3337832 crossref_primary_10_1109_TMC_2022_3188770 crossref_primary_10_1109_TPDS_2024_3492210 crossref_primary_10_1007_s12652_020_02833_y crossref_primary_10_1016_j_simpat_2025_103127 crossref_primary_10_1145_3325097 crossref_primary_10_1142_S0218126625503633 |
| Cites_doi | 10.1109/HICSS.2012.186 10.1109/GCE.2008.4738445 10.1109/4235.996017 10.1007/978-3-642-27172-4_23 10.1109/4235.797969 10.1109/71.993206 10.1109/GRID.2005.1542733 10.1109/JCSSE.2012.6261985 10.1016/j.jpdc.2013.12.004 10.1007/s10586-013-0325-0 10.1109/TEVC.2007.892759 10.1109/GRID.2007.4354110 10.1109/TEVC.2008.925798 10.1109/TCYB.2013.2282503 10.1007/s10723-013-9257-4 10.1007/s10723-014-9294-7 10.1109/TEVC.2013.2262178 10.1109/MCSE.2013.44 10.1109/WORKS.2008.4723958 10.1109/CloudCom.2011.12 10.1155/2005/128026 10.1016/j.future.2012.08.015 10.1002/cpe.1417 10.1162/EVCO_a_00106 10.1007/978-3-642-15871-1_10 10.1016/j.future.2012.05.004 10.1109/ComManTel.2013.6482401 10.1016/j.future.2008.09.002 10.1109/SC.2012.38 10.1016/j.parco.2013.03.002 10.1007/3-540-45105-6_4 10.1007/978-0-387-47658-2_14 10.1109/TSMCC.2008.2001722 10.1007/s11227-013-1059-8 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1109/TPDS.2015.2446459 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2183 |
| EndPage | 1357 |
| ExternalDocumentID | 4046743841 10_1109_TPDS_2015_2446459 7127017 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Provincial Science Foundation of Jiangsu grantid: BK2011022 funderid: 10.13039/501100004608 – fundername: National Science Foundation of China grantid: 61272420 funderid: 10.13039/501100001809 |
| GroupedDBID | --Z -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AGSQL AHBIQ AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS TN5 TWZ UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D RIG F28 FR3 |
| ID | FETCH-LOGICAL-c392t-a836e63c190e17e08ffcc6a869044f69e6a343b39b265c89a85027e834c755d13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 312 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374238100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1045-9219 |
| IngestDate | Thu Oct 02 11:37:37 EDT 2025 Sun Jun 29 15:34:15 EDT 2025 Tue Nov 18 22:26:35 EST 2025 Sat Nov 29 03:36:09 EST 2025 Wed Aug 27 02:52:21 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Cloud computing infrastructure as a service workflow scheduling multi-objective optimization evolutionary algorithm |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c392t-a836e63c190e17e08ffcc6a869044f69e6a343b39b265c89a85027e834c755d13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1787118347 |
| PQPubID | 85437 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_1787118347 ieee_primary_7127017 proquest_miscellaneous_1816020446 crossref_primary_10_1109_TPDS_2015_2446459 crossref_citationtrail_10_1109_TPDS_2015_2446459 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-May-1 2016-5-1 20160501 |
| PublicationDateYYYYMMDD | 2016-05-01 |
| PublicationDate_xml | – month: 05 year: 2016 text: 2016-May-1 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on parallel and distributed systems |
| PublicationTitleAbbrev | TPDS |
| PublicationYear | 2016 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref37 ref15 ref36 ref14 ref33 ref11 ref32 ref10 ref2 rosoff (ref28) 2015 ref17 (ref29) 2014 ref38 ref16 ref19 ref18 liu (ref27) 2014 zitzler (ref39) 2001 (ref31) 2014 (ref26) 2013 zhu (ref12) 0 ref24 ref23 ref25 ref20 ref42 ref41 ref22 ref21 ref43 (ref30) 2014 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 mell (ref1) 2009 |
| References_xml | – ident: ref2 doi: 10.1109/HICSS.2012.186 – ident: ref25 doi: 10.1109/GCE.2008.4738445 – ident: ref32 doi: 10.1109/4235.996017 – ident: ref11 doi: 10.1007/978-3-642-27172-4_23 – year: 2009 ident: ref1 article-title: The NIST definition of cloud computing – ident: ref41 doi: 10.1109/4235.797969 – ident: ref23 doi: 10.1109/71.993206 – ident: ref4 doi: 10.1109/GRID.2005.1542733 – ident: ref13 doi: 10.1109/JCSSE.2012.6261985 – ident: ref20 doi: 10.1016/j.jpdc.2013.12.004 – ident: ref22 doi: 10.1007/s10586-013-0325-0 – ident: ref38 doi: 10.1109/TEVC.2007.892759 – ident: ref6 doi: 10.1109/GRID.2007.4354110 – ident: ref33 doi: 10.1109/TEVC.2008.925798 – ident: ref43 doi: 10.1109/TCYB.2013.2282503 – year: 2015 ident: ref28 – ident: ref16 doi: 10.1007/s10723-013-9257-4 – ident: ref19 doi: 10.1007/s10723-014-9294-7 – year: 2014 ident: ref27 – ident: ref35 doi: 10.1109/TEVC.2013.2262178 – ident: ref5 doi: 10.1109/MCSE.2013.44 – start-page: 256 year: 0 ident: ref12 article-title: A cost-effective scheduling algorithm for scientific workflows in clouds publication-title: Proc 31th IEEE Int Perform Comput Commun Conf – ident: ref36 doi: 10.1109/WORKS.2008.4723958 – ident: ref10 doi: 10.1109/CloudCom.2011.12 – ident: ref3 doi: 10.1155/2005/128026 – year: 2013 ident: ref26 – ident: ref37 doi: 10.1016/j.future.2012.08.015 – year: 2001 ident: ref39 article-title: Spea2: Improving the strength pareto evolutionary algorithm – year: 2014 ident: ref29 – ident: ref9 doi: 10.1002/cpe.1417 – ident: ref42 doi: 10.1162/EVCO_a_00106 – ident: ref34 doi: 10.1007/978-3-642-15871-1_10 – ident: ref18 doi: 10.1016/j.future.2012.05.004 – year: 2014 ident: ref31 – ident: ref17 doi: 10.1109/ComManTel.2013.6482401 – ident: ref7 doi: 10.1016/j.future.2008.09.002 – ident: ref14 doi: 10.1109/SC.2012.38 – ident: ref15 doi: 10.1016/j.parco.2013.03.002 – ident: ref40 doi: 10.1007/3-540-45105-6_4 – ident: ref24 doi: 10.1007/978-0-387-47658-2_14 – year: 2014 ident: ref30 – ident: ref8 doi: 10.1109/TSMCC.2008.2001722 – ident: ref21 doi: 10.1007/s11227-013-1059-8 |
| SSID | ssj0014504 |
| Score | 2.61339 |
| Snippet | Cloud computing provides promising platforms for executing large applications with enormous computational resources to offer on demand. In a Cloud model, users... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1344 |
| SubjectTerms | Algorithms Cloud computing Computation Computational modeling Encoding evolutionary algorithm Infrastructure as a Service multi-objective optimization Optimization Platforms Pricing Processor scheduling Production scheduling Quality of service Schedules Scheduling Scheduling algorithms Workflow workflow scheduling |
| Title | Evolutionary Multi-Objective Workflow Scheduling in Cloud |
| URI | https://ieeexplore.ieee.org/document/7127017 https://www.proquest.com/docview/1787118347 https://www.proquest.com/docview/1816020446 |
| Volume | 27 |
| WOSCitedRecordID | wos000374238100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2183 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014504 issn: 1045-9219 databaseCode: RIE dateStart: 19900101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B6qE9QAutWB5VkHqqGojr9xHxUE-AVCpxi2xnolKtkmrZBfHvGTveiIqqUm-RbCfxjMfj8Tw-gE-NQOO4l6XyzJei5W1pA1kpkrXGYmUaEvYENqEvLszNjb1agS9jLgwipuAzPIyPyZff9GERr8qOdHSTMr0Kq1rrIVdr9BgImaACybqQpSUxzB5MVtmj66vT7zGISx6SLovFU_7QQQlU5cVOnNTL-cb__dhbWM_HyOJ44Ps7WMFuEzaWEA1FlthNePOs3uAW2LP7vNLc7LFIubflpf817HlFvDdvp_0Djf5JCijmqRe3XXEy7RfNe_hxfnZ98q3M2AlloBPPvHSGK1Q8kL5HponobRuCchF_SohWWVSOC-659V-VDMY6I8lARcNF0FI2jH-Ata7vcBsKZ1DpgA0qOlwJ63yQyBwToaFZe19NoFpSsw65sHjEt5jWycCobB0ZUEcG1JkBE_g8Dvk9VNX4V-etSPGxYyb2BPaWLKuz3N3VjPYfMpm4oOaDsZkkJrpBXIf9gvoYpmJKsFA7f3_zLrym76shrHEP1uazBe7Dq3A_v72bfUzL7gkdOdQu |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3raxQxEB9qK1g_WO0DT2tdwU_itpvmsclH6YOK9Sx4Qr8tSXYWK8euXO8q_e87yeYWRSn4bSEPsjOZTCbz-AG8rQVqy53MlWMuFw1vcuPJSpGs0QYLXZOwR7CJcjzWl5fmYgXeD7kwiBiDz3A_fEZfft35RXgqOyiDm5SVD2BNCnHI-mytwWcgZAQLJPtC5oYEMfkwWWEOJhfHX0MYl9wnbRbKp_yhhSKsyl9ncVQwpxv_t7Sn8CRdJLMPPeefwQq2m7CxBGnIksxuwuPfKg5ugTm5SXvNzm6zmH2bf3E_-lMvCy_nzbT7RaO_kwoKmerZVZsdTbtFvQ3fTk8mR2d5Qk_IPd155rnVXKHinjQ-spLI3jTeKxsQqIRolEFlueCOG3eopNfGakkmKmoufCllzfgOrLZdi88hsxpV6bFGRdcrYazzEpllwtf0184VIyiW1Kx8Ki0eEC6mVTQxClMFBlSBAVViwAjeDUN-9nU17uu8FSg-dEzEHsHukmVVkrzritEJREYTF9T8ZmgmmQmOENtit6A-mqmQFCzUi3_P_BoenU0-n1fnH8efXsI6rUX1QY67sDqfLfAVPPQ386vr2V7cgndQf9d1 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+Multi-Objective+Workflow+Scheduling+in+Cloud&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Zhu%2C+Zhaomeng&rft.au=Zhang%2C+Gongxuan&rft.au=Li%2C+Miqing&rft.au=Liu%2C+Xiaohui&rft.date=2016-05-01&rft.issn=1045-9219&rft.volume=27&rft.issue=5&rft.spage=1344&rft.epage=1357&rft_id=info:doi/10.1109%2FTPDS.2015.2446459&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon |