Minimal mass design of active tensegrity structures
•A general method for designing minimal mass active tensegrity structures is proposed.•The design of the structure parameters and actuator parameters are integrated.•The performance of different actuator layout modes on mass-efficiency is investigated.•The method is a unifying framework for designin...
Gespeichert in:
| Veröffentlicht in: | Engineering structures Jg. 234; S. 111965 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Kidlington
Elsevier Ltd
01.05.2021
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0141-0296, 1873-7323 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •A general method for designing minimal mass active tensegrity structures is proposed.•The design of the structure parameters and actuator parameters are integrated.•The performance of different actuator layout modes on mass-efficiency is investigated.•The method is a unifying framework for designing minimal mass tensegrity structures.
Tensegrity structures have been widely utilized as lightweight structures due to their high stiffness-to-mass and strength-to-mass ratios. Minimal mass design of tensegrity structures subject to external loads and specific constraints (e.g., member yielding and buckling) has been intensively studied. However, all the existing studies focus on passive tensegrity structures, i.e., the structural members cannot change their lengths actively and the structure has to passively resist external loads. An active tensegrity structure equipped with actuators can actively adapt its internal forces and nodal positions and thus can actively resist external loads. Therefore, it is expected that active tensegrity structures use less material compared to passive tensegrity structures thus leading to a smaller mass. Due to the integration of the active control system, the design of active tensegrity structures is different from passive tensegrity structures. This study proposes a general approach for the design of minimal mass active tensegrity structures based on a mixed integer programming scheme, in which the member cross-sectional areas, prestress, actuator layout and control strategies (i.e., actuator length changes) are designed simultaneously. The member cross-sectional areas, prestress level, and actuator control strategies are treated as continuous variables and the actuator layout is treated as a binary variable. The equilibrium condition, member yielding, cable slackness, strut buckling, and the limitations on the nodal displacements as well as other practical requirements are formulated as constraints. Three typical active tensegrity structures are designed through the proposed approach and the results are benchmarked with the equivalent minimal mass passive designs. It is illustrated that the active designs can significantly decrease the material consumption compared with the equivalent passive designs thus leading to more lightweight tensegrity structures. |
|---|---|
| AbstractList | Tensegrity structures have been widely utilized as lightweight structures due to their high stiffness-to-mass and strength-to-mass ratios. Minimal mass design of tensegrity structures subject to external loads and specific constraints (e.g., member yielding and buckling) has been intensively studied. However, all the existing studies focus on passive tensegrity structures, i.e., the structural members cannot change their lengths actively and the structure has to passively resist external loads. An active tensegrity structure equipped with actuators can actively adapt its internal forces and nodal positions and thus can actively resist external loads. Therefore, it is expected that active tensegrity structures use less material compared to passive tensegrity structures thus leading to a smaller mass. Due to the integration of the active control system, the design of active tensegrity structures is different from passive tensegrity structures. This study proposes a general approach for the design of minimal mass active tensegrity structures based on a mixed integer programming scheme, in which the member cross-sectional areas, prestress, actuator layout and control strategies (i.e., actuator length changes) are designed simultaneously. The member cross-sectional areas, prestress level, and actuator control strategies are treated as continuous variables and the actuator layout is treated as a binary variable. The equilibrium condition, member yielding, cable slackness, strut buckling, and the limitations on the nodal displacements as well as other practical requirements are formulated as constraints. Three typical active tensegrity structures are designed through the proposed approach and the results are benchmarked with the equivalent minimal mass passive designs. It is illustrated that the active designs can significantly decrease the material consumption compared with the equivalent passive designs thus leading to more lightweight tensegrity structures. •A general method for designing minimal mass active tensegrity structures is proposed.•The design of the structure parameters and actuator parameters are integrated.•The performance of different actuator layout modes on mass-efficiency is investigated.•The method is a unifying framework for designing minimal mass tensegrity structures. Tensegrity structures have been widely utilized as lightweight structures due to their high stiffness-to-mass and strength-to-mass ratios. Minimal mass design of tensegrity structures subject to external loads and specific constraints (e.g., member yielding and buckling) has been intensively studied. However, all the existing studies focus on passive tensegrity structures, i.e., the structural members cannot change their lengths actively and the structure has to passively resist external loads. An active tensegrity structure equipped with actuators can actively adapt its internal forces and nodal positions and thus can actively resist external loads. Therefore, it is expected that active tensegrity structures use less material compared to passive tensegrity structures thus leading to a smaller mass. Due to the integration of the active control system, the design of active tensegrity structures is different from passive tensegrity structures. This study proposes a general approach for the design of minimal mass active tensegrity structures based on a mixed integer programming scheme, in which the member cross-sectional areas, prestress, actuator layout and control strategies (i.e., actuator length changes) are designed simultaneously. The member cross-sectional areas, prestress level, and actuator control strategies are treated as continuous variables and the actuator layout is treated as a binary variable. The equilibrium condition, member yielding, cable slackness, strut buckling, and the limitations on the nodal displacements as well as other practical requirements are formulated as constraints. Three typical active tensegrity structures are designed through the proposed approach and the results are benchmarked with the equivalent minimal mass passive designs. It is illustrated that the active designs can significantly decrease the material consumption compared with the equivalent passive designs thus leading to more lightweight tensegrity structures. |
| ArticleNumber | 111965 |
| Author | Wang, Yafeng Luo, Yaozhi Xu, Xian |
| Author_xml | – sequence: 1 givenname: Yafeng orcidid: 0000-0002-7470-1200 surname: Wang fullname: Wang, Yafeng email: yafeng.wang.1239@gmail.com organization: College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China – sequence: 2 givenname: Xian surname: Xu fullname: Xu, Xian email: xian_xu@zju.edu.cn organization: College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China – sequence: 3 givenname: Yaozhi surname: Luo fullname: Luo, Yaozhi email: luoyz@zju.edu.cn organization: College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China |
| BookMark | eNqNkD1PwzAQhi1UJErhNxCJOcVnJ449MFQVX1IRC8yW61wqR61TbKdS_z2pghhYYLrh7nlf3XNJJr7zSMgN0DlQEHftHP0mptDbNGeUwRwAlCjPyBRkxfOKMz4hUwoF5JQpcUEuY2wppUxKOiX81Xm3M9tsZ2LMaoxu47OuyYxN7oBZQh9xE1w6ZmNFHzBekfPGbCNef88Z-Xh8eF8-56u3p5flYpVbrljKlVWobMWlUYqXhSybwpZgaFlL1ghWKLnmHIp1hZaJCgW3ojKsEGVTDztq-Yzcjrn70H32GJNuuz74oVKzEoBLXgzPzcj9eGVDF2PARluXTHKdT8G4rQaqT550q3886ZMnPXoa-OoXvw-DkXD8B7kYSRwkHBwGHa1Db7F2AYfbunN_ZnwB3pyJCA |
| CitedBy_id | crossref_primary_10_1016_j_engstruct_2022_114618 crossref_primary_10_1016_j_istruc_2025_108237 crossref_primary_10_1016_j_istruc_2025_108756 crossref_primary_10_1016_j_istruc_2025_108910 crossref_primary_10_1016_j_engstruct_2023_115748 crossref_primary_10_1007_s00158_025_04116_6 crossref_primary_10_1061_JSENDH_STENG_14127 crossref_primary_10_1016_j_ymssp_2024_111415 crossref_primary_10_1016_j_istruc_2024_106283 crossref_primary_10_1016_j_cma_2022_115832 crossref_primary_10_1016_j_engstruct_2025_120930 crossref_primary_10_1016_j_ijmecsci_2025_110455 crossref_primary_10_1016_j_tws_2024_112829 crossref_primary_10_1016_j_engstruct_2023_116905 crossref_primary_10_1016_j_istruc_2024_106999 crossref_primary_10_1016_j_istruc_2024_106799 crossref_primary_10_1016_j_engstruct_2022_115569 crossref_primary_10_1016_j_istruc_2024_106798 crossref_primary_10_1016_j_compstruct_2025_118925 crossref_primary_10_1016_j_istruc_2025_108706 crossref_primary_10_1016_j_engstruct_2023_116597 crossref_primary_10_1016_j_tws_2025_113389 crossref_primary_10_1061_JSENDH_STENG_12633 crossref_primary_10_1016_j_jcsr_2023_108021 crossref_primary_10_1016_j_jcsr_2025_109554 crossref_primary_10_1016_j_engstruct_2022_114391 crossref_primary_10_1016_j_jcsr_2024_109298 crossref_primary_10_1016_j_tws_2025_113184 crossref_primary_10_1007_s00158_023_03698_3 crossref_primary_10_1177_09560599231212707 crossref_primary_10_1016_j_ijmecsci_2024_109894 crossref_primary_10_1016_j_compstruct_2021_114838 crossref_primary_10_1016_j_compstruct_2025_118923 crossref_primary_10_1016_j_engstruct_2023_115803 crossref_primary_10_1016_j_matpr_2022_11_448 crossref_primary_10_1007_s42235_025_00745_1 crossref_primary_10_1016_j_engstruct_2023_116868 crossref_primary_10_1016_j_istruc_2023_105378 crossref_primary_10_1016_j_engstruct_2023_116028 crossref_primary_10_1016_j_jcsr_2024_109160 crossref_primary_10_1108_EC_05_2023_0232 crossref_primary_10_1002_admt_202500882 crossref_primary_10_1016_j_compstruc_2025_107863 crossref_primary_10_1016_j_istruc_2024_108087 crossref_primary_10_1109_LRA_2023_3313008 crossref_primary_10_1016_j_jcsr_2024_109166 crossref_primary_10_1016_j_compstruct_2024_118376 crossref_primary_10_1016_j_compstruct_2024_118694 crossref_primary_10_1016_j_jcsr_2024_108868 crossref_primary_10_1051_e3sconf_202128101025 crossref_primary_10_1016_j_engstruct_2024_117603 crossref_primary_10_1016_j_engstruct_2022_114457 crossref_primary_10_1016_j_actaastro_2024_12_007 crossref_primary_10_1016_j_compstruc_2024_107513 |
| Cites_doi | 10.1016/j.compstruct.2015.04.038 10.1061/(ASCE)ST.1943-541X.0002156 10.1287/opre.14.4.699 10.1016/j.compstruc.2011.07.007 10.1016/j.ijnonlinmec.2006.10.009 10.1016/j.ijsolstr.2005.07.046 10.1016/S0045-7949(03)00254-2 10.1146/annurev.physiol.59.1.575 10.1016/0045-7825(74)90045-0 10.1016/0020-7683(93)90210-X 10.1016/j.compstruct.2016.07.031 10.1016/j.engstruct.2010.08.009 10.1016/0020-7683(91)90137-5 10.1016/j.ijsolstr.2005.03.008 10.1016/S0045-7825(96)01164-4 10.1016/j.compstruct.2012.12.021 10.1061/(ASCE)0887-3801(2007)21:1(3) 10.1061/(ASCE)ST.1943-541X.0001189 10.1016/j.ijsolstr.2006.10.027 10.1080/10556789908805766 10.1061/(ASCE)0887-3801(2005)19:1(16) 10.1177/1369433219886080 10.1016/S0020-7683(03)00267-1 10.1115/1.4046401 10.1016/j.ijsolstr.2020.05.029 10.1109/ICRA.2015.7139590 10.2514/3.9043 10.1016/j.compstruct.2020.112454 10.1109/TRO.2006.878980 10.1016/0020-7683(86)90014-4 10.1117/12.2044869 10.1177/026635119200700206 10.1007/0-387-30065-1_4 10.1016/j.engstruct.2020.111419 10.1016/j.mechrescom.2013.10.017 10.2514/6.2003-1978 10.1007/s11081-011-9172-0 10.1016/j.compstruct.2018.10.108 10.1061/(ASCE)0733-9445(2004)130:10(1454) 10.1016/j.engstruct.2009.12.042 10.1016/S0965-9978(97)00070-7 10.1016/j.ijsolstr.2006.08.026 10.1016/j.ijsolstr.2020.05.030 10.1007/0-306-47089-6_3 10.1007/s13296-019-00264-w 10.1061/(ASCE)0893-1321(1998)11:2(37) 10.1061/9780784481899.084 10.1016/j.mechrescom.2020.103477 10.1088/0034-4885/77/4/046603 10.1061/(ASCE)BE.1943-5592.0001438 10.1016/j.compstruc.2020.106266 10.1088/0964-1726/24/10/105008 10.1177/0956059919845330 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV May 1, 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV May 1, 2021 |
| DBID | AAYXX CITATION 7SR 7ST 8BQ 8FD C1K FR3 JG9 KR7 SOI |
| DOI | 10.1016/j.engstruct.2021.111965 |
| DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Environment Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Engineering Research Database Environment Abstracts METADEX Environmental Sciences and Pollution Management |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-7323 |
| ExternalDocumentID | 10_1016_j_engstruct_2021_111965 S0141029621001152 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ACDAQ ACGFS ACIWK ACLVX ACRLP ACSBN ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ATOGT AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSE SSH SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 9DU AAQXK AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW VH1 WUQ ZY4 ~HD 7SR 7ST 8BQ 8FD AGCQF C1K FR3 JG9 KR7 SOI |
| ID | FETCH-LOGICAL-c392t-9c9e9c738a9935485f4c51a05d82f62498b3314b7ec267e63c67a2465fd4980c3 |
| ISICitedReferencesCount | 60 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000632478500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0141-0296 |
| IngestDate | Wed Aug 13 06:59:35 EDT 2025 Sat Nov 29 07:20:50 EST 2025 Tue Nov 18 22:42:47 EST 2025 Sun Apr 06 06:53:03 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Lightweight structure Active tensegrity structure Minimal mass Mixed integer nonlinear programming Semi-definite programming |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c392t-9c9e9c738a9935485f4c51a05d82f62498b3314b7ec267e63c67a2465fd4980c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7470-1200 |
| OpenAccessLink | https://infoscience.epfl.ch/handle/20.500.14299/177534 |
| PQID | 2511383432 |
| PQPubID | 2045481 |
| ParticipantIDs | proquest_journals_2511383432 crossref_citationtrail_10_1016_j_engstruct_2021_111965 crossref_primary_10_1016_j_engstruct_2021_111965 elsevier_sciencedirect_doi_10_1016_j_engstruct_2021_111965 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-01 2021-05-00 20210501 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Engineering structures |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Amendola, Carpentieri, Feo, Fraternali (b0305) 2016; 157 Wang, Xu, Luo (bib308) 2021; 227 Masic, Skelton, Gill (b0105) 2006; 43 Wang, Senatore (bib306) 2020; 236 Wang, Xu (b0260) 2019; 2019 Kaveh (b0215) 1992; vol. 6 Schek (b0220) 1974; 3 Levy MP. The Georgia Dome and beyond: achieving lightweight-longspan structures. In: Spatial, Lattice and Tension Structures; 1994, pp. 560–562. Fest, Shea, Smith (b0140) 2004; 130 Skelton, Fraternali, Carpentieri, Micheletti (b0080) 2014; 58 Wang, Senatore (b0200) 2020; 202 Pellegrino (b0020) 1992; 7 Goyal, Peraza Hernandez, Skelton (b0095) 2019; 34 Calladine, Pellegrino (b0195) Jan. 1991; 27 Li, Xu, Tu, Wang, Luo (b0285) 2020 Hammond, Jones (b0295) 2008; 161 Guest (b0225) 2006; 43 Ohsaki, Zhang (b0245) 2006; 41 Kmet, Mojdis (b0165) 2015; 141 Zhang, Ohsaki (b0240) Dec. 2011; 89 Gao, Xu, Luo (b0290) 2020; 23 Skelton, de Oliveira (b0205) 2009; vol. 1 Chen M, Skelton RE. A general approach to minimal mass tensegrity. Compos Struct, p. 112454, 2020, DOI: 10.1016/j.compstruct.2020.112454. Pellegrino (b0190) 1993; 30 Lawler, Wood (b0270) 1966; 14 You (b0135) 1997; 144 Ingber, Wang, Stamenović (b0050) 2014; 77 Yuan, Dong (b0255) 2003; 81 Kanno (b0120) 2013; 14 Nocedal J. Knitro: An integrated package for nonlinear optimization. In: Large-Scale Nonlinear Optimization. Springer: Boston, MA; 2006, pp. 35–60. Rhode-Barbarigos, Ali, Motro, Smith (b0010) 2010; 32 Sabelhaus AP, et al. System design and locomotion of SUPERball, an untethered tensegrity robot. In: 2015 IEEE international conference on robotics and automation (ICRA); 2015, pp. 2867–2873, DOI: 10.1109/ICRA.2015.7139590. Sultan, Skelton (b0030) 2003; 40 Rhode-Barbarigos (b0160) 2012 Franklin K, Ozkan E, Powell D, et al., Design of the Kurilpa Pedestrian Bridge for Dynamic Effects Due to Pedestrian and Wind Loads. In: 5th Civil Engineering Conference in the Asian Region and Australasian Structural Engineering Conference; 2010, p. 885. Nagase K, Skelton R. Minimal mass design of tensegrity structures. In: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014, 2014, vol. 9061, p. 90610W, DOI: 10.1117/12.2044869. Haftka (b0175) 1985; 23 Feron, Boucher, Denoël, Latteur (b0085) 2019; 24 Sturm (b0275) 1999; 11 Fraternali, Spadea, Ascione (b0300) 2013; 100 Ingber (b0045) 1997; 59 Kawaguchi, Abe, Tatemichi (b0070) 1999; 40 Adam, Smith (b0145) 2007; 21 Djouadi, Motro, Pons, Crosnier (b0130) 1998; 11 Domer, Smith (b0150) 2005; 19 Fraddosio, Pavone, Piccioni (b0090) 2019; 209 Krishnan S, Li B. Design of lightweight deployable antennas using the tensegrity principle. In: Earth and Space 2018: Engineering for Extreme Environments, American Society of Civil Engineers Reston, VA, 2018, pp. 888–899. Patnaik, Coroneos, Hopkins (b0230) 1998; 29 Amendola, Hernández-Nava, Goodall, Todd, Skelton, Fraternali (b0060) 2015; 131 Pellegrino, Calladine (b0185) 1986; 22 Connelly R. Tensegrity structures: why are they stable? In: Rigidity theory and applications. Springer; 2002, pp. 47–54. Wang, Xu, Luo (bib307) 2020; 202 Lee, Leyffer (b0180) 2011; vol. 154 Paul, Valero-Cuevas, Lipson (b0035) 2006; 22 Santos, Rodrigues, Micheletti (b0055) 2015; 24 Zhang, Ohsaki (b0250) 2007; 44 Ali, Rhode-Barbarigos, Albi, Smith (b0155) 2010; 32 [Accessed: 07-Dec-2017]. Goyal, Skelton, Hernandez (b0100) 2020; 103 Lai G, Plummer A, Cleaver D. Distributed actuation and control of a morphing tensegrity structure. J Dynam Syst, Meas, Control 2020; 142(7): DOI: 10.1115/1.4046401. Yuan, Chen, Dong (b0235) 2007; 44 Xu, Wang, Luo, Hu (b0125) 2018; 144 Tibert G. Deployable tensegrity structures for space applications,” PhD Thesis, KTH; 2002. Geiger DH, Stefaniuk A, Chen D. The design and construction of two cable domes for the Korean Olympics. In: Proceedings of the IASS symposium on shells, membranes and space frames, vol. 2; 1986, pp. 265–272. ENERPAC. E328e Industrial Tools – Europe; 2016. [Online]. Available 10.1016/j.engstruct.2021.111965_b0115 Skelton (10.1016/j.engstruct.2021.111965_b0205) 2009; vol. 1 Paul (10.1016/j.engstruct.2021.111965_b0035) 2006; 22 10.1016/j.engstruct.2021.111965_b0110 Haftka (10.1016/j.engstruct.2021.111965_b0175) 1985; 23 Guest (10.1016/j.engstruct.2021.111965_b0225) 2006; 43 Wang (10.1016/j.engstruct.2021.111965_b0260) 2019; 2019 Ohsaki (10.1016/j.engstruct.2021.111965_b0245) 2006; 41 Wang (10.1016/j.engstruct.2021.111965_b0200) 2020; 202 You (10.1016/j.engstruct.2021.111965_b0135) 1997; 144 Pellegrino (10.1016/j.engstruct.2021.111965_b0020) 1992; 7 Feron (10.1016/j.engstruct.2021.111965_b0085) 2019; 24 Pellegrino (10.1016/j.engstruct.2021.111965_b0185) 1986; 22 Schek (10.1016/j.engstruct.2021.111965_b0220) 1974; 3 10.1016/j.engstruct.2021.111965_b0040 Ingber (10.1016/j.engstruct.2021.111965_b0050) 2014; 77 Lawler (10.1016/j.engstruct.2021.111965_b0270) 1966; 14 10.1016/j.engstruct.2021.111965_b0280 10.1016/j.engstruct.2021.111965_b0005 Kanno (10.1016/j.engstruct.2021.111965_b0120) 2013; 14 Djouadi (10.1016/j.engstruct.2021.111965_b0130) 1998; 11 Xu (10.1016/j.engstruct.2021.111965_b0125) 2018; 144 Yuan (10.1016/j.engstruct.2021.111965_b0235) 2007; 44 Kawaguchi (10.1016/j.engstruct.2021.111965_b0070) 1999; 40 Yuan (10.1016/j.engstruct.2021.111965_b0255) 2003; 81 Li (10.1016/j.engstruct.2021.111965_b0285) 2020 Fraternali (10.1016/j.engstruct.2021.111965_b0300) 2013; 100 Zhang (10.1016/j.engstruct.2021.111965_b0240) 2011; 89 Fraddosio (10.1016/j.engstruct.2021.111965_b0090) 2019; 209 Wang (10.1016/j.engstruct.2021.111965_bib307) 2020; 202 Santos (10.1016/j.engstruct.2021.111965_b0055) 2015; 24 Ingber (10.1016/j.engstruct.2021.111965_b0045) 1997; 59 10.1016/j.engstruct.2021.111965_b0170 Pellegrino (10.1016/j.engstruct.2021.111965_b0190) 1993; 30 Calladine (10.1016/j.engstruct.2021.111965_b0195) 1991; 27 10.1016/j.engstruct.2021.111965_b0015 Goyal (10.1016/j.engstruct.2021.111965_b0100) 2020; 103 Patnaik (10.1016/j.engstruct.2021.111965_b0230) 1998; 29 10.1016/j.engstruct.2021.111965_b0210 Sultan (10.1016/j.engstruct.2021.111965_b0030) 2003; 40 Amendola (10.1016/j.engstruct.2021.111965_b0060) 2015; 131 Kaveh (10.1016/j.engstruct.2021.111965_b0215) 1992; vol. 6 Skelton (10.1016/j.engstruct.2021.111965_b0080) 2014; 58 Masic (10.1016/j.engstruct.2021.111965_b0105) 2006; 43 Hammond (10.1016/j.engstruct.2021.111965_b0295) 2008; 161 Zhang (10.1016/j.engstruct.2021.111965_b0250) 2007; 44 Goyal (10.1016/j.engstruct.2021.111965_b0095) 2019; 34 Rhode-Barbarigos (10.1016/j.engstruct.2021.111965_b0160) 2012 10.1016/j.engstruct.2021.111965_b0065 Wang (10.1016/j.engstruct.2021.111965_bib308) 2021; 227 Lee (10.1016/j.engstruct.2021.111965_b0180) 2011; vol. 154 Rhode-Barbarigos (10.1016/j.engstruct.2021.111965_b0010) 2010; 32 Ali (10.1016/j.engstruct.2021.111965_b0155) 2010; 32 10.1016/j.engstruct.2021.111965_b0265 10.1016/j.engstruct.2021.111965_b0025 Wang (10.1016/j.engstruct.2021.111965_bib306) 2020; 236 Kmet (10.1016/j.engstruct.2021.111965_b0165) 2015; 141 Sturm (10.1016/j.engstruct.2021.111965_b0275) 1999; 11 Amendola (10.1016/j.engstruct.2021.111965_b0305) 2016; 157 Adam (10.1016/j.engstruct.2021.111965_b0145) 2007; 21 Gao (10.1016/j.engstruct.2021.111965_b0290) 2020; 23 10.1016/j.engstruct.2021.111965_b0075 Domer (10.1016/j.engstruct.2021.111965_b0150) 2005; 19 Fest (10.1016/j.engstruct.2021.111965_b0140) 2004; 130 |
| References_xml | – volume: 209 start-page: 754 year: 2019 end-page: 774 ident: b0090 article-title: Minimal mass and self-stress analysis for innovative V-Expander tensegrity cells publication-title: Compos Struct – volume: vol. 1 year: 2009 ident: b0205 publication-title: Tensegrity systems – volume: 161 start-page: 87 year: 2008 end-page: 98 ident: b0295 article-title: Embodied energy and carbon in construction materials publication-title: Proc Instit Civ Eng-Energy – volume: 236 year: 2020 ident: bib306 article-title: Minimum energy adaptive structures – All-In-One problem formulation publication-title: Comput Struct – volume: 24 year: 2015 ident: b0055 article-title: Design and experimental testing of an adaptive shape-morphing tensegrity structure, with frequency self-tuning capabilities, using shape-memory alloys publication-title: Smart Mater Struct – volume: 3 start-page: 115 year: 1974 end-page: 134 ident: b0220 article-title: The force density method for form finding and computation of general networks publication-title: Comput Methods Appl Mech Eng – volume: 202 start-page: 278 year: 2020 end-page: 298 ident: bib307 article-title: Topology design of general tensegrity with rigid bodies publication-title: Int J Solids Struct – reference: ENERPAC. E328e Industrial Tools – Europe; 2016. [Online]. Available: – volume: 144 start-page: 51 year: 1997 end-page: 59 ident: b0135 article-title: Displacement control of prestressed structures publication-title: Comput Methods Appl Mech Eng – volume: 89 start-page: 2361 year: Dec. 2011 end-page: 2368 ident: b0240 article-title: Force identification of prestressed pin-jointed structures publication-title: Comput Struct – volume: 130 start-page: 1454 year: 2004 end-page: 1465 ident: b0140 article-title: Active tensegrity structure publication-title: J Struct Eng – reference: . [Accessed: 07-Dec-2017]. – volume: 59 start-page: 575 year: 1997 end-page: 599 ident: b0045 article-title: Tensegrity: the architectural basis of cellular mechanotransduction publication-title: Annu Rev Physiol – volume: 202 start-page: 798 year: 2020 end-page: 815 ident: b0200 article-title: Extended Integrated Force Method for the analysis of prestress-stable statically and kinematically indeterminate structures publication-title: Int J Solids Struct – volume: 32 start-page: 1158 year: 2010 end-page: 1167 ident: b0010 article-title: Designing tensegrity modules for pedestrian bridges publication-title: Eng Struct – volume: 157 start-page: 71 year: 2016 end-page: 77 ident: b0305 article-title: Bending dominated response of layered mechanical metamaterials alternating pentamode lattices and confinement plates publication-title: Compos Struct – reference: Tibert G. Deployable tensegrity structures for space applications,” PhD Thesis, KTH; 2002. – volume: 103 year: 2020 ident: b0100 article-title: Design of minimal mass load-bearing tensegrity lattices publication-title: Mech Res Commun – volume: 11 start-page: 37 year: 1998 end-page: 44 ident: b0130 article-title: Active control of tensegrity systems publication-title: J Aerosp Eng – reference: Nagase K, Skelton R. Minimal mass design of tensegrity structures. In: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014, 2014, vol. 9061, p. 90610W, DOI: 10.1117/12.2044869. – reference: Levy MP. The Georgia Dome and beyond: achieving lightweight-longspan structures. In: Spatial, Lattice and Tension Structures; 1994, pp. 560–562. – volume: 227 year: 2021 ident: bib308 article-title: Form-finding of tensegrity structures via rank minimization of force density matrix publication-title: Eng Struct – volume: 14 start-page: 699 year: 1966 end-page: 719 ident: b0270 article-title: Branch-and-bound methods: A survey publication-title: Oper Res – volume: 24 start-page: 04019112 year: 2019 ident: b0085 article-title: Optimization of footbridges composed of prismatic tensegrity modules publication-title: J Bridge Eng – volume: 40 start-page: 179 year: 1999 end-page: 192 ident: b0070 article-title: Design, tests and realization of ‘suspen-dome’ system publication-title: J Int Assoc Shell Spatial Struct – volume: 44 start-page: 3875 year: 2007 end-page: 3886 ident: b0250 article-title: Stability conditions for tensegrity structures publication-title: Int J Solids Struct – volume: 22 start-page: 944 year: 2006 end-page: 957 ident: b0035 article-title: Design and control of tensegrity robots for locomotion publication-title: IEEE Trans Rob – volume: 11 start-page: 625 year: 1999 end-page: 653 ident: b0275 article-title: Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones publication-title: Optimiz Methods Software – start-page: 1 year: 2020 end-page: 14 ident: b0285 article-title: Research on a new class of planar tensegrity trusses consisting of repetitive units publication-title: Int J Steel Struct – volume: 81 start-page: 2111 year: 2003 end-page: 2119 ident: b0255 article-title: Integral feasible prestress of cable domes publication-title: Comput Struct – volume: 23 start-page: 1099 year: 1985 end-page: 1103 ident: b0175 article-title: Simultaneous analysis and design publication-title: AIAA J – volume: 23 start-page: 898 year: 2020 end-page: 910 ident: b0290 article-title: Re-study on tensegrity footbridges based on ring modules publication-title: Adv Struct Eng – year: 2012 ident: b0160 article-title: An active deployable tensegrity structure – volume: 27 start-page: 505 year: Jan. 1991 end-page: 515 ident: b0195 article-title: First-order infinitesimal mechanisms publication-title: Int J Solids Struct – reference: Lai G, Plummer A, Cleaver D. Distributed actuation and control of a morphing tensegrity structure. J Dynam Syst, Meas, Control 2020; 142(7): DOI: 10.1115/1.4046401. – volume: 58 start-page: 124 year: 2014 end-page: 132 ident: b0080 article-title: Minimum mass design of tensegrity bridges with parametric architecture and multiscale complexity publication-title: Mech Res Commun – reference: Nocedal J. Knitro: An integrated package for nonlinear optimization. In: Large-Scale Nonlinear Optimization. Springer: Boston, MA; 2006, pp. 35–60. – volume: 22 start-page: 409 year: 1986 end-page: 428 ident: b0185 article-title: Matrix analysis of statically and kinematically indeterminate frameworks publication-title: Int J Solids Struct – volume: 2019 year: 2019 ident: b0260 article-title: Prestress design of tensegrity structures using semidefinite programming publication-title: Adv Civ Eng – volume: 131 start-page: 66 year: 2015 end-page: 71 ident: b0060 article-title: On the additive manufacturing, post-tensioning and testing of bi-material tensegrity structures publication-title: Compos Struct – volume: 30 start-page: 3025 year: 1993 end-page: 3035 ident: b0190 article-title: Structural computations with the singular value decomposition of the equilibrium matrix publication-title: Int J Solids Struct – volume: 40 start-page: 4637 year: 2003 end-page: 4657 ident: b0030 article-title: Deployment of tensegrity structures publication-title: Int J Solids Struct – reference: Franklin K, Ozkan E, Powell D, et al., Design of the Kurilpa Pedestrian Bridge for Dynamic Effects Due to Pedestrian and Wind Loads. In: 5th Civil Engineering Conference in the Asian Region and Australasian Structural Engineering Conference; 2010, p. 885. – volume: vol. 6 year: 1992 ident: b0215 publication-title: Structural mechanics: graph and matrix methods – volume: 34 start-page: 3 year: 2019 end-page: 21 ident: b0095 article-title: Analytical study of tensegrity lattices for mass-efficient mechanical energy absorption publication-title: Int J Space Struct – volume: 100 start-page: 280 year: 2013 end-page: 289 ident: b0300 article-title: Buckling behavior of curved composite beams with different elastic response in tension and compression publication-title: Compos Struct – volume: 14 start-page: 61 year: 2013 end-page: 96 ident: b0120 article-title: Topology optimization of tensegrity structures under compliance constraint: a mixed integer linear programming approach publication-title: Optimiz Eng – volume: 77 year: 2014 ident: b0050 article-title: Tensegrity, cellular biophysics, and the mechanics of living systems publication-title: Rep Prog Phys – reference: Geiger DH, Stefaniuk A, Chen D. The design and construction of two cable domes for the Korean Olympics. In: Proceedings of the IASS symposium on shells, membranes and space frames, vol. 2; 1986, pp. 265–272. – reference: Chen M, Skelton RE. A general approach to minimal mass tensegrity. Compos Struct, p. 112454, 2020, DOI: 10.1016/j.compstruct.2020.112454. – volume: 29 start-page: 463 year: 1998 end-page: 474 ident: b0230 article-title: Recent advances in the method of forces: integrated force method of structural analysis publication-title: Adv Eng Softw – volume: 43 start-page: 4687 year: 2006 end-page: 4703 ident: b0105 article-title: Optimization of tensegrity structures publication-title: Int J Solids Struct – volume: 32 start-page: 3650 year: 2010 end-page: 3659 ident: b0155 article-title: Design optimization and dynamic analysis of a tensegrity-based footbridge publication-title: Eng Struct – volume: 44 start-page: 2773 year: 2007 end-page: 2782 ident: b0235 article-title: Prestress design of cable domes with new forms publication-title: Int J Solids Struct – volume: 7 start-page: 127 year: 1992 end-page: 142 ident: b0020 article-title: A class of tensegrity domes publication-title: Int J Space Struct – volume: 19 start-page: 16 year: 2005 end-page: 24 ident: b0150 article-title: An active structure that learns publication-title: J Comput Civil Eng – reference: Sabelhaus AP, et al. System design and locomotion of SUPERball, an untethered tensegrity robot. In: 2015 IEEE international conference on robotics and automation (ICRA); 2015, pp. 2867–2873, DOI: 10.1109/ICRA.2015.7139590. – volume: 21 start-page: 3 year: 2007 end-page: 10 ident: b0145 article-title: Tensegrity active control: Multiobjective approach publication-title: J Comput Civil Eng – reference: Krishnan S, Li B. Design of lightweight deployable antennas using the tensegrity principle. In: Earth and Space 2018: Engineering for Extreme Environments, American Society of Civil Engineers Reston, VA, 2018, pp. 888–899. – volume: 141 start-page: 04014225 year: 2015 ident: b0165 article-title: Adaptive cable dome publication-title: J Struct Eng – volume: 43 start-page: 842 year: 2006 end-page: 854 ident: b0225 article-title: The stiffness of prestressed frameworks: a unifying approach publication-title: Int J Solids Struct – reference: Connelly R. Tensegrity structures: why are they stable? In: Rigidity theory and applications. Springer; 2002, pp. 47–54. – volume: 144 start-page: 04018173 year: 2018 ident: b0125 article-title: Topology optimization of tensegrity structures considering buckling constraints publication-title: J Struct Eng – volume: vol. 154 year: 2011 ident: b0180 publication-title: Mixed integer nonlinear programming – volume: 41 start-page: 1109 year: 2006 end-page: 1117 ident: b0245 article-title: Stability conditions of prestressed pin-jointed structures publication-title: Int J Non Linear Mech – volume: 131 start-page: 66 year: 2015 ident: 10.1016/j.engstruct.2021.111965_b0060 article-title: On the additive manufacturing, post-tensioning and testing of bi-material tensegrity structures publication-title: Compos Struct doi: 10.1016/j.compstruct.2015.04.038 – volume: 161 start-page: 87 issue: 2 year: 2008 ident: 10.1016/j.engstruct.2021.111965_b0295 article-title: Embodied energy and carbon in construction materials publication-title: Proc Instit Civ Eng-Energy – volume: 144 start-page: 04018173 issue: 10 year: 2018 ident: 10.1016/j.engstruct.2021.111965_b0125 article-title: Topology optimization of tensegrity structures considering buckling constraints publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0002156 – volume: 14 start-page: 699 issue: 4 year: 1966 ident: 10.1016/j.engstruct.2021.111965_b0270 article-title: Branch-and-bound methods: A survey publication-title: Oper Res doi: 10.1287/opre.14.4.699 – volume: 89 start-page: 2361 issue: 23 year: 2011 ident: 10.1016/j.engstruct.2021.111965_b0240 article-title: Force identification of prestressed pin-jointed structures publication-title: Comput Struct doi: 10.1016/j.compstruc.2011.07.007 – volume: 41 start-page: 1109 issue: 10 year: 2006 ident: 10.1016/j.engstruct.2021.111965_b0245 article-title: Stability conditions of prestressed pin-jointed structures publication-title: Int J Non Linear Mech doi: 10.1016/j.ijnonlinmec.2006.10.009 – volume: 43 start-page: 4687 issue: 16 year: 2006 ident: 10.1016/j.engstruct.2021.111965_b0105 article-title: Optimization of tensegrity structures publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2005.07.046 – volume: 81 start-page: 2111 issue: 21 year: 2003 ident: 10.1016/j.engstruct.2021.111965_b0255 article-title: Integral feasible prestress of cable domes publication-title: Comput Struct doi: 10.1016/S0045-7949(03)00254-2 – volume: 59 start-page: 575 issue: 1 year: 1997 ident: 10.1016/j.engstruct.2021.111965_b0045 article-title: Tensegrity: the architectural basis of cellular mechanotransduction publication-title: Annu Rev Physiol doi: 10.1146/annurev.physiol.59.1.575 – volume: 3 start-page: 115 issue: 1 year: 1974 ident: 10.1016/j.engstruct.2021.111965_b0220 article-title: The force density method for form finding and computation of general networks publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(74)90045-0 – volume: 30 start-page: 3025 issue: 21 year: 1993 ident: 10.1016/j.engstruct.2021.111965_b0190 article-title: Structural computations with the singular value decomposition of the equilibrium matrix publication-title: Int J Solids Struct doi: 10.1016/0020-7683(93)90210-X – volume: 157 start-page: 71 year: 2016 ident: 10.1016/j.engstruct.2021.111965_b0305 article-title: Bending dominated response of layered mechanical metamaterials alternating pentamode lattices and confinement plates publication-title: Compos Struct doi: 10.1016/j.compstruct.2016.07.031 – volume: 32 start-page: 3650 issue: 11 year: 2010 ident: 10.1016/j.engstruct.2021.111965_b0155 article-title: Design optimization and dynamic analysis of a tensegrity-based footbridge publication-title: Eng Struct doi: 10.1016/j.engstruct.2010.08.009 – volume: 2019 year: 2019 ident: 10.1016/j.engstruct.2021.111965_b0260 article-title: Prestress design of tensegrity structures using semidefinite programming publication-title: Adv Civ Eng – volume: 27 start-page: 505 issue: 4 year: 1991 ident: 10.1016/j.engstruct.2021.111965_b0195 article-title: First-order infinitesimal mechanisms publication-title: Int J Solids Struct doi: 10.1016/0020-7683(91)90137-5 – volume: 43 start-page: 842 issue: 3–4 year: 2006 ident: 10.1016/j.engstruct.2021.111965_b0225 article-title: The stiffness of prestressed frameworks: a unifying approach publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2005.03.008 – volume: 144 start-page: 51 issue: 1–2 year: 1997 ident: 10.1016/j.engstruct.2021.111965_b0135 article-title: Displacement control of prestressed structures publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(96)01164-4 – volume: 100 start-page: 280 issue: 100 year: 2013 ident: 10.1016/j.engstruct.2021.111965_b0300 article-title: Buckling behavior of curved composite beams with different elastic response in tension and compression publication-title: Compos Struct doi: 10.1016/j.compstruct.2012.12.021 – ident: 10.1016/j.engstruct.2021.111965_b0015 – volume: 21 start-page: 3 issue: 1 year: 2007 ident: 10.1016/j.engstruct.2021.111965_b0145 article-title: Tensegrity active control: Multiobjective approach publication-title: J Comput Civil Eng doi: 10.1061/(ASCE)0887-3801(2007)21:1(3) – year: 2012 ident: 10.1016/j.engstruct.2021.111965_b0160 – volume: 141 start-page: 04014225 issue: 9 year: 2015 ident: 10.1016/j.engstruct.2021.111965_b0165 article-title: Adaptive cable dome publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0001189 – volume: 44 start-page: 3875 issue: 11–12 year: 2007 ident: 10.1016/j.engstruct.2021.111965_b0250 article-title: Stability conditions for tensegrity structures publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2006.10.027 – volume: 11 start-page: 625 issue: 1–4 year: 1999 ident: 10.1016/j.engstruct.2021.111965_b0275 article-title: Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones publication-title: Optimiz Methods Software doi: 10.1080/10556789908805766 – volume: vol. 154 year: 2011 ident: 10.1016/j.engstruct.2021.111965_b0180 – volume: 19 start-page: 16 issue: 1 year: 2005 ident: 10.1016/j.engstruct.2021.111965_b0150 article-title: An active structure that learns publication-title: J Comput Civil Eng doi: 10.1061/(ASCE)0887-3801(2005)19:1(16) – volume: 23 start-page: 898 issue: 5 year: 2020 ident: 10.1016/j.engstruct.2021.111965_b0290 article-title: Re-study on tensegrity footbridges based on ring modules publication-title: Adv Struct Eng doi: 10.1177/1369433219886080 – ident: 10.1016/j.engstruct.2021.111965_b0005 – volume: 40 start-page: 4637 issue: 18 year: 2003 ident: 10.1016/j.engstruct.2021.111965_b0030 article-title: Deployment of tensegrity structures publication-title: Int J Solids Struct doi: 10.1016/S0020-7683(03)00267-1 – ident: 10.1016/j.engstruct.2021.111965_b0170 doi: 10.1115/1.4046401 – volume: vol. 1 year: 2009 ident: 10.1016/j.engstruct.2021.111965_b0205 – volume: 202 start-page: 798 year: 2020 ident: 10.1016/j.engstruct.2021.111965_b0200 article-title: Extended Integrated Force Method for the analysis of prestress-stable statically and kinematically indeterminate structures publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2020.05.029 – ident: 10.1016/j.engstruct.2021.111965_b0040 doi: 10.1109/ICRA.2015.7139590 – volume: 23 start-page: 1099 issue: 7 year: 1985 ident: 10.1016/j.engstruct.2021.111965_b0175 article-title: Simultaneous analysis and design publication-title: AIAA J doi: 10.2514/3.9043 – ident: 10.1016/j.engstruct.2021.111965_b0115 doi: 10.1016/j.compstruct.2020.112454 – volume: 22 start-page: 944 issue: 5 year: 2006 ident: 10.1016/j.engstruct.2021.111965_b0035 article-title: Design and control of tensegrity robots for locomotion publication-title: IEEE Trans Rob doi: 10.1109/TRO.2006.878980 – volume: 22 start-page: 409 issue: 4 year: 1986 ident: 10.1016/j.engstruct.2021.111965_b0185 article-title: Matrix analysis of statically and kinematically indeterminate frameworks publication-title: Int J Solids Struct doi: 10.1016/0020-7683(86)90014-4 – ident: 10.1016/j.engstruct.2021.111965_b0110 doi: 10.1117/12.2044869 – volume: 7 start-page: 127 issue: 2 year: 1992 ident: 10.1016/j.engstruct.2021.111965_b0020 article-title: A class of tensegrity domes publication-title: Int J Space Struct doi: 10.1177/026635119200700206 – ident: 10.1016/j.engstruct.2021.111965_b0280 doi: 10.1007/0-387-30065-1_4 – volume: 227 year: 2021 ident: 10.1016/j.engstruct.2021.111965_bib308 article-title: Form-finding of tensegrity structures via rank minimization of force density matrix publication-title: Eng Struct doi: 10.1016/j.engstruct.2020.111419 – volume: vol. 6 year: 1992 ident: 10.1016/j.engstruct.2021.111965_b0215 – volume: 58 start-page: 124 year: 2014 ident: 10.1016/j.engstruct.2021.111965_b0080 article-title: Minimum mass design of tensegrity bridges with parametric architecture and multiscale complexity publication-title: Mech Res Commun doi: 10.1016/j.mechrescom.2013.10.017 – ident: 10.1016/j.engstruct.2021.111965_b0025 doi: 10.2514/6.2003-1978 – volume: 14 start-page: 61 issue: 1 year: 2013 ident: 10.1016/j.engstruct.2021.111965_b0120 article-title: Topology optimization of tensegrity structures under compliance constraint: a mixed integer linear programming approach publication-title: Optimiz Eng doi: 10.1007/s11081-011-9172-0 – volume: 209 start-page: 754 year: 2019 ident: 10.1016/j.engstruct.2021.111965_b0090 article-title: Minimal mass and self-stress analysis for innovative V-Expander tensegrity cells publication-title: Compos Struct doi: 10.1016/j.compstruct.2018.10.108 – volume: 130 start-page: 1454 issue: 10 year: 2004 ident: 10.1016/j.engstruct.2021.111965_b0140 article-title: Active tensegrity structure publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(2004)130:10(1454) – volume: 32 start-page: 1158 issue: 4 year: 2010 ident: 10.1016/j.engstruct.2021.111965_b0010 article-title: Designing tensegrity modules for pedestrian bridges publication-title: Eng Struct doi: 10.1016/j.engstruct.2009.12.042 – volume: 29 start-page: 463 issue: 3–6 year: 1998 ident: 10.1016/j.engstruct.2021.111965_b0230 article-title: Recent advances in the method of forces: integrated force method of structural analysis publication-title: Adv Eng Softw doi: 10.1016/S0965-9978(97)00070-7 – volume: 44 start-page: 2773 issue: 9 year: 2007 ident: 10.1016/j.engstruct.2021.111965_b0235 article-title: Prestress design of cable domes with new forms publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2006.08.026 – volume: 202 start-page: 278 year: 2020 ident: 10.1016/j.engstruct.2021.111965_bib307 article-title: Topology design of general tensegrity with rigid bodies publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2020.05.030 – ident: 10.1016/j.engstruct.2021.111965_b0265 doi: 10.1007/0-306-47089-6_3 – start-page: 1 year: 2020 ident: 10.1016/j.engstruct.2021.111965_b0285 article-title: Research on a new class of planar tensegrity trusses consisting of repetitive units publication-title: Int J Steel Struct doi: 10.1007/s13296-019-00264-w – ident: 10.1016/j.engstruct.2021.111965_b0210 – ident: 10.1016/j.engstruct.2021.111965_b0065 – volume: 11 start-page: 37 issue: 2 year: 1998 ident: 10.1016/j.engstruct.2021.111965_b0130 article-title: Active control of tensegrity systems publication-title: J Aerosp Eng doi: 10.1061/(ASCE)0893-1321(1998)11:2(37) – ident: 10.1016/j.engstruct.2021.111965_b0075 doi: 10.1061/9780784481899.084 – volume: 103 year: 2020 ident: 10.1016/j.engstruct.2021.111965_b0100 article-title: Design of minimal mass load-bearing tensegrity lattices publication-title: Mech Res Commun doi: 10.1016/j.mechrescom.2020.103477 – volume: 77 issue: 4 year: 2014 ident: 10.1016/j.engstruct.2021.111965_b0050 article-title: Tensegrity, cellular biophysics, and the mechanics of living systems publication-title: Rep Prog Phys doi: 10.1088/0034-4885/77/4/046603 – volume: 24 start-page: 04019112 issue: 12 year: 2019 ident: 10.1016/j.engstruct.2021.111965_b0085 article-title: Optimization of footbridges composed of prismatic tensegrity modules publication-title: J Bridge Eng doi: 10.1061/(ASCE)BE.1943-5592.0001438 – volume: 236 year: 2020 ident: 10.1016/j.engstruct.2021.111965_bib306 article-title: Minimum energy adaptive structures – All-In-One problem formulation publication-title: Comput Struct doi: 10.1016/j.compstruc.2020.106266 – volume: 40 start-page: 179 issue: 3 year: 1999 ident: 10.1016/j.engstruct.2021.111965_b0070 article-title: Design, tests and realization of ‘suspen-dome’ system publication-title: J Int Assoc Shell Spatial Struct – volume: 24 issue: 10 year: 2015 ident: 10.1016/j.engstruct.2021.111965_b0055 article-title: Design and experimental testing of an adaptive shape-morphing tensegrity structure, with frequency self-tuning capabilities, using shape-memory alloys publication-title: Smart Mater Struct doi: 10.1088/0964-1726/24/10/105008 – volume: 34 start-page: 3 issue: 1–2 year: 2019 ident: 10.1016/j.engstruct.2021.111965_b0095 article-title: Analytical study of tensegrity lattices for mass-efficient mechanical energy absorption publication-title: Int J Space Struct doi: 10.1177/0956059919845330 |
| SSID | ssj0002880 |
| Score | 2.5663242 |
| Snippet | •A general method for designing minimal mass active tensegrity structures is proposed.•The design of the structure parameters and actuator parameters are... Tensegrity structures have been widely utilized as lightweight structures due to their high stiffness-to-mass and strength-to-mass ratios. Minimal mass design... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 111965 |
| SubjectTerms | Active control Active tensegrity structure Actuators Buckling Continuity (mathematics) Control systems Control systems design Cross-sections Design Equilibrium conditions Equivalence Integer programming Internal forces Layouts Lightweight Lightweight structure Loads (forces) Mass ratios Minimal mass Mixed integer Mixed integer nonlinear programming Prestressing Semi-definite programming Stiffness Structural members Tensegrity structures |
| Title | Minimal mass design of active tensegrity structures |
| URI | https://dx.doi.org/10.1016/j.engstruct.2021.111965 https://www.proquest.com/docview/2511383432 |
| Volume | 234 |
| WOSCitedRecordID | wos000632478500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7323 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002880 issn: 0141-0296 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBcj2WE7lHVbWbq0-LBbcLAl25J3CyWjLVsYNAXvJGxJ7lI2JzTNCPvr-_RhO0s70jJ2MUGRZPF-ytNPL-8DoQ9CACkQjPiRVMKHE0_4eSFDX8YyJEwVQBIiU2yCTiYsy9Kvrtrb0pQToFXF1ut08V-hhjYAW4fOPgHuZlJogM8AOjwBdng-Cvgvs2r2U8eEAC0eSOOgYf7sN4ptoB3W1ZWuWDewqWNXN86LsDbPtwkKt3sYu7vVDd_yUrkzD1qzlW7LNnba59Xcdpv__j7btCzgsPXjs-auOuSl9S-yFkjoiG0Z2lqFYmuQvKeOrWXgeggrsise6vdoNZ3aChFbua4vjNspTI5Dw1XhbO1iGqegrrqjs3F23hyymJmieM1q_nDde_B1fyMeW0ew4RXTV2jPXQi8kQVyHz1T1Wv0cgOFN4g4SD0NqWch9ealZyH1Wki9FrC36PLTeHpy6rtiF74AinrrpyJVqaCE5cAY4RoZl5GIwzyIJcNlApdkVhASRgVVAidUJUQkNMdREpcSvgsEOUCdal6pd8iLQ6VD1BhlOfBDlRSYyiKIZBLFQU4U7qGklgQXLhO8Lkjyg9cuf9e8ESHXIuRWhD0UNAMXNhnK7iEfa1Fzx-ksV-OwR3YP7tfgcPcLW3J9JyZMx0Mf_svc79GLds_3UQc6qCP0XPy6nS1vjt12uwOTe38_ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimal+mass+design+of+active+tensegrity+structures&rft.jtitle=Engineering+structures&rft.au=Wang%2C+Yafeng&rft.au=Xu%2C+Xian&rft.au=Luo%2C+Yaozhi&rft.date=2021-05-01&rft.pub=Elsevier+Ltd&rft.issn=0141-0296&rft.volume=234&rft_id=info:doi/10.1016%2Fj.engstruct.2021.111965&rft.externalDocID=S0141029621001152 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon |