Minimal mass design of active tensegrity structures

•A general method for designing minimal mass active tensegrity structures is proposed.•The design of the structure parameters and actuator parameters are integrated.•The performance of different actuator layout modes on mass-efficiency is investigated.•The method is a unifying framework for designin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering structures Jg. 234; S. 111965
Hauptverfasser: Wang, Yafeng, Xu, Xian, Luo, Yaozhi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier Ltd 01.05.2021
Elsevier BV
Schlagworte:
ISSN:0141-0296, 1873-7323
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A general method for designing minimal mass active tensegrity structures is proposed.•The design of the structure parameters and actuator parameters are integrated.•The performance of different actuator layout modes on mass-efficiency is investigated.•The method is a unifying framework for designing minimal mass tensegrity structures. Tensegrity structures have been widely utilized as lightweight structures due to their high stiffness-to-mass and strength-to-mass ratios. Minimal mass design of tensegrity structures subject to external loads and specific constraints (e.g., member yielding and buckling) has been intensively studied. However, all the existing studies focus on passive tensegrity structures, i.e., the structural members cannot change their lengths actively and the structure has to passively resist external loads. An active tensegrity structure equipped with actuators can actively adapt its internal forces and nodal positions and thus can actively resist external loads. Therefore, it is expected that active tensegrity structures use less material compared to passive tensegrity structures thus leading to a smaller mass. Due to the integration of the active control system, the design of active tensegrity structures is different from passive tensegrity structures. This study proposes a general approach for the design of minimal mass active tensegrity structures based on a mixed integer programming scheme, in which the member cross-sectional areas, prestress, actuator layout and control strategies (i.e., actuator length changes) are designed simultaneously. The member cross-sectional areas, prestress level, and actuator control strategies are treated as continuous variables and the actuator layout is treated as a binary variable. The equilibrium condition, member yielding, cable slackness, strut buckling, and the limitations on the nodal displacements as well as other practical requirements are formulated as constraints. Three typical active tensegrity structures are designed through the proposed approach and the results are benchmarked with the equivalent minimal mass passive designs. It is illustrated that the active designs can significantly decrease the material consumption compared with the equivalent passive designs thus leading to more lightweight tensegrity structures.
AbstractList Tensegrity structures have been widely utilized as lightweight structures due to their high stiffness-to-mass and strength-to-mass ratios. Minimal mass design of tensegrity structures subject to external loads and specific constraints (e.g., member yielding and buckling) has been intensively studied. However, all the existing studies focus on passive tensegrity structures, i.e., the structural members cannot change their lengths actively and the structure has to passively resist external loads. An active tensegrity structure equipped with actuators can actively adapt its internal forces and nodal positions and thus can actively resist external loads. Therefore, it is expected that active tensegrity structures use less material compared to passive tensegrity structures thus leading to a smaller mass. Due to the integration of the active control system, the design of active tensegrity structures is different from passive tensegrity structures. This study proposes a general approach for the design of minimal mass active tensegrity structures based on a mixed integer programming scheme, in which the member cross-sectional areas, prestress, actuator layout and control strategies (i.e., actuator length changes) are designed simultaneously. The member cross-sectional areas, prestress level, and actuator control strategies are treated as continuous variables and the actuator layout is treated as a binary variable. The equilibrium condition, member yielding, cable slackness, strut buckling, and the limitations on the nodal displacements as well as other practical requirements are formulated as constraints. Three typical active tensegrity structures are designed through the proposed approach and the results are benchmarked with the equivalent minimal mass passive designs. It is illustrated that the active designs can significantly decrease the material consumption compared with the equivalent passive designs thus leading to more lightweight tensegrity structures.
•A general method for designing minimal mass active tensegrity structures is proposed.•The design of the structure parameters and actuator parameters are integrated.•The performance of different actuator layout modes on mass-efficiency is investigated.•The method is a unifying framework for designing minimal mass tensegrity structures. Tensegrity structures have been widely utilized as lightweight structures due to their high stiffness-to-mass and strength-to-mass ratios. Minimal mass design of tensegrity structures subject to external loads and specific constraints (e.g., member yielding and buckling) has been intensively studied. However, all the existing studies focus on passive tensegrity structures, i.e., the structural members cannot change their lengths actively and the structure has to passively resist external loads. An active tensegrity structure equipped with actuators can actively adapt its internal forces and nodal positions and thus can actively resist external loads. Therefore, it is expected that active tensegrity structures use less material compared to passive tensegrity structures thus leading to a smaller mass. Due to the integration of the active control system, the design of active tensegrity structures is different from passive tensegrity structures. This study proposes a general approach for the design of minimal mass active tensegrity structures based on a mixed integer programming scheme, in which the member cross-sectional areas, prestress, actuator layout and control strategies (i.e., actuator length changes) are designed simultaneously. The member cross-sectional areas, prestress level, and actuator control strategies are treated as continuous variables and the actuator layout is treated as a binary variable. The equilibrium condition, member yielding, cable slackness, strut buckling, and the limitations on the nodal displacements as well as other practical requirements are formulated as constraints. Three typical active tensegrity structures are designed through the proposed approach and the results are benchmarked with the equivalent minimal mass passive designs. It is illustrated that the active designs can significantly decrease the material consumption compared with the equivalent passive designs thus leading to more lightweight tensegrity structures.
ArticleNumber 111965
Author Wang, Yafeng
Luo, Yaozhi
Xu, Xian
Author_xml – sequence: 1
  givenname: Yafeng
  orcidid: 0000-0002-7470-1200
  surname: Wang
  fullname: Wang, Yafeng
  email: yafeng.wang.1239@gmail.com
  organization: College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
– sequence: 2
  givenname: Xian
  surname: Xu
  fullname: Xu, Xian
  email: xian_xu@zju.edu.cn
  organization: College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
– sequence: 3
  givenname: Yaozhi
  surname: Luo
  fullname: Luo, Yaozhi
  email: luoyz@zju.edu.cn
  organization: College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
BookMark eNqNkD1PwzAQhi1UJErhNxCJOcVnJ449MFQVX1IRC8yW61wqR61TbKdS_z2pghhYYLrh7nlf3XNJJr7zSMgN0DlQEHftHP0mptDbNGeUwRwAlCjPyBRkxfOKMz4hUwoF5JQpcUEuY2wppUxKOiX81Xm3M9tsZ2LMaoxu47OuyYxN7oBZQh9xE1w6ZmNFHzBekfPGbCNef88Z-Xh8eF8-56u3p5flYpVbrljKlVWobMWlUYqXhSybwpZgaFlL1ghWKLnmHIp1hZaJCgW3ojKsEGVTDztq-Yzcjrn70H32GJNuuz74oVKzEoBLXgzPzcj9eGVDF2PARluXTHKdT8G4rQaqT550q3886ZMnPXoa-OoXvw-DkXD8B7kYSRwkHBwGHa1Db7F2AYfbunN_ZnwB3pyJCA
CitedBy_id crossref_primary_10_1016_j_engstruct_2022_114618
crossref_primary_10_1016_j_istruc_2025_108237
crossref_primary_10_1016_j_istruc_2025_108756
crossref_primary_10_1016_j_istruc_2025_108910
crossref_primary_10_1016_j_engstruct_2023_115748
crossref_primary_10_1007_s00158_025_04116_6
crossref_primary_10_1061_JSENDH_STENG_14127
crossref_primary_10_1016_j_ymssp_2024_111415
crossref_primary_10_1016_j_istruc_2024_106283
crossref_primary_10_1016_j_cma_2022_115832
crossref_primary_10_1016_j_engstruct_2025_120930
crossref_primary_10_1016_j_ijmecsci_2025_110455
crossref_primary_10_1016_j_tws_2024_112829
crossref_primary_10_1016_j_engstruct_2023_116905
crossref_primary_10_1016_j_istruc_2024_106999
crossref_primary_10_1016_j_istruc_2024_106799
crossref_primary_10_1016_j_engstruct_2022_115569
crossref_primary_10_1016_j_istruc_2024_106798
crossref_primary_10_1016_j_compstruct_2025_118925
crossref_primary_10_1016_j_istruc_2025_108706
crossref_primary_10_1016_j_engstruct_2023_116597
crossref_primary_10_1016_j_tws_2025_113389
crossref_primary_10_1061_JSENDH_STENG_12633
crossref_primary_10_1016_j_jcsr_2023_108021
crossref_primary_10_1016_j_jcsr_2025_109554
crossref_primary_10_1016_j_engstruct_2022_114391
crossref_primary_10_1016_j_jcsr_2024_109298
crossref_primary_10_1016_j_tws_2025_113184
crossref_primary_10_1007_s00158_023_03698_3
crossref_primary_10_1177_09560599231212707
crossref_primary_10_1016_j_ijmecsci_2024_109894
crossref_primary_10_1016_j_compstruct_2021_114838
crossref_primary_10_1016_j_compstruct_2025_118923
crossref_primary_10_1016_j_engstruct_2023_115803
crossref_primary_10_1016_j_matpr_2022_11_448
crossref_primary_10_1007_s42235_025_00745_1
crossref_primary_10_1016_j_engstruct_2023_116868
crossref_primary_10_1016_j_istruc_2023_105378
crossref_primary_10_1016_j_engstruct_2023_116028
crossref_primary_10_1016_j_jcsr_2024_109160
crossref_primary_10_1108_EC_05_2023_0232
crossref_primary_10_1002_admt_202500882
crossref_primary_10_1016_j_compstruc_2025_107863
crossref_primary_10_1016_j_istruc_2024_108087
crossref_primary_10_1109_LRA_2023_3313008
crossref_primary_10_1016_j_jcsr_2024_109166
crossref_primary_10_1016_j_compstruct_2024_118376
crossref_primary_10_1016_j_compstruct_2024_118694
crossref_primary_10_1016_j_jcsr_2024_108868
crossref_primary_10_1051_e3sconf_202128101025
crossref_primary_10_1016_j_engstruct_2024_117603
crossref_primary_10_1016_j_engstruct_2022_114457
crossref_primary_10_1016_j_actaastro_2024_12_007
crossref_primary_10_1016_j_compstruc_2024_107513
Cites_doi 10.1016/j.compstruct.2015.04.038
10.1061/(ASCE)ST.1943-541X.0002156
10.1287/opre.14.4.699
10.1016/j.compstruc.2011.07.007
10.1016/j.ijnonlinmec.2006.10.009
10.1016/j.ijsolstr.2005.07.046
10.1016/S0045-7949(03)00254-2
10.1146/annurev.physiol.59.1.575
10.1016/0045-7825(74)90045-0
10.1016/0020-7683(93)90210-X
10.1016/j.compstruct.2016.07.031
10.1016/j.engstruct.2010.08.009
10.1016/0020-7683(91)90137-5
10.1016/j.ijsolstr.2005.03.008
10.1016/S0045-7825(96)01164-4
10.1016/j.compstruct.2012.12.021
10.1061/(ASCE)0887-3801(2007)21:1(3)
10.1061/(ASCE)ST.1943-541X.0001189
10.1016/j.ijsolstr.2006.10.027
10.1080/10556789908805766
10.1061/(ASCE)0887-3801(2005)19:1(16)
10.1177/1369433219886080
10.1016/S0020-7683(03)00267-1
10.1115/1.4046401
10.1016/j.ijsolstr.2020.05.029
10.1109/ICRA.2015.7139590
10.2514/3.9043
10.1016/j.compstruct.2020.112454
10.1109/TRO.2006.878980
10.1016/0020-7683(86)90014-4
10.1117/12.2044869
10.1177/026635119200700206
10.1007/0-387-30065-1_4
10.1016/j.engstruct.2020.111419
10.1016/j.mechrescom.2013.10.017
10.2514/6.2003-1978
10.1007/s11081-011-9172-0
10.1016/j.compstruct.2018.10.108
10.1061/(ASCE)0733-9445(2004)130:10(1454)
10.1016/j.engstruct.2009.12.042
10.1016/S0965-9978(97)00070-7
10.1016/j.ijsolstr.2006.08.026
10.1016/j.ijsolstr.2020.05.030
10.1007/0-306-47089-6_3
10.1007/s13296-019-00264-w
10.1061/(ASCE)0893-1321(1998)11:2(37)
10.1061/9780784481899.084
10.1016/j.mechrescom.2020.103477
10.1088/0034-4885/77/4/046603
10.1061/(ASCE)BE.1943-5592.0001438
10.1016/j.compstruc.2020.106266
10.1088/0964-1726/24/10/105008
10.1177/0956059919845330
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV May 1, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV May 1, 2021
DBID AAYXX
CITATION
7SR
7ST
8BQ
8FD
C1K
FR3
JG9
KR7
SOI
DOI 10.1016/j.engstruct.2021.111965
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Engineering Research Database
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7323
ExternalDocumentID 10_1016_j_engstruct_2021_111965
S0141029621001152
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSH
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
9DU
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
VH1
WUQ
ZY4
~HD
7SR
7ST
8BQ
8FD
AGCQF
C1K
FR3
JG9
KR7
SOI
ID FETCH-LOGICAL-c392t-9c9e9c738a9935485f4c51a05d82f62498b3314b7ec267e63c67a2465fd4980c3
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000632478500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0141-0296
IngestDate Wed Aug 13 06:59:35 EDT 2025
Sat Nov 29 07:20:50 EST 2025
Tue Nov 18 22:42:47 EST 2025
Sun Apr 06 06:53:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Lightweight structure
Active tensegrity structure
Minimal mass
Mixed integer nonlinear programming
Semi-definite programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c392t-9c9e9c738a9935485f4c51a05d82f62498b3314b7ec267e63c67a2465fd4980c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7470-1200
OpenAccessLink https://infoscience.epfl.ch/handle/20.500.14299/177534
PQID 2511383432
PQPubID 2045481
ParticipantIDs proquest_journals_2511383432
crossref_citationtrail_10_1016_j_engstruct_2021_111965
crossref_primary_10_1016_j_engstruct_2021_111965
elsevier_sciencedirect_doi_10_1016_j_engstruct_2021_111965
PublicationCentury 2000
PublicationDate 2021-05-01
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Engineering structures
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Amendola, Carpentieri, Feo, Fraternali (b0305) 2016; 157
Wang, Xu, Luo (bib308) 2021; 227
Masic, Skelton, Gill (b0105) 2006; 43
Wang, Senatore (bib306) 2020; 236
Wang, Xu (b0260) 2019; 2019
Kaveh (b0215) 1992; vol. 6
Schek (b0220) 1974; 3
Levy MP. The Georgia Dome and beyond: achieving lightweight-longspan structures. In: Spatial, Lattice and Tension Structures; 1994, pp. 560–562.
Fest, Shea, Smith (b0140) 2004; 130
Skelton, Fraternali, Carpentieri, Micheletti (b0080) 2014; 58
Wang, Senatore (b0200) 2020; 202
Pellegrino (b0020) 1992; 7
Goyal, Peraza Hernandez, Skelton (b0095) 2019; 34
Calladine, Pellegrino (b0195) Jan. 1991; 27
Li, Xu, Tu, Wang, Luo (b0285) 2020
Hammond, Jones (b0295) 2008; 161
Guest (b0225) 2006; 43
Ohsaki, Zhang (b0245) 2006; 41
Kmet, Mojdis (b0165) 2015; 141
Zhang, Ohsaki (b0240) Dec. 2011; 89
Gao, Xu, Luo (b0290) 2020; 23
Skelton, de Oliveira (b0205) 2009; vol. 1
Chen M, Skelton RE. A general approach to minimal mass tensegrity. Compos Struct, p. 112454, 2020, DOI: 10.1016/j.compstruct.2020.112454.
Pellegrino (b0190) 1993; 30
Lawler, Wood (b0270) 1966; 14
You (b0135) 1997; 144
Ingber, Wang, Stamenović (b0050) 2014; 77
Yuan, Dong (b0255) 2003; 81
Kanno (b0120) 2013; 14
Nocedal J. Knitro: An integrated package for nonlinear optimization. In: Large-Scale Nonlinear Optimization. Springer: Boston, MA; 2006, pp. 35–60.
Rhode-Barbarigos, Ali, Motro, Smith (b0010) 2010; 32
Sabelhaus AP, et al. System design and locomotion of SUPERball, an untethered tensegrity robot. In: 2015 IEEE international conference on robotics and automation (ICRA); 2015, pp. 2867–2873, DOI: 10.1109/ICRA.2015.7139590.
Sultan, Skelton (b0030) 2003; 40
Rhode-Barbarigos (b0160) 2012
Franklin K, Ozkan E, Powell D, et al., Design of the Kurilpa Pedestrian Bridge for Dynamic Effects Due to Pedestrian and Wind Loads. In: 5th Civil Engineering Conference in the Asian Region and Australasian Structural Engineering Conference; 2010, p. 885.
Nagase K, Skelton R. Minimal mass design of tensegrity structures. In: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014, 2014, vol. 9061, p. 90610W, DOI: 10.1117/12.2044869.
Haftka (b0175) 1985; 23
Feron, Boucher, Denoël, Latteur (b0085) 2019; 24
Sturm (b0275) 1999; 11
Fraternali, Spadea, Ascione (b0300) 2013; 100
Ingber (b0045) 1997; 59
Kawaguchi, Abe, Tatemichi (b0070) 1999; 40
Adam, Smith (b0145) 2007; 21
Djouadi, Motro, Pons, Crosnier (b0130) 1998; 11
Domer, Smith (b0150) 2005; 19
Fraddosio, Pavone, Piccioni (b0090) 2019; 209
Krishnan S, Li B. Design of lightweight deployable antennas using the tensegrity principle. In: Earth and Space 2018: Engineering for Extreme Environments, American Society of Civil Engineers Reston, VA, 2018, pp. 888–899.
Patnaik, Coroneos, Hopkins (b0230) 1998; 29
Amendola, Hernández-Nava, Goodall, Todd, Skelton, Fraternali (b0060) 2015; 131
Pellegrino, Calladine (b0185) 1986; 22
Connelly R. Tensegrity structures: why are they stable? In: Rigidity theory and applications. Springer; 2002, pp. 47–54.
Wang, Xu, Luo (bib307) 2020; 202
Lee, Leyffer (b0180) 2011; vol. 154
Paul, Valero-Cuevas, Lipson (b0035) 2006; 22
Santos, Rodrigues, Micheletti (b0055) 2015; 24
Zhang, Ohsaki (b0250) 2007; 44
Ali, Rhode-Barbarigos, Albi, Smith (b0155) 2010; 32
[Accessed: 07-Dec-2017].
Goyal, Skelton, Hernandez (b0100) 2020; 103
Lai G, Plummer A, Cleaver D. Distributed actuation and control of a morphing tensegrity structure. J Dynam Syst, Meas, Control 2020; 142(7): DOI: 10.1115/1.4046401.
Yuan, Chen, Dong (b0235) 2007; 44
Xu, Wang, Luo, Hu (b0125) 2018; 144
Tibert G. Deployable tensegrity structures for space applications,” PhD Thesis, KTH; 2002.
Geiger DH, Stefaniuk A, Chen D. The design and construction of two cable domes for the Korean Olympics. In: Proceedings of the IASS symposium on shells, membranes and space frames, vol. 2; 1986, pp. 265–272.
ENERPAC. E328e Industrial Tools – Europe; 2016. [Online]. Available
10.1016/j.engstruct.2021.111965_b0115
Skelton (10.1016/j.engstruct.2021.111965_b0205) 2009; vol. 1
Paul (10.1016/j.engstruct.2021.111965_b0035) 2006; 22
10.1016/j.engstruct.2021.111965_b0110
Haftka (10.1016/j.engstruct.2021.111965_b0175) 1985; 23
Guest (10.1016/j.engstruct.2021.111965_b0225) 2006; 43
Wang (10.1016/j.engstruct.2021.111965_b0260) 2019; 2019
Ohsaki (10.1016/j.engstruct.2021.111965_b0245) 2006; 41
Wang (10.1016/j.engstruct.2021.111965_b0200) 2020; 202
You (10.1016/j.engstruct.2021.111965_b0135) 1997; 144
Pellegrino (10.1016/j.engstruct.2021.111965_b0020) 1992; 7
Feron (10.1016/j.engstruct.2021.111965_b0085) 2019; 24
Pellegrino (10.1016/j.engstruct.2021.111965_b0185) 1986; 22
Schek (10.1016/j.engstruct.2021.111965_b0220) 1974; 3
10.1016/j.engstruct.2021.111965_b0040
Ingber (10.1016/j.engstruct.2021.111965_b0050) 2014; 77
Lawler (10.1016/j.engstruct.2021.111965_b0270) 1966; 14
10.1016/j.engstruct.2021.111965_b0280
10.1016/j.engstruct.2021.111965_b0005
Kanno (10.1016/j.engstruct.2021.111965_b0120) 2013; 14
Djouadi (10.1016/j.engstruct.2021.111965_b0130) 1998; 11
Xu (10.1016/j.engstruct.2021.111965_b0125) 2018; 144
Yuan (10.1016/j.engstruct.2021.111965_b0235) 2007; 44
Kawaguchi (10.1016/j.engstruct.2021.111965_b0070) 1999; 40
Yuan (10.1016/j.engstruct.2021.111965_b0255) 2003; 81
Li (10.1016/j.engstruct.2021.111965_b0285) 2020
Fraternali (10.1016/j.engstruct.2021.111965_b0300) 2013; 100
Zhang (10.1016/j.engstruct.2021.111965_b0240) 2011; 89
Fraddosio (10.1016/j.engstruct.2021.111965_b0090) 2019; 209
Wang (10.1016/j.engstruct.2021.111965_bib307) 2020; 202
Santos (10.1016/j.engstruct.2021.111965_b0055) 2015; 24
Ingber (10.1016/j.engstruct.2021.111965_b0045) 1997; 59
10.1016/j.engstruct.2021.111965_b0170
Pellegrino (10.1016/j.engstruct.2021.111965_b0190) 1993; 30
Calladine (10.1016/j.engstruct.2021.111965_b0195) 1991; 27
10.1016/j.engstruct.2021.111965_b0015
Goyal (10.1016/j.engstruct.2021.111965_b0100) 2020; 103
Patnaik (10.1016/j.engstruct.2021.111965_b0230) 1998; 29
10.1016/j.engstruct.2021.111965_b0210
Sultan (10.1016/j.engstruct.2021.111965_b0030) 2003; 40
Amendola (10.1016/j.engstruct.2021.111965_b0060) 2015; 131
Kaveh (10.1016/j.engstruct.2021.111965_b0215) 1992; vol. 6
Skelton (10.1016/j.engstruct.2021.111965_b0080) 2014; 58
Masic (10.1016/j.engstruct.2021.111965_b0105) 2006; 43
Hammond (10.1016/j.engstruct.2021.111965_b0295) 2008; 161
Zhang (10.1016/j.engstruct.2021.111965_b0250) 2007; 44
Goyal (10.1016/j.engstruct.2021.111965_b0095) 2019; 34
Rhode-Barbarigos (10.1016/j.engstruct.2021.111965_b0160) 2012
10.1016/j.engstruct.2021.111965_b0065
Wang (10.1016/j.engstruct.2021.111965_bib308) 2021; 227
Lee (10.1016/j.engstruct.2021.111965_b0180) 2011; vol. 154
Rhode-Barbarigos (10.1016/j.engstruct.2021.111965_b0010) 2010; 32
Ali (10.1016/j.engstruct.2021.111965_b0155) 2010; 32
10.1016/j.engstruct.2021.111965_b0265
10.1016/j.engstruct.2021.111965_b0025
Wang (10.1016/j.engstruct.2021.111965_bib306) 2020; 236
Kmet (10.1016/j.engstruct.2021.111965_b0165) 2015; 141
Sturm (10.1016/j.engstruct.2021.111965_b0275) 1999; 11
Amendola (10.1016/j.engstruct.2021.111965_b0305) 2016; 157
Adam (10.1016/j.engstruct.2021.111965_b0145) 2007; 21
Gao (10.1016/j.engstruct.2021.111965_b0290) 2020; 23
10.1016/j.engstruct.2021.111965_b0075
Domer (10.1016/j.engstruct.2021.111965_b0150) 2005; 19
Fest (10.1016/j.engstruct.2021.111965_b0140) 2004; 130
References_xml – volume: 209
  start-page: 754
  year: 2019
  end-page: 774
  ident: b0090
  article-title: Minimal mass and self-stress analysis for innovative V-Expander tensegrity cells
  publication-title: Compos Struct
– volume: vol. 1
  year: 2009
  ident: b0205
  publication-title: Tensegrity systems
– volume: 161
  start-page: 87
  year: 2008
  end-page: 98
  ident: b0295
  article-title: Embodied energy and carbon in construction materials
  publication-title: Proc Instit Civ Eng-Energy
– volume: 236
  year: 2020
  ident: bib306
  article-title: Minimum energy adaptive structures – All-In-One problem formulation
  publication-title: Comput Struct
– volume: 24
  year: 2015
  ident: b0055
  article-title: Design and experimental testing of an adaptive shape-morphing tensegrity structure, with frequency self-tuning capabilities, using shape-memory alloys
  publication-title: Smart Mater Struct
– volume: 3
  start-page: 115
  year: 1974
  end-page: 134
  ident: b0220
  article-title: The force density method for form finding and computation of general networks
  publication-title: Comput Methods Appl Mech Eng
– volume: 202
  start-page: 278
  year: 2020
  end-page: 298
  ident: bib307
  article-title: Topology design of general tensegrity with rigid bodies
  publication-title: Int J Solids Struct
– reference: ENERPAC. E328e Industrial Tools – Europe; 2016. [Online]. Available:
– volume: 144
  start-page: 51
  year: 1997
  end-page: 59
  ident: b0135
  article-title: Displacement control of prestressed structures
  publication-title: Comput Methods Appl Mech Eng
– volume: 89
  start-page: 2361
  year: Dec. 2011
  end-page: 2368
  ident: b0240
  article-title: Force identification of prestressed pin-jointed structures
  publication-title: Comput Struct
– volume: 130
  start-page: 1454
  year: 2004
  end-page: 1465
  ident: b0140
  article-title: Active tensegrity structure
  publication-title: J Struct Eng
– reference: . [Accessed: 07-Dec-2017].
– volume: 59
  start-page: 575
  year: 1997
  end-page: 599
  ident: b0045
  article-title: Tensegrity: the architectural basis of cellular mechanotransduction
  publication-title: Annu Rev Physiol
– volume: 202
  start-page: 798
  year: 2020
  end-page: 815
  ident: b0200
  article-title: Extended Integrated Force Method for the analysis of prestress-stable statically and kinematically indeterminate structures
  publication-title: Int J Solids Struct
– volume: 32
  start-page: 1158
  year: 2010
  end-page: 1167
  ident: b0010
  article-title: Designing tensegrity modules for pedestrian bridges
  publication-title: Eng Struct
– volume: 157
  start-page: 71
  year: 2016
  end-page: 77
  ident: b0305
  article-title: Bending dominated response of layered mechanical metamaterials alternating pentamode lattices and confinement plates
  publication-title: Compos Struct
– reference: Tibert G. Deployable tensegrity structures for space applications,” PhD Thesis, KTH; 2002.
– volume: 103
  year: 2020
  ident: b0100
  article-title: Design of minimal mass load-bearing tensegrity lattices
  publication-title: Mech Res Commun
– volume: 11
  start-page: 37
  year: 1998
  end-page: 44
  ident: b0130
  article-title: Active control of tensegrity systems
  publication-title: J Aerosp Eng
– reference: Nagase K, Skelton R. Minimal mass design of tensegrity structures. In: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014, 2014, vol. 9061, p. 90610W, DOI: 10.1117/12.2044869.
– reference: Levy MP. The Georgia Dome and beyond: achieving lightweight-longspan structures. In: Spatial, Lattice and Tension Structures; 1994, pp. 560–562.
– volume: 227
  year: 2021
  ident: bib308
  article-title: Form-finding of tensegrity structures via rank minimization of force density matrix
  publication-title: Eng Struct
– volume: 14
  start-page: 699
  year: 1966
  end-page: 719
  ident: b0270
  article-title: Branch-and-bound methods: A survey
  publication-title: Oper Res
– volume: 24
  start-page: 04019112
  year: 2019
  ident: b0085
  article-title: Optimization of footbridges composed of prismatic tensegrity modules
  publication-title: J Bridge Eng
– volume: 40
  start-page: 179
  year: 1999
  end-page: 192
  ident: b0070
  article-title: Design, tests and realization of ‘suspen-dome’ system
  publication-title: J Int Assoc Shell Spatial Struct
– volume: 44
  start-page: 3875
  year: 2007
  end-page: 3886
  ident: b0250
  article-title: Stability conditions for tensegrity structures
  publication-title: Int J Solids Struct
– volume: 22
  start-page: 944
  year: 2006
  end-page: 957
  ident: b0035
  article-title: Design and control of tensegrity robots for locomotion
  publication-title: IEEE Trans Rob
– volume: 11
  start-page: 625
  year: 1999
  end-page: 653
  ident: b0275
  article-title: Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones
  publication-title: Optimiz Methods Software
– start-page: 1
  year: 2020
  end-page: 14
  ident: b0285
  article-title: Research on a new class of planar tensegrity trusses consisting of repetitive units
  publication-title: Int J Steel Struct
– volume: 81
  start-page: 2111
  year: 2003
  end-page: 2119
  ident: b0255
  article-title: Integral feasible prestress of cable domes
  publication-title: Comput Struct
– volume: 23
  start-page: 1099
  year: 1985
  end-page: 1103
  ident: b0175
  article-title: Simultaneous analysis and design
  publication-title: AIAA J
– volume: 23
  start-page: 898
  year: 2020
  end-page: 910
  ident: b0290
  article-title: Re-study on tensegrity footbridges based on ring modules
  publication-title: Adv Struct Eng
– year: 2012
  ident: b0160
  article-title: An active deployable tensegrity structure
– volume: 27
  start-page: 505
  year: Jan. 1991
  end-page: 515
  ident: b0195
  article-title: First-order infinitesimal mechanisms
  publication-title: Int J Solids Struct
– reference: Lai G, Plummer A, Cleaver D. Distributed actuation and control of a morphing tensegrity structure. J Dynam Syst, Meas, Control 2020; 142(7): DOI: 10.1115/1.4046401.
– volume: 58
  start-page: 124
  year: 2014
  end-page: 132
  ident: b0080
  article-title: Minimum mass design of tensegrity bridges with parametric architecture and multiscale complexity
  publication-title: Mech Res Commun
– reference: Nocedal J. Knitro: An integrated package for nonlinear optimization. In: Large-Scale Nonlinear Optimization. Springer: Boston, MA; 2006, pp. 35–60.
– volume: 22
  start-page: 409
  year: 1986
  end-page: 428
  ident: b0185
  article-title: Matrix analysis of statically and kinematically indeterminate frameworks
  publication-title: Int J Solids Struct
– volume: 2019
  year: 2019
  ident: b0260
  article-title: Prestress design of tensegrity structures using semidefinite programming
  publication-title: Adv Civ Eng
– volume: 131
  start-page: 66
  year: 2015
  end-page: 71
  ident: b0060
  article-title: On the additive manufacturing, post-tensioning and testing of bi-material tensegrity structures
  publication-title: Compos Struct
– volume: 30
  start-page: 3025
  year: 1993
  end-page: 3035
  ident: b0190
  article-title: Structural computations with the singular value decomposition of the equilibrium matrix
  publication-title: Int J Solids Struct
– volume: 40
  start-page: 4637
  year: 2003
  end-page: 4657
  ident: b0030
  article-title: Deployment of tensegrity structures
  publication-title: Int J Solids Struct
– reference: Franklin K, Ozkan E, Powell D, et al., Design of the Kurilpa Pedestrian Bridge for Dynamic Effects Due to Pedestrian and Wind Loads. In: 5th Civil Engineering Conference in the Asian Region and Australasian Structural Engineering Conference; 2010, p. 885.
– volume: vol. 6
  year: 1992
  ident: b0215
  publication-title: Structural mechanics: graph and matrix methods
– volume: 34
  start-page: 3
  year: 2019
  end-page: 21
  ident: b0095
  article-title: Analytical study of tensegrity lattices for mass-efficient mechanical energy absorption
  publication-title: Int J Space Struct
– volume: 100
  start-page: 280
  year: 2013
  end-page: 289
  ident: b0300
  article-title: Buckling behavior of curved composite beams with different elastic response in tension and compression
  publication-title: Compos Struct
– volume: 14
  start-page: 61
  year: 2013
  end-page: 96
  ident: b0120
  article-title: Topology optimization of tensegrity structures under compliance constraint: a mixed integer linear programming approach
  publication-title: Optimiz Eng
– volume: 77
  year: 2014
  ident: b0050
  article-title: Tensegrity, cellular biophysics, and the mechanics of living systems
  publication-title: Rep Prog Phys
– reference: Geiger DH, Stefaniuk A, Chen D. The design and construction of two cable domes for the Korean Olympics. In: Proceedings of the IASS symposium on shells, membranes and space frames, vol. 2; 1986, pp. 265–272.
– reference: Chen M, Skelton RE. A general approach to minimal mass tensegrity. Compos Struct, p. 112454, 2020, DOI: 10.1016/j.compstruct.2020.112454.
– volume: 29
  start-page: 463
  year: 1998
  end-page: 474
  ident: b0230
  article-title: Recent advances in the method of forces: integrated force method of structural analysis
  publication-title: Adv Eng Softw
– volume: 43
  start-page: 4687
  year: 2006
  end-page: 4703
  ident: b0105
  article-title: Optimization of tensegrity structures
  publication-title: Int J Solids Struct
– volume: 32
  start-page: 3650
  year: 2010
  end-page: 3659
  ident: b0155
  article-title: Design optimization and dynamic analysis of a tensegrity-based footbridge
  publication-title: Eng Struct
– volume: 44
  start-page: 2773
  year: 2007
  end-page: 2782
  ident: b0235
  article-title: Prestress design of cable domes with new forms
  publication-title: Int J Solids Struct
– volume: 7
  start-page: 127
  year: 1992
  end-page: 142
  ident: b0020
  article-title: A class of tensegrity domes
  publication-title: Int J Space Struct
– volume: 19
  start-page: 16
  year: 2005
  end-page: 24
  ident: b0150
  article-title: An active structure that learns
  publication-title: J Comput Civil Eng
– reference: Sabelhaus AP, et al. System design and locomotion of SUPERball, an untethered tensegrity robot. In: 2015 IEEE international conference on robotics and automation (ICRA); 2015, pp. 2867–2873, DOI: 10.1109/ICRA.2015.7139590.
– volume: 21
  start-page: 3
  year: 2007
  end-page: 10
  ident: b0145
  article-title: Tensegrity active control: Multiobjective approach
  publication-title: J Comput Civil Eng
– reference: Krishnan S, Li B. Design of lightweight deployable antennas using the tensegrity principle. In: Earth and Space 2018: Engineering for Extreme Environments, American Society of Civil Engineers Reston, VA, 2018, pp. 888–899.
– volume: 141
  start-page: 04014225
  year: 2015
  ident: b0165
  article-title: Adaptive cable dome
  publication-title: J Struct Eng
– volume: 43
  start-page: 842
  year: 2006
  end-page: 854
  ident: b0225
  article-title: The stiffness of prestressed frameworks: a unifying approach
  publication-title: Int J Solids Struct
– reference: Connelly R. Tensegrity structures: why are they stable? In: Rigidity theory and applications. Springer; 2002, pp. 47–54.
– volume: 144
  start-page: 04018173
  year: 2018
  ident: b0125
  article-title: Topology optimization of tensegrity structures considering buckling constraints
  publication-title: J Struct Eng
– volume: vol. 154
  year: 2011
  ident: b0180
  publication-title: Mixed integer nonlinear programming
– volume: 41
  start-page: 1109
  year: 2006
  end-page: 1117
  ident: b0245
  article-title: Stability conditions of prestressed pin-jointed structures
  publication-title: Int J Non Linear Mech
– volume: 131
  start-page: 66
  year: 2015
  ident: 10.1016/j.engstruct.2021.111965_b0060
  article-title: On the additive manufacturing, post-tensioning and testing of bi-material tensegrity structures
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2015.04.038
– volume: 161
  start-page: 87
  issue: 2
  year: 2008
  ident: 10.1016/j.engstruct.2021.111965_b0295
  article-title: Embodied energy and carbon in construction materials
  publication-title: Proc Instit Civ Eng-Energy
– volume: 144
  start-page: 04018173
  issue: 10
  year: 2018
  ident: 10.1016/j.engstruct.2021.111965_b0125
  article-title: Topology optimization of tensegrity structures considering buckling constraints
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0002156
– volume: 14
  start-page: 699
  issue: 4
  year: 1966
  ident: 10.1016/j.engstruct.2021.111965_b0270
  article-title: Branch-and-bound methods: A survey
  publication-title: Oper Res
  doi: 10.1287/opre.14.4.699
– volume: 89
  start-page: 2361
  issue: 23
  year: 2011
  ident: 10.1016/j.engstruct.2021.111965_b0240
  article-title: Force identification of prestressed pin-jointed structures
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2011.07.007
– volume: 41
  start-page: 1109
  issue: 10
  year: 2006
  ident: 10.1016/j.engstruct.2021.111965_b0245
  article-title: Stability conditions of prestressed pin-jointed structures
  publication-title: Int J Non Linear Mech
  doi: 10.1016/j.ijnonlinmec.2006.10.009
– volume: 43
  start-page: 4687
  issue: 16
  year: 2006
  ident: 10.1016/j.engstruct.2021.111965_b0105
  article-title: Optimization of tensegrity structures
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2005.07.046
– volume: 81
  start-page: 2111
  issue: 21
  year: 2003
  ident: 10.1016/j.engstruct.2021.111965_b0255
  article-title: Integral feasible prestress of cable domes
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(03)00254-2
– volume: 59
  start-page: 575
  issue: 1
  year: 1997
  ident: 10.1016/j.engstruct.2021.111965_b0045
  article-title: Tensegrity: the architectural basis of cellular mechanotransduction
  publication-title: Annu Rev Physiol
  doi: 10.1146/annurev.physiol.59.1.575
– volume: 3
  start-page: 115
  issue: 1
  year: 1974
  ident: 10.1016/j.engstruct.2021.111965_b0220
  article-title: The force density method for form finding and computation of general networks
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(74)90045-0
– volume: 30
  start-page: 3025
  issue: 21
  year: 1993
  ident: 10.1016/j.engstruct.2021.111965_b0190
  article-title: Structural computations with the singular value decomposition of the equilibrium matrix
  publication-title: Int J Solids Struct
  doi: 10.1016/0020-7683(93)90210-X
– volume: 157
  start-page: 71
  year: 2016
  ident: 10.1016/j.engstruct.2021.111965_b0305
  article-title: Bending dominated response of layered mechanical metamaterials alternating pentamode lattices and confinement plates
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2016.07.031
– volume: 32
  start-page: 3650
  issue: 11
  year: 2010
  ident: 10.1016/j.engstruct.2021.111965_b0155
  article-title: Design optimization and dynamic analysis of a tensegrity-based footbridge
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2010.08.009
– volume: 2019
  year: 2019
  ident: 10.1016/j.engstruct.2021.111965_b0260
  article-title: Prestress design of tensegrity structures using semidefinite programming
  publication-title: Adv Civ Eng
– volume: 27
  start-page: 505
  issue: 4
  year: 1991
  ident: 10.1016/j.engstruct.2021.111965_b0195
  article-title: First-order infinitesimal mechanisms
  publication-title: Int J Solids Struct
  doi: 10.1016/0020-7683(91)90137-5
– volume: 43
  start-page: 842
  issue: 3–4
  year: 2006
  ident: 10.1016/j.engstruct.2021.111965_b0225
  article-title: The stiffness of prestressed frameworks: a unifying approach
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2005.03.008
– volume: 144
  start-page: 51
  issue: 1–2
  year: 1997
  ident: 10.1016/j.engstruct.2021.111965_b0135
  article-title: Displacement control of prestressed structures
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(96)01164-4
– volume: 100
  start-page: 280
  issue: 100
  year: 2013
  ident: 10.1016/j.engstruct.2021.111965_b0300
  article-title: Buckling behavior of curved composite beams with different elastic response in tension and compression
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2012.12.021
– ident: 10.1016/j.engstruct.2021.111965_b0015
– volume: 21
  start-page: 3
  issue: 1
  year: 2007
  ident: 10.1016/j.engstruct.2021.111965_b0145
  article-title: Tensegrity active control: Multiobjective approach
  publication-title: J Comput Civil Eng
  doi: 10.1061/(ASCE)0887-3801(2007)21:1(3)
– year: 2012
  ident: 10.1016/j.engstruct.2021.111965_b0160
– volume: 141
  start-page: 04014225
  issue: 9
  year: 2015
  ident: 10.1016/j.engstruct.2021.111965_b0165
  article-title: Adaptive cable dome
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0001189
– volume: 44
  start-page: 3875
  issue: 11–12
  year: 2007
  ident: 10.1016/j.engstruct.2021.111965_b0250
  article-title: Stability conditions for tensegrity structures
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2006.10.027
– volume: 11
  start-page: 625
  issue: 1–4
  year: 1999
  ident: 10.1016/j.engstruct.2021.111965_b0275
  article-title: Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones
  publication-title: Optimiz Methods Software
  doi: 10.1080/10556789908805766
– volume: vol. 154
  year: 2011
  ident: 10.1016/j.engstruct.2021.111965_b0180
– volume: 19
  start-page: 16
  issue: 1
  year: 2005
  ident: 10.1016/j.engstruct.2021.111965_b0150
  article-title: An active structure that learns
  publication-title: J Comput Civil Eng
  doi: 10.1061/(ASCE)0887-3801(2005)19:1(16)
– volume: 23
  start-page: 898
  issue: 5
  year: 2020
  ident: 10.1016/j.engstruct.2021.111965_b0290
  article-title: Re-study on tensegrity footbridges based on ring modules
  publication-title: Adv Struct Eng
  doi: 10.1177/1369433219886080
– ident: 10.1016/j.engstruct.2021.111965_b0005
– volume: 40
  start-page: 4637
  issue: 18
  year: 2003
  ident: 10.1016/j.engstruct.2021.111965_b0030
  article-title: Deployment of tensegrity structures
  publication-title: Int J Solids Struct
  doi: 10.1016/S0020-7683(03)00267-1
– ident: 10.1016/j.engstruct.2021.111965_b0170
  doi: 10.1115/1.4046401
– volume: vol. 1
  year: 2009
  ident: 10.1016/j.engstruct.2021.111965_b0205
– volume: 202
  start-page: 798
  year: 2020
  ident: 10.1016/j.engstruct.2021.111965_b0200
  article-title: Extended Integrated Force Method for the analysis of prestress-stable statically and kinematically indeterminate structures
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2020.05.029
– ident: 10.1016/j.engstruct.2021.111965_b0040
  doi: 10.1109/ICRA.2015.7139590
– volume: 23
  start-page: 1099
  issue: 7
  year: 1985
  ident: 10.1016/j.engstruct.2021.111965_b0175
  article-title: Simultaneous analysis and design
  publication-title: AIAA J
  doi: 10.2514/3.9043
– ident: 10.1016/j.engstruct.2021.111965_b0115
  doi: 10.1016/j.compstruct.2020.112454
– volume: 22
  start-page: 944
  issue: 5
  year: 2006
  ident: 10.1016/j.engstruct.2021.111965_b0035
  article-title: Design and control of tensegrity robots for locomotion
  publication-title: IEEE Trans Rob
  doi: 10.1109/TRO.2006.878980
– volume: 22
  start-page: 409
  issue: 4
  year: 1986
  ident: 10.1016/j.engstruct.2021.111965_b0185
  article-title: Matrix analysis of statically and kinematically indeterminate frameworks
  publication-title: Int J Solids Struct
  doi: 10.1016/0020-7683(86)90014-4
– ident: 10.1016/j.engstruct.2021.111965_b0110
  doi: 10.1117/12.2044869
– volume: 7
  start-page: 127
  issue: 2
  year: 1992
  ident: 10.1016/j.engstruct.2021.111965_b0020
  article-title: A class of tensegrity domes
  publication-title: Int J Space Struct
  doi: 10.1177/026635119200700206
– ident: 10.1016/j.engstruct.2021.111965_b0280
  doi: 10.1007/0-387-30065-1_4
– volume: 227
  year: 2021
  ident: 10.1016/j.engstruct.2021.111965_bib308
  article-title: Form-finding of tensegrity structures via rank minimization of force density matrix
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2020.111419
– volume: vol. 6
  year: 1992
  ident: 10.1016/j.engstruct.2021.111965_b0215
– volume: 58
  start-page: 124
  year: 2014
  ident: 10.1016/j.engstruct.2021.111965_b0080
  article-title: Minimum mass design of tensegrity bridges with parametric architecture and multiscale complexity
  publication-title: Mech Res Commun
  doi: 10.1016/j.mechrescom.2013.10.017
– ident: 10.1016/j.engstruct.2021.111965_b0025
  doi: 10.2514/6.2003-1978
– volume: 14
  start-page: 61
  issue: 1
  year: 2013
  ident: 10.1016/j.engstruct.2021.111965_b0120
  article-title: Topology optimization of tensegrity structures under compliance constraint: a mixed integer linear programming approach
  publication-title: Optimiz Eng
  doi: 10.1007/s11081-011-9172-0
– volume: 209
  start-page: 754
  year: 2019
  ident: 10.1016/j.engstruct.2021.111965_b0090
  article-title: Minimal mass and self-stress analysis for innovative V-Expander tensegrity cells
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2018.10.108
– volume: 130
  start-page: 1454
  issue: 10
  year: 2004
  ident: 10.1016/j.engstruct.2021.111965_b0140
  article-title: Active tensegrity structure
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(2004)130:10(1454)
– volume: 32
  start-page: 1158
  issue: 4
  year: 2010
  ident: 10.1016/j.engstruct.2021.111965_b0010
  article-title: Designing tensegrity modules for pedestrian bridges
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2009.12.042
– volume: 29
  start-page: 463
  issue: 3–6
  year: 1998
  ident: 10.1016/j.engstruct.2021.111965_b0230
  article-title: Recent advances in the method of forces: integrated force method of structural analysis
  publication-title: Adv Eng Softw
  doi: 10.1016/S0965-9978(97)00070-7
– volume: 44
  start-page: 2773
  issue: 9
  year: 2007
  ident: 10.1016/j.engstruct.2021.111965_b0235
  article-title: Prestress design of cable domes with new forms
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2006.08.026
– volume: 202
  start-page: 278
  year: 2020
  ident: 10.1016/j.engstruct.2021.111965_bib307
  article-title: Topology design of general tensegrity with rigid bodies
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2020.05.030
– ident: 10.1016/j.engstruct.2021.111965_b0265
  doi: 10.1007/0-306-47089-6_3
– start-page: 1
  year: 2020
  ident: 10.1016/j.engstruct.2021.111965_b0285
  article-title: Research on a new class of planar tensegrity trusses consisting of repetitive units
  publication-title: Int J Steel Struct
  doi: 10.1007/s13296-019-00264-w
– ident: 10.1016/j.engstruct.2021.111965_b0210
– ident: 10.1016/j.engstruct.2021.111965_b0065
– volume: 11
  start-page: 37
  issue: 2
  year: 1998
  ident: 10.1016/j.engstruct.2021.111965_b0130
  article-title: Active control of tensegrity systems
  publication-title: J Aerosp Eng
  doi: 10.1061/(ASCE)0893-1321(1998)11:2(37)
– ident: 10.1016/j.engstruct.2021.111965_b0075
  doi: 10.1061/9780784481899.084
– volume: 103
  year: 2020
  ident: 10.1016/j.engstruct.2021.111965_b0100
  article-title: Design of minimal mass load-bearing tensegrity lattices
  publication-title: Mech Res Commun
  doi: 10.1016/j.mechrescom.2020.103477
– volume: 77
  issue: 4
  year: 2014
  ident: 10.1016/j.engstruct.2021.111965_b0050
  article-title: Tensegrity, cellular biophysics, and the mechanics of living systems
  publication-title: Rep Prog Phys
  doi: 10.1088/0034-4885/77/4/046603
– volume: 24
  start-page: 04019112
  issue: 12
  year: 2019
  ident: 10.1016/j.engstruct.2021.111965_b0085
  article-title: Optimization of footbridges composed of prismatic tensegrity modules
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0001438
– volume: 236
  year: 2020
  ident: 10.1016/j.engstruct.2021.111965_bib306
  article-title: Minimum energy adaptive structures – All-In-One problem formulation
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2020.106266
– volume: 40
  start-page: 179
  issue: 3
  year: 1999
  ident: 10.1016/j.engstruct.2021.111965_b0070
  article-title: Design, tests and realization of ‘suspen-dome’ system
  publication-title: J Int Assoc Shell Spatial Struct
– volume: 24
  issue: 10
  year: 2015
  ident: 10.1016/j.engstruct.2021.111965_b0055
  article-title: Design and experimental testing of an adaptive shape-morphing tensegrity structure, with frequency self-tuning capabilities, using shape-memory alloys
  publication-title: Smart Mater Struct
  doi: 10.1088/0964-1726/24/10/105008
– volume: 34
  start-page: 3
  issue: 1–2
  year: 2019
  ident: 10.1016/j.engstruct.2021.111965_b0095
  article-title: Analytical study of tensegrity lattices for mass-efficient mechanical energy absorption
  publication-title: Int J Space Struct
  doi: 10.1177/0956059919845330
SSID ssj0002880
Score 2.5663242
Snippet •A general method for designing minimal mass active tensegrity structures is proposed.•The design of the structure parameters and actuator parameters are...
Tensegrity structures have been widely utilized as lightweight structures due to their high stiffness-to-mass and strength-to-mass ratios. Minimal mass design...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111965
SubjectTerms Active control
Active tensegrity structure
Actuators
Buckling
Continuity (mathematics)
Control systems
Control systems design
Cross-sections
Design
Equilibrium conditions
Equivalence
Integer programming
Internal forces
Layouts
Lightweight
Lightweight structure
Loads (forces)
Mass ratios
Minimal mass
Mixed integer
Mixed integer nonlinear programming
Prestressing
Semi-definite programming
Stiffness
Structural members
Tensegrity structures
Title Minimal mass design of active tensegrity structures
URI https://dx.doi.org/10.1016/j.engstruct.2021.111965
https://www.proquest.com/docview/2511383432
Volume 234
WOSCitedRecordID wos000632478500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBcj2WE7lHVbWbq0-LBbcLAl25J3CyWjLVsYNAXvJGxJ7lI2JzTNCPvr-_RhO0s70jJ2MUGRZPF-ytNPL-8DoQ9CACkQjPiRVMKHE0_4eSFDX8YyJEwVQBIiU2yCTiYsy9Kvrtrb0pQToFXF1ut08V-hhjYAW4fOPgHuZlJogM8AOjwBdng-Cvgvs2r2U8eEAC0eSOOgYf7sN4ptoB3W1ZWuWDewqWNXN86LsDbPtwkKt3sYu7vVDd_yUrkzD1qzlW7LNnba59Xcdpv__j7btCzgsPXjs-auOuSl9S-yFkjoiG0Z2lqFYmuQvKeOrWXgeggrsise6vdoNZ3aChFbua4vjNspTI5Dw1XhbO1iGqegrrqjs3F23hyymJmieM1q_nDde_B1fyMeW0ew4RXTV2jPXQi8kQVyHz1T1Wv0cgOFN4g4SD0NqWch9ealZyH1Wki9FrC36PLTeHpy6rtiF74AinrrpyJVqaCE5cAY4RoZl5GIwzyIJcNlApdkVhASRgVVAidUJUQkNMdREpcSvgsEOUCdal6pd8iLQ6VD1BhlOfBDlRSYyiKIZBLFQU4U7qGklgQXLhO8Lkjyg9cuf9e8ESHXIuRWhD0UNAMXNhnK7iEfa1Fzx-ksV-OwR3YP7tfgcPcLW3J9JyZMx0Mf_svc79GLds_3UQc6qCP0XPy6nS1vjt12uwOTe38_
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimal+mass+design+of+active+tensegrity+structures&rft.jtitle=Engineering+structures&rft.au=Wang%2C+Yafeng&rft.au=Xu%2C+Xian&rft.au=Luo%2C+Yaozhi&rft.date=2021-05-01&rft.pub=Elsevier+Ltd&rft.issn=0141-0296&rft.volume=234&rft_id=info:doi/10.1016%2Fj.engstruct.2021.111965&rft.externalDocID=S0141029621001152
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon