Light Gradient Boosting Machine-Based Low–Slow–Small Target Detection Algorithm for Airborne Radar

For airborne radar, detecting a low–slow–small (LSS) target is a hot and challenging topic, which results from the rapidly increasing number of non-cooperative flying LSS targets becoming of widespread concern, and the low signal-to-clutter ratio (SCR) of LSS targets results in the targets being par...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing (Basel, Switzerland) Ročník 16; číslo 10; s. 1737
Hlavní autoři: Liu, Jing, Huang, Pengcheng, Zeng, Cao, Liao, Guisheng, Xu, Jingwei, Tao, Haihong, Juwono, Filbert H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.05.2024
Témata:
ISSN:2072-4292, 2072-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract For airborne radar, detecting a low–slow–small (LSS) target is a hot and challenging topic, which results from the rapidly increasing number of non-cooperative flying LSS targets becoming of widespread concern, and the low signal-to-clutter ratio (SCR) of LSS targets results in the targets being particularly easily overwhelmed by the clutter. In this paper, a novel light gradient boosting machine (LightGBM)-based LSS target detection algorithm for airborne radar is proposed. The proposed method, based on the current real-time clutter environment of the range cell to be detected, firstly designs a specific real-time space-time LSS target signal repository with special dimensions and structures. Then, the proposed method creatively designs a new fast-built real-time training feature dataset specifically for the LSS target and the current clutter, together with a series of unique data transformations, sample selection, data restructuring, feature extraction, and feature processing. Finally, the proposed method develops a unique machine learning-based LSS target detection classifier model for the designed training dataset, by fully excavating and utilizing the advantages of the ensemble decision trees-based LightGBM. Consequently, the pre-processed data in the range cell of interest are classified using the proposed algorithm, which achieves LSS target detection by evaluating the output results of the designed classifier. Compared with the traditional classical target detection methods, the proposed algorithm is capable of providing markedly superior performance for LSS target detection. With an appropriate computational time, the proposed algorithm attains the highest probability of detecting LSS targets under the low SCR. The simulation outcomes and detection results with the experimental data are employed to validate the effectiveness and merits of the proposed algorithm.
AbstractList For airborne radar, detecting a low–slow–small (LSS) target is a hot and challenging topic, which results from the rapidly increasing number of non-cooperative flying LSS targets becoming of widespread concern, and the low signal-to-clutter ratio (SCR) of LSS targets results in the targets being particularly easily overwhelmed by the clutter. In this paper, a novel light gradient boosting machine (LightGBM)-based LSS target detection algorithm for airborne radar is proposed. The proposed method, based on the current real-time clutter environment of the range cell to be detected, firstly designs a specific real-time space-time LSS target signal repository with special dimensions and structures. Then, the proposed method creatively designs a new fast-built real-time training feature dataset specifically for the LSS target and the current clutter, together with a series of unique data transformations, sample selection, data restructuring, feature extraction, and feature processing. Finally, the proposed method develops a unique machine learning-based LSS target detection classifier model for the designed training dataset, by fully excavating and utilizing the advantages of the ensemble decision trees-based LightGBM. Consequently, the pre-processed data in the range cell of interest are classified using the proposed algorithm, which achieves LSS target detection by evaluating the output results of the designed classifier. Compared with the traditional classical target detection methods, the proposed algorithm is capable of providing markedly superior performance for LSS target detection. With an appropriate computational time, the proposed algorithm attains the highest probability of detecting LSS targets under the low SCR. The simulation outcomes and detection results with the experimental data are employed to validate the effectiveness and merits of the proposed algorithm.
Audience Academic
Author Huang, Pengcheng
Liu, Jing
Liao, Guisheng
Juwono, Filbert H.
Zeng, Cao
Tao, Haihong
Xu, Jingwei
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0003-2205-8759
  surname: Liu
  fullname: Liu, Jing
– sequence: 2
  givenname: Pengcheng
  surname: Huang
  fullname: Huang, Pengcheng
– sequence: 3
  givenname: Cao
  orcidid: 0000-0001-5842-3629
  surname: Zeng
  fullname: Zeng, Cao
– sequence: 4
  givenname: Guisheng
  surname: Liao
  fullname: Liao, Guisheng
– sequence: 5
  givenname: Jingwei
  orcidid: 0000-0002-1865-6214
  surname: Xu
  fullname: Xu, Jingwei
– sequence: 6
  givenname: Haihong
  surname: Tao
  fullname: Tao, Haihong
– sequence: 7
  givenname: Filbert H.
  surname: Juwono
  fullname: Juwono, Filbert H.
BookMark eNpdUcGKFDEQbWQF13UvfkHAiwi9Jp1Op3OcXXVdGBF0PYdKUunJ0NNZkwzizX_wD_0Ss7aoWHWoR_HqFY_3uDlZ4oJN85TRC84VfZkyGxhlkssHzWlHZdf2nepO_sGPmvOc97QW50zR_rTx2zDtCrlO4AIuhVzGmEtYJvIO7C4s2F5CRke28cuPb98_zus4wDyTW0gTFvIKC9oS4kI28xRTKLsD8TGRTUgmpgXJB3CQnjQPPcwZz3_Ps-bTm9e3V2_b7fvrm6vNtrVcdaVVZrROcOuk471hlhtfEfqOCWvQMdkrZMoJ2o2SyVGAF6ZnEqVTYDxKftbcrLouwl7fpXCA9FVHCPrXIqZJQyrBzqiNFcAV42AZ9sxQ5c3gjXAerAQ0Q9V6vmrdpfj5iLnoQ8gW5xkWjMesORN86MRIRaU--4-6j8e0VKeaU6EklXJQlXWxsiao_8PiY0lgazs8BFuz9KHuN1KJvh95d3_wYj2wKeac0P9xxKi-j1z_jZz_BEDBob4
Cites_doi 10.1109/TAES.1983.309350
10.1109/TGRS.2004.842481
10.1109/TGRS.2019.2923790
10.1109/TSP.2005.849172
10.1049/el:19960130
10.1109/RADAR.2013.6586083
10.1109/CISP-BMEI.2016.7852861
10.1109/TNN.2006.875985
10.1109/7.845254
10.1109/BIGSARDATA53212.2021.9574162
10.1109/ICIBA56860.2023.10165343
10.1016/j.atmosres.2012.02.007
10.1109/ICSP58490.2023.10248896
10.3390/rs14236021
10.1109/TAES.2004.1337463
10.23919/CISS51089.2021.9652263
10.1109/TSP.2011.2172435
10.1109/TAES.1986.310745
10.1109/RADAR.2014.6875798
10.3390/rs15133371
10.3390/rs15030864
10.1109/TAES.2003.1188894
10.1109/8.910535
10.1109/LGRS.2016.2635104
10.1109/TSP.2007.894238
10.1007/BF00994018
10.3390/s19153332
10.1038/323533a0
10.1109/TSP.2007.914345
10.1016/j.sigpro.2018.02.008
10.1109/LGRS.2023.3329687
10.1016/j.procs.2020.06.133
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs16101737
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_bc5a3913ac1e41b09fb6fb5dfac7aeb6
A795448329
10_3390_rs16101737
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c392t-9b8cd53cd7d34b1c3bf7d3ef215cbed1749e19d502871785af5b417e7d9abfe73
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001231601100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:53:44 EDT 2025
Fri Sep 05 11:40:34 EDT 2025
Fri Jul 25 11:36:01 EDT 2025
Tue Nov 04 18:18:25 EST 2025
Sat Nov 29 07:19:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-9b8cd53cd7d34b1c3bf7d3ef215cbed1749e19d502871785af5b417e7d9abfe73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2205-8759
0000-0002-1865-6214
0000-0001-5842-3629
OpenAccessLink https://doaj.org/article/bc5a3913ac1e41b09fb6fb5dfac7aeb6
PQID 3059707769
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_bc5a3913ac1e41b09fb6fb5dfac7aeb6
proquest_miscellaneous_3153625805
proquest_journals_3059707769
gale_infotracacademiconefile_A795448329
crossref_primary_10_3390_rs16101737
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Yu (ref_32) 2020; 174
Cortes (ref_37) 1995; 20
Zhang (ref_25) 2023; 20
Shi (ref_33) 2019; 57
Cotter (ref_7) 2005; 53
ref_13
ref_35
ref_12
ref_34
ref_31
ref_30
Han (ref_8) 2017; 14
De (ref_19) 2007; 55
Sarkar (ref_39) 2001; 49
Brown (ref_3) 2000; 36
Yang (ref_11) 2011; 60
Finn (ref_14) 1968; 29
ref_16
Novakovic (ref_36) 2017; 7
Wang (ref_1) 2003; 39
Ji (ref_9) 2008; 56
ref_24
Feng (ref_10) 2018; 148
Kelly (ref_18) 1986; AES-22
Conte (ref_20) 2004; 40
Islam (ref_23) 2012; 109
ref_21
Trunk (ref_15) 1978; 14
Wang (ref_4) 1996; 32
ref_2
Xia (ref_22) 2006; 17
ref_28
ref_27
ref_26
Rumelhart (ref_38) 1986; 323
ref_5
Ham (ref_29) 2005; 43
Rohling (ref_17) 1983; 19
ref_6
References_xml – volume: 19
  start-page: 608
  year: 1983
  ident: ref_17
  article-title: Radar CFAR thresholding in clutter and multiple target situations
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.1983.309350
– volume: 43
  start-page: 492
  year: 2005
  ident: ref_29
  article-title: Investigation of the random forest framework for classification of hyperspectral data
  publication-title: IEEE Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.842481
– volume: 57
  start-page: 8937
  year: 2019
  ident: ref_33
  article-title: Low-velocity small target detection with Doppler-guided retrospective filter in high-resolution radar at fast scan mode
  publication-title: IEEE Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2923790
– ident: ref_5
– volume: 53
  start-page: 2477
  year: 2005
  ident: ref_7
  article-title: Sparse solutions to linear inverseproblems with multiple measurement vectors
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2005.849172
– volume: 32
  start-page: 258
  year: 1996
  ident: ref_4
  article-title: Space-time joint processing method for simultaneous clutter and jamming rejection in airborne radar
  publication-title: Electron. Lett.
  doi: 10.1049/el:19960130
– ident: ref_13
  doi: 10.1109/RADAR.2013.6586083
– ident: ref_26
  doi: 10.1109/CISP-BMEI.2016.7852861
– ident: ref_16
– volume: 17
  start-page: 975
  year: 2006
  ident: ref_22
  article-title: Nonlinear Spatial-temporal Prediction Based on Optimal Fusion
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.875985
– volume: 36
  start-page: 634
  year: 2000
  ident: ref_3
  article-title: STAP for clutter suppression with sum and difference beams
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/7.845254
– ident: ref_24
  doi: 10.1109/BIGSARDATA53212.2021.9574162
– ident: ref_27
  doi: 10.1109/ICIBA56860.2023.10165343
– volume: 109
  start-page: 95
  year: 2012
  ident: ref_23
  article-title: Artificial Intelligence Techniques for Clutter Identification with Polarimetric Radar Signatures
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2012.02.007
– ident: ref_28
  doi: 10.1109/ICSP58490.2023.10248896
– ident: ref_6
  doi: 10.3390/rs14236021
– volume: 40
  start-page: 903
  year: 2004
  ident: ref_20
  article-title: Statistical analysis of real clutter at different range resolutions
  publication-title: IEEE Trans. Aerosp. Electron.
  doi: 10.1109/TAES.2004.1337463
– ident: ref_34
  doi: 10.23919/CISS51089.2021.9652263
– volume: 60
  start-page: 674
  year: 2011
  ident: ref_11
  article-title: L1-regularized STAP algorithms with a generalized sidelobe canceler architecture for airborne radar
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2011.2172435
– volume: AES-22
  start-page: 115
  year: 1986
  ident: ref_18
  article-title: An adaptive detection algorithm
  publication-title: IEEE Trans. Aerosp. Electron.
  doi: 10.1109/TAES.1986.310745
– ident: ref_21
  doi: 10.1109/RADAR.2014.6875798
– ident: ref_31
  doi: 10.3390/rs15133371
– ident: ref_30
  doi: 10.3390/rs15030864
– ident: ref_2
– volume: 39
  start-page: 70
  year: 2003
  ident: ref_1
  article-title: Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2003.1188894
– ident: ref_12
– volume: 49
  start-page: 91
  year: 2001
  ident: ref_39
  article-title: A deterministic least-squares approach to space-time adaptive processing
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/8.910535
– volume: 14
  start-page: 213
  year: 2017
  ident: ref_8
  article-title: A novel STAP based on spectrum-aided reduced-dimension clutter sparse recovery
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2635104
– volume: 55
  start-page: 3577
  year: 2007
  ident: ref_19
  article-title: Rao test for adaptive detection in Gaussian interference with unknown covariance matrix
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.894238
– volume: 7
  start-page: 39
  year: 2017
  ident: ref_36
  article-title: Evaluation of classification models in machine learning
  publication-title: Theory Appl. Math. Comput. Sci.
– volume: 29
  start-page: 414
  year: 1968
  ident: ref_14
  article-title: Adaptive detection mode with threshold control as a function of spatially sampled clutter-level estimates
  publication-title: RCA Rev.
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_37
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 14
  start-page: 750
  year: 1978
  ident: ref_15
  article-title: Range resolution of targets using automatic detectors
  publication-title: IEEE Trans. AES
– ident: ref_35
  doi: 10.3390/s19153332
– volume: 323
  start-page: 533
  year: 1986
  ident: ref_38
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 56
  start-page: 2346
  year: 2008
  ident: ref_9
  article-title: Bayesian compressive sensing
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.914345
– volume: 148
  start-page: 31
  year: 2018
  ident: ref_10
  article-title: Airborne radar space time adaptive processing based on atomic norm minimization
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.02.008
– volume: 20
  start-page: 1
  year: 2023
  ident: ref_25
  article-title: A multichannel SAR ground moving target detection algorithm based on subdomain adaptive residual network
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2023.3329687
– volume: 174
  start-page: 616
  year: 2020
  ident: ref_32
  article-title: A double-threshold target detection method in detecting low slow small target
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2020.06.133
SSID ssj0000331904
Score 2.3648016
Snippet For airborne radar, detecting a low–slow–small (LSS) target is a hot and challenging topic, which results from the rapidly increasing number of non-cooperative...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 1737
SubjectTerms Airborne radar
airborne radar target detection
Airplanes
Algorithms
Altitude
Artificial intelligence
Classifiers
Clutter
clutter suppression
Comparative analysis
Computing time
data collection
Datasets
Decision trees
Design
Feature extraction
light gradient boosting machine
low–slow–small target
Machine learning
Methods
probability
Radar
Radar detection
Radar equipment
Real time
space and time
Support vector machines
Target acquisition
Target detection
Uniqueness
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgRYINb0SgICOQWFmN4ziOV2gGWlgMo6oUqbvIz7bSNClJCmLHP_CHfAnXjmfKBjasEiVWZOWe-7Kvz0XolXC5B9l6UpauImVtLFFMcsLBMDIjtKM2HhReiOWyPj6WB2nBbUhllWubGA217UxYI98FXEoRuGfkm4svJHSNCrurqYXGdbQdmMoA59vzveXB4WaVJWcAsbyceEkZ5Pe7_QAxDsAwND7_wxNFwv6_meXoa_bv_O8s76LbKcrEswkW99A1195HN1PD89PvD5BfhKQcv-9jxdeI5103hAJo_DEWVzoyB-9m8aL79uvHz0-r6XKuVit8FEvH8Ts3xiKuFs9WJzCD8fQcQ_yLZ2c9oKp1-FBZ1T9En_f3jt5-IKnlAjEQKI1EapAWZ8YKy0pNDdMe7pyHwMBoZyF9kY5Ky_OQaImaK891SYUTVirtnWCP0Fbbte4xwr6ucl0VxjHDAo9YrWwhaElV4Qv4apmhl-vf31xMzBoNZCRBSM2VkDI0D5LZjAhs2PFB1580SbkabTgAjDJlqCupzqXXldfcemWEcrrK0Osg1ybo7Ngro9LRA5hoYL9qZkJySFNZITO0s5Zrk5R5aK6EmqEXm9eghmFvRbWuu4Qx4Dkglaxz_uTfn3iKbhUQF001kztoa-wv3TN0w3wdz4b-ecLvb4nH_iM
  priority: 102
  providerName: ProQuest
Title Light Gradient Boosting Machine-Based Low–Slow–Small Target Detection Algorithm for Airborne Radar
URI https://www.proquest.com/docview/3059707769
https://www.proquest.com/docview/3153625805
https://doaj.org/article/bc5a3913ac1e41b09fb6fb5dfac7aeb6
Volume 16
WOSCitedRecordID wos001231601100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Collection
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQQYIL4lcsLSsjkDhFjWN7HR93YQtI21XUFqlwsfxLV9omKJsWcUG8A2_IkzB20rIXxIWLE8VOZM2MxzPK528Qeil8HkC3IWPMTzJWWpdpKnnGwTFSK4wnLh0UXojlsjw9ldVWqa-ICevpgXvB7RvL4WVCtSWeEZPLYCbBcBe0FdqbRLadC7mVTCUfTMG0ctbzkVLI6_fbDcQ2YH6x4PnWDpSI-v_mjtMec3AP3R2CQzztJ3Uf3fD1A3R7qFN-9u0hCouYS-O3bQJqdXjWNJuIW8aHCRPpsxlsSg4vmq-_fvw8XveXc71e45OE-MZvfJewVzWerj837ao7O8cQtuLpqgVjqD0-0k63j9CHg_nJ63fZUCkhsxDfdJk0IGROrROOMkMsNQHufID93BrvIOuQnkjH85gfiZLrwA0jwgsntQle0Mdop25q_wThUE5yMymsp5ZG-q9Su0IQRnQRCvgqG6EXV9JTX3pCDAWJRJSx-iPjEZpFwV6PiCTW6QGoVg2qVf9S7Qi9impRcal1rbZ6ODEAE42kVWoqJIfskhZyhPauNKeGNbhR4MmkiGxF0P38uhtWT_wlomvfXMAYcPiQAZY5f_o_ZryL7hQQ9PSAyD2007UX_hm6ZS-71aYdo5uz-bI6GidTHUeU6XFsv8-hrfgn6K_eH1YffwMrkvdS
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVK58EYsFDACxClqEifr-IDQLqV01d3VChapPQU_20rbpCQpVW_8B_4HP4pfwjiPLRe49cApUWJZfnz-ZsYezwC8ZMa3OLfWiyIz8KJEaU9QHnsxEiNVTJpA1xeFJ2w2S_b3-XwNfnZ3YZxbZceJNVHrXLk98i3EJWcu9gx_e_rVc1mj3Olql0KjgcWeuThHk618M97G-X0VhjvvF-92vTargKdQF6g8LrFBMVWaaRrJQFFp8c1YlH1KGo0aOjcB17HvbAmWxMLGMgqYYZoLaQ2jWO81WI8Q7H4P1ufj6fxgtavjU4S0HzVxUCnl_lZRok6FsHeJ1v-QfHWCgL-JgVq27dz630blNtxstWgybGB_B9ZMdhc22oTuRxf3wE7cpgP5UNQebRUZ5XnpHLzJtHYeNd4Ipbcmk_z81_cfn5bN40Qsl2RRu8aTbVPVTmoZGS4PscfV0QlB_Z4MjwtcNZkhH4UWxX34fCXdfAC9LM_MQyA2GfhyECpDFXVx0hKhQxZEgQhtiLVGfXjRTXd62kQOSdHicqBIL0HRh5FDwqqEi_Zdf8iLw7Qlj1SqGBdQQIUKTBRIn1s5sDLWVigmjBz04bXDUeo4qSqEEu3VCmyoi-6VDhmP0QynIe_DZoejtCWrMr0EUR-er34jzbizI5GZ_AzLoGREUznx40f_ruIZbOwuppN0Mp7tPYYbIeqAjX_oJvSq4sw8gevqW3VcFk_btUPgy1UD8zebeV1z
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKQI2vBGBAoMAsbJie-yMZ4FQQghETaMIilRWZp5tpdQutkvVHf_A3_A5fAl3_EjZwK4LVrbs0cjjOfc1c-ZegOfM-Bbn1npRZIZelCjtCcpjL0bFSBWTJtD1QeE5WyySvT2-3ICf3VkYR6vsdGKtqHWu3Br5AHHJmcs9wwe2pUUsJ9PXx189V0HK7bR25TQaiGybs1MM38pXswnO9YswnL7dffPeaysMeAr9gsrjEj8upkozTSMZKCot3hmLdlBJo9Fb5ybgOvZdXMGSWNhYRgEzTHMhrWEU-70Em8zV7-3B5nK2s_y8XuHxKcLbj5qcqJRyf1CU6F-hCLii639YwbpYwN9MQm3npjf-5z90E6633jUZNeJwCzZMdhuutoXeD87ugJ27xQjyrqiZbhUZ53npiN9kpyaVGm-MVl2TeX766_uPj6vmciRWK7JbU-bJxFQ1eS0jo9U-jrg6OCLo95PRYYHSlBnyQWhR3IVPFzLMe9DL8szcB2KToS-HoTJUUZc_LRE6ZEEUiNCG2GvUh2fd1KfHTUaRFCMxB5D0HCB9GDtUrFu4LOD1g7zYT1ulkkoVo2AFVKjARIH0uZVDK2NthWLCyGEfXjpMpU5XVYVQoj1ygR_qsn6lI8ZjDM9pyPuw1WEqbZVYmZ4Dqg9P169R_bg9JZGZ_ATboMXEEDrx4wf_7uIJXEE0pvPZYvshXAvRNWxoo1vQq4oT8wguq2_VYVk8bsWIwJeLxuVvPoxmPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light+Gradient+Boosting+Machine-Based+Low%E2%80%93Slow%E2%80%93Small+Target+Detection+Algorithm+for+Airborne+Radar&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Jing&rft.au=Huang%2C+Pengcheng&rft.au=Zeng%2C+Cao&rft.au=Liao%2C+Guisheng&rft.date=2024-05-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=16&rft.issue=10&rft.spage=1737&rft_id=info:doi/10.3390%2Frs16101737&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs16101737
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon