New formulas for the linearization coefficients of some nonsymmetric Jacobi polynomials

The main aim of this paper is to develop four innovative linearization formulas for some nonsymmetric Jacobi polynomials. This means that we find the coefficients of the products of Jacobi polynomials of certain parameters. In general, these coefficients are expressed in terms of certain hypergeomet...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in difference equations Ročník 2015; číslo 1; s. 1 - 13
Hlavní autor: Abd-Elhameed, Waleed M
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 04.06.2015
Springer Nature B.V
Témata:
ISSN:1687-1847, 1687-1839, 1687-1847
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The main aim of this paper is to develop four innovative linearization formulas for some nonsymmetric Jacobi polynomials. This means that we find the coefficients of the products of Jacobi polynomials of certain parameters. In general, these coefficients are expressed in terms of certain hypergeometric functions of the unit argument. We employ some symbolic algebraic computations such as the algorithms of Zeilberger, Petkovsek and van Hoeij for reducing such coefficients. Moreover, and based on a certain Whipple transformation, two new closed formulas for summing certain terminating hypergeometric functions of the unit argument are deduced. New formulas for some definite integrals are given with the aid of the derived linearization formulas.
AbstractList The main aim of this paper is to develop four innovative linearization formulas for some nonsymmetric Jacobi polynomials. This means that we find the coefficients of the products of Jacobi polynomials of certain parameters. In general, these coefficients are expressed in terms of certain hypergeometric functions of the unit argument. We employ some symbolic algebraic computations such as the algorithms of Zeilberger, Petkovsek and van Hoeij for reducing such coefficients. Moreover, and based on a certain Whipple transformation, two new closed formulas for summing certain terminating hypergeometric functions of the unit argument are deduced. New formulas for some definite integrals are given with the aid of the derived linearization formulas.
ArticleNumber 168
Author Abd-Elhameed, Waleed M
Author_xml – sequence: 1
  givenname: Waleed M
  surname: Abd-Elhameed
  fullname: Abd-Elhameed, Waleed M
  email: walee_9@yahoo.com
  organization: Department of Mathematics, Faculty of Science, University of Jeddah, Department of Mathematics, Faculty of Science, Cairo University
BookMark eNp9kE1LAzEQhoNUsK3-AG8BL15Wk_3IJkcpflL0ongM2exEU3aTmmyR-utNrYdS0NO8h_eZGZ4JGjnvAKFTSi4o5ewy0oKxPCO0ykhFRFYeoDFlvM4oL-vRTj5CkxgXhOSi5HyMXh_hExsf-lWn4ibg4R1wZx2oYL_UYL3D2oMxVltwQ8Te4Oh7wOl-XPc9DMFq_KC0byxe-m7tfG9VF4_RoUkDTn7nFL3cXD_P7rL50-397Gqe6ULkQyYE46Zta01YLoALqmsuRGNIC7pomG4ZYUWudVuZmtdFzmlLG16aQlWgTSOKKTrf7l0G_7GCOMjeRg1dpxz4VZSUE1IKwkqeqmd71YVfBZe-k8lOxTgTPE8tum3p4GMMYOQy2F6FtaREblTLrWqZVMuNalkmpt5jtB1-3A1B2e5fMt-SMV1xbxB2fvoT-gav8pXe
CitedBy_id crossref_primary_10_1002_nme_5505
crossref_primary_10_1007_s13324_017_0183_7
crossref_primary_10_3390_math9131573
crossref_primary_10_1186_s13662_021_03244_9
Cites_doi 10.1088/0305-4470/32/42/308
10.1016/j.cam.2011.03.010
10.1016/j.jsc.2012.12.002
10.4153/CJM-1970-065-4
10.1016/S0022-4049(99)00008-0
10.1016/S0893-9659(00)00146-4
10.1016/S0377-0427(00)00633-6
10.1016/0022-247X(73)90151-0
10.1016/j.aml.2010.01.021
10.1098/rspl.1878.0016
10.1007/s11075-008-9184-9
10.4153/CJM-1981-072-9
10.4153/CJM-1971-033-6
10.1016/S0377-0427(00)00679-8
10.1017/CBO9781107325937
10.1007/978-3-322-92918-1
10.7146/math.scand.a-10527
10.4153/CJM-1970-020-2
ContentType Journal Article
Copyright Abd-Elhameed 2015
The Author(s) 2015
Copyright_xml – notice: Abd-Elhameed 2015
– notice: The Author(s) 2015
DBID C6C
AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1186/s13662-015-0509-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1687-1847
EndPage 13
ExternalDocumentID 3704191491
10_1186_s13662_015_0509_4
Genre Feature
GroupedDBID -A0
23M
2WC
3V.
4.4
40G
5GY
5VS
6J9
8FE
8FG
8R4
8R5
AAFWJ
AAYZJ
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ADBBV
ADINQ
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHSBF
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DWQXO
EBS
EJD
ESX
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M0N
M7S
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
TUS
U2A
UPT
~8M
AAYXX
AFFHD
CITATION
OVT
PHGZM
PHGZT
PQGLB
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c392t-9968fdd7c0629e891c7899bf0dec3b6cd60632ccd5f7873281d1b84f3a5ecfb93
IEDL.DBID M7S
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000356344500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-1847
1687-1839
IngestDate Fri Sep 05 13:05:15 EDT 2025
Tue Sep 30 18:38:13 EDT 2025
Sat Nov 29 05:35:16 EST 2025
Tue Nov 18 21:41:36 EST 2025
Fri Feb 21 02:35:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Jacobi polynomials
42C10
33C25
hypergeometric functions
recurrence relations
33D45
symbolic computation
33A50
linearization coefficients
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-9968fdd7c0629e891c7899bf0dec3b6cd60632ccd5f7873281d1b84f3a5ecfb93
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.proquest.com/docview/1685686982?pq-origsite=%requestingapplication%
PQID 1685686982
PQPubID 237355
PageCount 13
ParticipantIDs proquest_miscellaneous_1800490648
proquest_journals_1685686982
crossref_primary_10_1186_s13662_015_0509_4
crossref_citationtrail_10_1186_s13662_015_0509_4
springer_journals_10_1186_s13662_015_0509_4
PublicationCentury 2000
PublicationDate 2015-06-04
PublicationDateYYYYMMDD 2015-06-04
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-04
  day: 04
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Advances in difference equations
PublicationTitleAbbrev Adv Differ Equ
PublicationYear 2015
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Sánchez-Ruiz, Artés, Martínez-Finkelshtein, Dehesa (CR16) 1999; 32
Chaggara, Koepf (CR10) 2010; 23
Dehesa, Martínez-Finkelshtein, Sánchez-Ruiz (CR1) 2001; 133
Gasper (CR8) 1970; 22
CR11
Gasper (CR27) 1973; 42
Askey, Gasper (CR6) 1971; 23
Abramowitz, Stegun (CR22) 1970
Maroni, da Rocha (CR14) 2008; 47
Chaggara, Koepf (CR20) 2011; 236
Abd-Elhameed, Doha, Ahmed (CR13) 2015
CR2
Belmehdi, Lewanowicz, Ronveaux (CR19) 1997; 24
Andrews, Askey, Roy (CR23) 1999
Abd-Elhameed (CR12) 2015
Area, Godoy, Ronveaux, Zarzo (CR18) 2001; 136
Rainville (CR24) 1960
van Hoeij (CR29) 1998; 139
Hylleraas (CR5) 1962; 10
Sánchez-Ruiz, Dehesa (CR17) 2001; 133
Adams (CR4) 1878; 27
Foupouagnigni, Koepf, Tcheutia (CR21) 2013; 53
Ferrers (CR3) 1877
Doha, Abd-Elhameed, Ahmed (CR25) 2012; 38
Rahman (CR9) 1981; 33
Sánchez-Ruiz (CR15) 2001; 14
Mason, Handscomb (CR26) 2003
Gasper (CR7) 1970; 22
Koepf (CR28) 1998
509_CR2
P Maroni (509_CR14) 2008; 47
J Sánchez-Ruiz (509_CR17) 2001; 133
JC Mason (509_CR26) 2003
J Sánchez-Ruiz (509_CR15) 2001; 14
R Askey (509_CR6) 1971; 23
(509_CR22) 1970
M Hoeij van (509_CR29) 1998; 139
W Koepf (509_CR28) 1998
I Area (509_CR18) 2001; 136
GE Andrews (509_CR23) 1999
JS Dehesa (509_CR1) 2001; 133
NM Ferrers (509_CR3) 1877
H Chaggara (509_CR10) 2010; 23
M Rahman (509_CR9) 1981; 33
509_CR11
WM Abd-Elhameed (509_CR12) 2015
J Sánchez-Ruiz (509_CR16) 1999; 32
G Gasper (509_CR7) 1970; 22
EA Hylleraas (509_CR5) 1962; 10
ED Rainville (509_CR24) 1960
JC Adams (509_CR4) 1878; 27
G Gasper (509_CR27) 1973; 42
WM Abd-Elhameed (509_CR13) 2015
H Chaggara (509_CR20) 2011; 236
EH Doha (509_CR25) 2012; 38
S Belmehdi (509_CR19) 1997; 24
G Gasper (509_CR8) 1970; 22
M Foupouagnigni (509_CR21) 2013; 53
References_xml – volume: 32
  start-page: 7345
  year: 1999
  end-page: 7366
  ident: CR16
  article-title: General linearization formulae for products of continuous hypergeometric-type polynomials
  publication-title: J. Phys. A, Math. Gen.
  doi: 10.1088/0305-4470/32/42/308
– volume: 236
  start-page: 65
  year: 2011
  end-page: 73
  ident: CR20
  article-title: On linearization and connection coefficients for generalized Hermite polynomials
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2011.03.010
– year: 1970
  ident: CR22
  publication-title: Handbook of Mathematical Functions
– volume: 53
  start-page: 96
  year: 2013
  end-page: 118
  ident: CR21
  article-title: Connection and linearization coefficients of the Askey-Wilson polynomials
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2012.12.002
– volume: 22
  start-page: 582
  year: 1970
  end-page: 593
  ident: CR8
  article-title: A linearization of the product of Jacobi polynomials II
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1970-065-4
– volume: 139
  start-page: 109
  year: 1998
  end-page: 131
  ident: CR29
  article-title: Finite singularities and hypergeometric solutions of linear recurrence equations
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/S0022-4049(99)00008-0
– ident: CR2
– volume: 14
  start-page: 261
  year: 2001
  end-page: 267
  ident: CR15
  article-title: Linearization and connection formulae involving squares of Gegenbauer polynomials
  publication-title: Appl. Math. Lett.
  doi: 10.1016/S0893-9659(00)00146-4
– volume: 133
  start-page: 23
  year: 2001
  end-page: 46
  ident: CR1
  article-title: Quantum information entropies and orthogonal polynomials
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(00)00633-6
– year: 1877
  ident: CR3
  publication-title: An Elementary Treatise on Spherical Harmonics and Subjects Connected with Them
– volume: 42
  start-page: 438
  year: 1973
  end-page: 451
  ident: CR27
  article-title: Nonnegativity of a discrete Poisson kernel for the Hahn polynomials
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(73)90151-0
– volume: 23
  start-page: 609
  year: 2010
  end-page: 614
  ident: CR10
  article-title: On linearization coefficients of Jacobi polynomials
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2010.01.021
– volume: 27
  start-page: 63
  year: 1878
  end-page: 71
  ident: CR4
  article-title: On the expression of the product of any two Legendre’s coefficients by means of a series of Legendre’s coefficients
  publication-title: Proc. R. Soc. Lond.
  doi: 10.1098/rspl.1878.0016
– volume: 47
  start-page: 291
  year: 2008
  end-page: 314
  ident: CR14
  article-title: Connection coefficients between orthogonal polynomials and the canonical sequence: an approach based on symbolic computation
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-008-9184-9
– volume: 33
  start-page: 915
  year: 1981
  end-page: 928
  ident: CR9
  article-title: A non-negative representation of the linearization coefficients of the product of Jacobi polynomials
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1981-072-9
– volume: 24
  start-page: 445
  year: 1997
  end-page: 455
  ident: CR19
  article-title: Linearization of products of orthogonal polynomials of a discrete variable
  publication-title: Appl. Math.
– year: 1960
  ident: CR24
  publication-title: Special Functions
– volume: 23
  start-page: 332
  year: 1971
  end-page: 338
  ident: CR6
  article-title: Linearization of the product of Jacobi polynomials III
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1971-033-6
– volume: 136
  start-page: 152
  year: 2001
  end-page: 162
  ident: CR18
  article-title: Solving connection and linearization problems within the Askey scheme and its -analogue via inversion formulas
  publication-title: J. Comput. Appl. Math.
– year: 2015
  ident: CR12
  article-title: New product and linearization formulae of Jacobi polynomials of certain parameters
  publication-title: Integral Transforms Spec. Funct.
– ident: CR11
– volume: 133
  start-page: 579
  year: 2001
  end-page: 591
  ident: CR17
  article-title: Some connection and linearization problems for polynomials in and beyond the Askey scheme
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(00)00679-8
– year: 1999
  ident: CR23
  publication-title: Special Functions
  doi: 10.1017/CBO9781107325937
– volume: 10
  start-page: 189
  year: 1962
  end-page: 200
  ident: CR5
  article-title: Linearization of products of Jacobi polynomials
  publication-title: Math. Scand.
– volume: 38
  start-page: 739
  year: 2012
  end-page: 766
  ident: CR25
  article-title: The coefficients of differentiated expansions of double and triple Jacobi polynomials
  publication-title: Bull. Iran. Math. Soc.
– year: 2015
  ident: CR13
  article-title: Linearization formulae for certain Jacobi polynomials
  publication-title: Ramanujan J.
– year: 1998
  ident: CR28
  publication-title: Hypergeometic Summation
  doi: 10.1007/978-3-322-92918-1
– volume: 22
  start-page: 172
  year: 1970
  end-page: 175
  ident: CR7
  article-title: A linearization of the product of Jacobi polynomials I
  publication-title: Can. J. Math.
– year: 2003
  ident: CR26
  publication-title: Chebyshev Polynomials
– volume: 10
  start-page: 189
  year: 1962
  ident: 509_CR5
  publication-title: Math. Scand.
  doi: 10.7146/math.scand.a-10527
– volume: 32
  start-page: 7345
  year: 1999
  ident: 509_CR16
  publication-title: J. Phys. A, Math. Gen.
  doi: 10.1088/0305-4470/32/42/308
– volume: 136
  start-page: 152
  year: 2001
  ident: 509_CR18
  publication-title: J. Comput. Appl. Math.
– volume: 47
  start-page: 291
  year: 2008
  ident: 509_CR14
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-008-9184-9
– volume: 42
  start-page: 438
  year: 1973
  ident: 509_CR27
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(73)90151-0
– volume: 38
  start-page: 739
  year: 2012
  ident: 509_CR25
  publication-title: Bull. Iran. Math. Soc.
– ident: 509_CR11
– volume: 133
  start-page: 579
  year: 2001
  ident: 509_CR17
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(00)00679-8
– volume: 22
  start-page: 582
  year: 1970
  ident: 509_CR8
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1970-065-4
– volume: 22
  start-page: 172
  year: 1970
  ident: 509_CR7
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1970-020-2
– volume-title: Hypergeometic Summation
  year: 1998
  ident: 509_CR28
  doi: 10.1007/978-3-322-92918-1
– volume: 24
  start-page: 445
  year: 1997
  ident: 509_CR19
  publication-title: Appl. Math.
– volume-title: Handbook of Mathematical Functions
  year: 1970
  ident: 509_CR22
– ident: 509_CR2
– volume: 53
  start-page: 96
  year: 2013
  ident: 509_CR21
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2012.12.002
– volume: 23
  start-page: 609
  year: 2010
  ident: 509_CR10
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2010.01.021
– volume-title: Chebyshev Polynomials
  year: 2003
  ident: 509_CR26
– volume: 23
  start-page: 332
  year: 1971
  ident: 509_CR6
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1971-033-6
– volume: 236
  start-page: 65
  year: 2011
  ident: 509_CR20
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2011.03.010
– volume-title: Special Functions
  year: 1960
  ident: 509_CR24
– volume: 33
  start-page: 915
  year: 1981
  ident: 509_CR9
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1981-072-9
– year: 2015
  ident: 509_CR12
  publication-title: Integral Transforms Spec. Funct.
– year: 2015
  ident: 509_CR13
  publication-title: Ramanujan J.
– volume: 139
  start-page: 109
  year: 1998
  ident: 509_CR29
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/S0022-4049(99)00008-0
– volume-title: An Elementary Treatise on Spherical Harmonics and Subjects Connected with Them
  year: 1877
  ident: 509_CR3
– volume: 27
  start-page: 63
  year: 1878
  ident: 509_CR4
  publication-title: Proc. R. Soc. Lond.
  doi: 10.1098/rspl.1878.0016
– volume-title: Special Functions
  year: 1999
  ident: 509_CR23
  doi: 10.1017/CBO9781107325937
– volume: 14
  start-page: 261
  year: 2001
  ident: 509_CR15
  publication-title: Appl. Math. Lett.
  doi: 10.1016/S0893-9659(00)00146-4
– volume: 133
  start-page: 23
  year: 2001
  ident: 509_CR1
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(00)00633-6
SSID ssj0029488
Score 2.0536978
Snippet The main aim of this paper is to develop four innovative linearization formulas for some nonsymmetric Jacobi polynomials. This means that we find the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algebra
Algorithms
Analysis
Difference and Functional Equations
Formulas (mathematics)
Functional Analysis
Hypergeometric functions
Linearization
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Polynomials
Stopping
Transformations (mathematics)
Title New formulas for the linearization coefficients of some nonsymmetric Jacobi polynomials
URI https://link.springer.com/article/10.1186/s13662-015-0509-4
https://www.proquest.com/docview/1685686982
https://www.proquest.com/docview/1800490648
Volume 2015
WOSCitedRecordID wos000356344500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-1847
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0029488
  issn: 1687-1847
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1687-1847
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0029488
  issn: 1687-1847
  databaseCode: P5Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1687-1847
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0029488
  issn: 1687-1847
  databaseCode: K7-
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1687-1847
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0029488
  issn: 1687-1847
  databaseCode: M7S
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1687-1847
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0029488
  issn: 1687-1847
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1687-1847
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0029488
  issn: 1687-1847
  databaseCode: PIMPY
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B2wMceBQqtpSVkXoCWY3zcJwTAtQKaLuKaBGFS-SMHalSd7NtdpH675nxZrcFiV64WJFsx1FmPP7G8wLYVXTMRM5n0ikOyXEapUXaeCT6Gksck_osBAof5aOROTsryv7CrevdKpcyMQhq1yLfke8pbTJtdGHid9NLyVWj2Lral9C4D-ucJUEF172TlcJVpKHuJE3NJSOB3qqpjN7rVKI1OyVkkjOgyPTPc-kGbP5lHw3HzsHj__3gJ_CoB5zi_YJDnsI9P9mEh7fSED6D7yTpBIPXOUFpfhCECgXjT1KkF2GaAlsfkk2w34VoG9G1Yy8mxLLX4zEX5ULxhWRrfS6m7cU1hzoTWz-Hbwf7px8_yb7ggkSCSTNJuo9pnMsx0nHhTaEwJ3WsboiYmNQaHWk7SYzosob2eRIT1lW1SZvEZh6buki2YI1W9i9AOGVsUhgXmcKn1mVWx1YZj5YACLokH0C0_N0V9tnIuSjGRRW0EqOrBYUqolDFFKrSAbxZTZkuUnHcNXhnSZWq35VddUOSAbxeddN-YiOJnfh2TmNMMIbq1Azg7ZL2t17xrwW3717wJTyIA7NpGaU7sDa7mvtXsIG_Zufd1RDWP-yPyq_DcCNA7WEuh4GVqS2zn9Rffj4uf_wGLH758w
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VLRJwKJ8VCwWMBBeQ1ThxHOeAEAKqli4rDkX0ZhzbkSp1N8tmF7R_it_IjDfZFiR664FbJDuxE78Zv8l4ZgCeC9xmEh9y7gWF5HjluHUoeKj6aouIkSGPgcLDYjTSJyfl5w341cfC0LHKXidGRe0bR__I94TSudKq1Omb6XdOVaPIu9qX0FjB4igsf6LJ1r4-fI_r-yJN9z8cvzvgXVUB7pALzDkSfF17X7hEpWXQpXAF2hxVjTN2WaWcR0qfpc75vEYwZykSOlFpWWc2D66uKPkSqvwtmWEjOYELvjbwShnrXOJUC07Mo_OiCq32WpEpRYcgck4ZV7j8cx88J7d_-WPjNrd_63_7QLdhuyPU7O1KAu7ARpjchZsX0izeg6-oyRmR8wWaCnTBkPUy4td21oWhMteEmEyDzpWwpmZtMw5sgiK5HI-p6JhjH3HvqE7ZtDlbUig3iu19-HIlb7YDmzhyeADMC22zUvtEl0Fan1uVWqGDs0iwnM-KAST98hrXZVunoh9nJlpdWpkVIgwiwhAijBzAy_Ut01Wqkcs67_YoMJ3Wac05BAbwbN2M-oKcQHYSmgX20dHZq6QewKseaxce8a8BH14-4FO4fnD8aWiGh6OjR3AjjUBXPJG7sDmfLcJjuOZ-zE_b2ZMoMgy-XTUEfwOnfFHt
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VLUJwaHlVLBQwElxA1sZ5OM6hqhBlRWm12gOIiotxbEeq1N0sm13Q_jV-XWe8ybYg0VsP3CLlYSf-ZvxN5gXwSuA2EzmfcScoJcdJy41FwUPVVxlETOqzkCh8kg-H6vS0GG3A7y4XhsIqO50YFLWrLf0j7wupMqlkoeJ-1YZFjA4HB9MfnDpIkae1a6exgsixX_5C863ZPzrEtX4dx4MPn99_5G2HAW6RF8w5kn1VOZfbSMaFV4WwOdofZYWzt0kprUN6n8TWuqxCYCcxkjtRqrRKTOZtVVIhJlT_WznamBROOMq-rY29Ig09L3HaOScW0npUhZL9RiRSUkBExqn6Ck__3BMvie5fvtmw5Q12_uePdQ-2W6LN3q0k4z5s-MkDuHul_OJD-IoanhFpX6AJQQcM2TAj3m1mbXoqs7UPRTYo3oTVFWvqsWcTFNXleEzNyCz7hHtKecam9fmSUrxRnB_Blxt5s13YxJH9Y2BOKJMUykWq8KlxmZGxEcpbg8TLuiTvQdQttbZtFXZqBnKugzWmpF6hQyM6NKFDpz14s75luipBct3Fex0idKuNGn0Jhx68XJ9GPULOITPx9QKvUcEJLFPVg7cd7q484l8DPrl-wBdwG5GnT46Gx0_hThwwL3mU7sHmfLbwz-CW_Tk_a2bPg_Qw-H7TCLwAeY9bEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+formulas+for+the+linearization+coefficients+of+some+nonsymmetric+Jacobi+polynomials&rft.jtitle=Advances+in+difference+equations&rft.au=Abd-Elhameed%2C+Waleed+M&rft.date=2015-06-04&rft.eissn=1687-1847&rft.volume=2015&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1186%2Fs13662-015-0509-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1847&client=summon