Strength prediction of concrete-filled steel tubular columns using Categorical Gradient Boosting algorithm

•Categorical gradient Boosting (CatBoost) is presented to predict the strength of concrete-filled steel tubular columns.•A total of 3103 tests, which is divided in four datasets, is collected to train and test the learners•The comparison of the present results and those from the code predictions sho...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering structures Ročník 238; s. 112109
Hlavní autoři: Lee, Seunghye, Vo, Thuc P., Thai, Huu-Tai, Lee, Jaehong, Patel, Vipulkumar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.07.2021
Elsevier BV
Témata:
ISSN:0141-0296, 1873-7323
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Categorical gradient Boosting (CatBoost) is presented to predict the strength of concrete-filled steel tubular columns.•A total of 3103 tests, which is divided in four datasets, is collected to train and test the learners•The comparison of the present results and those from the code predictions shows very high prediction accuracy•The coefficient of determination (R2), which is the lowest value (R2 = 0.964) for Dataset 2 and the highest one (R2 = 0.996) for Dataset 1. Due to complexities from the interaction between steel tube and concrete filling of concrete-filled steel tubular (CFST) columns, their strengths are very complicated, which is a highly nonlinear relation with material strengths and geometry. Categorical gradient Boosting (CatBoost), which is advanced boosting machine, is presented to solve the problems. A total of 3103 tests, which is divided in four datasets, is trained and tested the learners to determine the ultimate axial strength as the output variable while the strength of materials (concrete and steel) and geometry (e.g., diameters/width/heights, thickness, effective length, eccentricities) are the input ones. The comparison of the present results from 10-fold cross validation and those from the code predictions (AISC 360-16, Eurocode 4 and AS/NZS 2327) and previous study shows very high prediction accuracy in terms of coefficient of determination (R2), which is the lowest value (R2 = 0.964) for Dataset 2 and the highest one (R2 = 0.996) for Dataset 1. While the predictions from three codes beyond material limit and slenderness are less conservative than those within it, CatBoost provides nearly similar experiment results with the mean values as unity without any limits. This algorithm can be used to predict an accurate strength of CFST columns.
AbstractList Due to complexities from the interaction between steel tube and concrete filling of concrete-filled steel tubular (CFST) columns, their strengths are very complicated, which is a highly nonlinear relation with material strengths and geometry. Categorical gradient Boosting (CatBoost), which is advanced boosting machine, is presented to solve the problems. A total of 3103 tests, which is divided in four datasets, is trained and tested the learners to determine the ultimate axial strength as the output variable while the strength of materials (concrete and steel) and geometry (e.g., diameters/width/heights, thickness, effective length, eccentricities) are the input ones. The comparison of the present results from 10-fold cross validation and those from the code predictions (AISC 360-16, Eurocode 4 and AS/NZS 2327) and previous study shows very high prediction accuracy in terms of coefficient of determination (R2), which is the lowest value (R2 = 0.964) for Dataset 2 and the highest one (R2 = 0.996) for Dataset 1. While the predictions from three codes beyond material limit and slenderness are less conservative than those within it, CatBoost provides nearly similar experiment results with the mean values as unity without any limits. This algorithm can be used to predict an accurate strength of CFST columns.
•Categorical gradient Boosting (CatBoost) is presented to predict the strength of concrete-filled steel tubular columns.•A total of 3103 tests, which is divided in four datasets, is collected to train and test the learners•The comparison of the present results and those from the code predictions shows very high prediction accuracy•The coefficient of determination (R2), which is the lowest value (R2 = 0.964) for Dataset 2 and the highest one (R2 = 0.996) for Dataset 1. Due to complexities from the interaction between steel tube and concrete filling of concrete-filled steel tubular (CFST) columns, their strengths are very complicated, which is a highly nonlinear relation with material strengths and geometry. Categorical gradient Boosting (CatBoost), which is advanced boosting machine, is presented to solve the problems. A total of 3103 tests, which is divided in four datasets, is trained and tested the learners to determine the ultimate axial strength as the output variable while the strength of materials (concrete and steel) and geometry (e.g., diameters/width/heights, thickness, effective length, eccentricities) are the input ones. The comparison of the present results from 10-fold cross validation and those from the code predictions (AISC 360-16, Eurocode 4 and AS/NZS 2327) and previous study shows very high prediction accuracy in terms of coefficient of determination (R2), which is the lowest value (R2 = 0.964) for Dataset 2 and the highest one (R2 = 0.996) for Dataset 1. While the predictions from three codes beyond material limit and slenderness are less conservative than those within it, CatBoost provides nearly similar experiment results with the mean values as unity without any limits. This algorithm can be used to predict an accurate strength of CFST columns.
ArticleNumber 112109
Author Thai, Huu-Tai
Lee, Seunghye
Vo, Thuc P.
Patel, Vipulkumar
Lee, Jaehong
Author_xml – sequence: 1
  givenname: Seunghye
  surname: Lee
  fullname: Lee, Seunghye
  organization: Deep Learning Architecture Research Center, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
– sequence: 2
  givenname: Thuc P.
  surname: Vo
  fullname: Vo, Thuc P.
  email: t.vo@latrobe.edu.au
  organization: School of Engineering and Mathematical Sciences, La Trobe University, Bundoora, VIC 3086, Australia
– sequence: 3
  givenname: Huu-Tai
  surname: Thai
  fullname: Thai, Huu-Tai
  organization: Department of Infrastructure Engineering, The University of Melbourne, Parkville VIC 3010, Australia
– sequence: 4
  givenname: Jaehong
  surname: Lee
  fullname: Lee, Jaehong
  organization: Deep Learning Architecture Research Center, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
– sequence: 5
  givenname: Vipulkumar
  surname: Patel
  fullname: Patel, Vipulkumar
  organization: School of Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3552, Australia
BookMark eNqNkE1v1DAQhi1UJLaF34Alztl67I0THziUFf2QKnGgnC3HGW8deePFdpD493W0iAMXeprD-z4zmueSXMxxRkI-AtsCA3k9bXE-5JIWW7accdgCcGDqDdlA34mmE1xckA2DHTSMK_mOXOY8McZ437MNmb6XVPnyTE8JR2-LjzONjto424QFG-dDwJHmghhoWYYlmFTTsBznTJfs5wPdm4KHmLw1gd4lM3qcC_0SYy5rasKalefje_LWmZDxw595RX7cfn3a3zeP3-4e9jePjRWKl0YpyYdeAu5alFxYAaB6K8UgOrNj0ArppBvGlkvFwULn2mEUSvWt5M5Bi-KKfDrvPaX4c8Fc9BSXNNeTmrdC1R4IWVufzy2bYs4Jnba-mPX9kowPGphe9epJ_9WrV736rLfy3T_8KfmjSb9fQd6cSawSfnlMOtuqzFb9CWt3jP6_O14A92edrA
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2022_129227
crossref_primary_10_1108_ECAM_06_2024_0796
crossref_primary_10_1016_j_measurement_2024_115511
crossref_primary_10_1007_s41062_024_01593_4
crossref_primary_10_1016_j_jcsr_2022_107769
crossref_primary_10_1016_j_engstruct_2021_113803
crossref_primary_10_3390_ma15196624
crossref_primary_10_1002_suco_202100732
crossref_primary_10_1016_j_cscm_2025_e05162
crossref_primary_10_1038_s41598_022_12890_2
crossref_primary_10_3390_make6010020
crossref_primary_10_1007_s10999_023_09695_0
crossref_primary_10_1016_j_engappai_2024_108704
crossref_primary_10_1016_j_istruc_2024_106206
crossref_primary_10_1007_s11085_022_10123_5
crossref_primary_10_1155_2021_6745930
crossref_primary_10_3390_buildings11120629
crossref_primary_10_1016_j_scp_2025_101949
crossref_primary_10_1016_j_cscm_2024_e03935
crossref_primary_10_1016_j_istruc_2025_110119
crossref_primary_10_1016_j_probengmech_2025_103737
crossref_primary_10_1016_j_conbuildmat_2023_133293
crossref_primary_10_1016_j_cscm_2022_e01239
crossref_primary_10_1016_j_istruc_2021_09_060
crossref_primary_10_3389_fbuil_2023_1207193
crossref_primary_10_1088_1361_6501_ad1cc7
crossref_primary_10_1108_EC_06_2024_0507
crossref_primary_10_26599_OCEAN_2025_9470005
crossref_primary_10_1002_smr_2665
crossref_primary_10_1016_j_scitotenv_2023_169239
crossref_primary_10_1016_j_engstruct_2021_113479
crossref_primary_10_1108_IJSI_09_2024_0152
crossref_primary_10_1016_j_scitotenv_2022_159171
crossref_primary_10_1016_j_istruc_2025_109759
crossref_primary_10_3390_buildings14041040
crossref_primary_10_1016_j_conbuildmat_2024_138757
crossref_primary_10_1016_j_euromechsol_2022_104869
crossref_primary_10_1016_j_engstruct_2022_115001
crossref_primary_10_1007_s41939_024_00672_4
crossref_primary_10_1007_s43503_025_00061_x
crossref_primary_10_3390_rs17122000
crossref_primary_10_1016_j_istruc_2022_11_047
crossref_primary_10_3390_su152316337
crossref_primary_10_1016_j_rineng_2025_105071
crossref_primary_10_1109_ACCESS_2024_3491831
crossref_primary_10_3390_ma15144993
crossref_primary_10_5004_dwt_2022_28960
crossref_primary_10_1016_j_istruc_2024_107084
crossref_primary_10_1016_j_tws_2023_110670
crossref_primary_10_1016_j_engstruct_2025_119652
crossref_primary_10_1016_j_jobe_2022_104470
crossref_primary_10_1007_s43452_023_00734_3
crossref_primary_10_3390_app12042165
crossref_primary_10_1016_j_istruc_2023_03_109
crossref_primary_10_1016_j_compstruc_2023_107181
crossref_primary_10_1016_j_measurement_2025_117916
crossref_primary_10_1007_s11356_022_19391_9
crossref_primary_10_1007_s12204_022_2495_5
crossref_primary_10_1177_16878132241293508
crossref_primary_10_1016_j_tws_2024_112669
crossref_primary_10_1177_13694332241281546
crossref_primary_10_1186_s40537_023_00739_y
crossref_primary_10_1002_tal_2111
crossref_primary_10_1016_j_engappai_2025_111935
crossref_primary_10_1016_j_istruc_2024_106461
crossref_primary_10_1016_j_tws_2023_111051
crossref_primary_10_3390_polym15122633
crossref_primary_10_3390_app14177540
crossref_primary_10_1109_ACCESS_2023_3265019
crossref_primary_10_1016_j_engstruct_2022_115370
crossref_primary_10_1016_j_compag_2023_108306
crossref_primary_10_1038_s41598_024_64204_3
crossref_primary_10_1007_s40808_024_02063_7
crossref_primary_10_1016_j_istruc_2022_11_030
crossref_primary_10_1016_j_strusafe_2025_102596
crossref_primary_10_3389_fenvs_2022_1014021
crossref_primary_10_1016_j_conbuildmat_2023_130500
crossref_primary_10_3390_buildings14092967
crossref_primary_10_1016_j_enbuild_2021_111505
crossref_primary_10_1016_j_istruc_2025_108329
crossref_primary_10_1007_s41939_024_00423_5
crossref_primary_10_1016_j_istruc_2022_02_003
crossref_primary_10_1016_j_istruc_2023_02_102
crossref_primary_10_1007_s12145_025_01796_y
crossref_primary_10_3390_ma17143540
crossref_primary_10_3390_ma17143584
crossref_primary_10_1002_suco_202200424
crossref_primary_10_1016_j_istruc_2024_107543
crossref_primary_10_1016_j_rineng_2025_104445
crossref_primary_10_1155_2022_4202084
crossref_primary_10_1016_j_eswa_2024_126096
crossref_primary_10_1016_j_jobe_2022_104279
crossref_primary_10_1007_s11269_025_04152_3
crossref_primary_10_1016_j_jcsr_2022_107653
crossref_primary_10_1016_j_jobe_2022_104316
Cites_doi 10.1023/A:1018054314350
10.1016/j.engstruct.2020.111221
10.1109/TPAMI.2005.159
10.1016/j.jcsr.2019.02.024
10.1016/j.engstruct.2017.01.037
10.1016/j.engstruct.2017.06.016
10.1007/s00366-020-01104-w
10.1016/j.neunet.2015.05.005
10.1016/j.asoc.2019.105837
10.1007/s11704-016-5113-6
10.1080/13287982.2008.11464998
10.1016/S0893-6080(05)80023-1
10.1061/JSDEAG.0002425
10.1061/(ASCE)0733-9445(2004)130:2(180)
10.1007/s40999-016-0096-0
10.1016/j.engstruct.2020.111109
10.1016/j.engstruct.2020.111470
10.1016/j.tws.2020.106720
10.1093/bib/bbr053
10.1016/j.istruc.2016.05.005
10.1016/j.jcsr.2004.05.002
10.1016/j.conbuildmat.2019.117000
10.3390/app9142802
10.1016/S0143-974X(00)00014-6
10.1023/A:1022648800760
10.1016/j.tws.2020.106744
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jul 1, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 1, 2021
DBID AAYXX
CITATION
7SR
7ST
8BQ
8FD
C1K
FR3
JG9
KR7
SOI
DOI 10.1016/j.engstruct.2021.112109
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Engineering Research Database
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7323
ExternalDocumentID 10_1016_j_engstruct_2021_112109
S0141029621002595
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
VH1
WUQ
ZY4
~HD
7SR
7ST
8BQ
8FD
AGCQF
C1K
FR3
JG9
KR7
SOI
ID FETCH-LOGICAL-c392t-9962b861e45e623c31198c63b37a401536f6fbd526921c17f5bd3998562ff15e3
ISICitedReferencesCount 111
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000649652700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0141-0296
IngestDate Wed Aug 13 04:22:22 EDT 2025
Sat Nov 29 07:24:55 EST 2025
Tue Nov 18 22:22:50 EST 2025
Fri Feb 23 02:46:05 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Concrete-filled steel tubular columns
Slenderness ratio
Code predictions
Categorical gradient Boosting (CatBoost)
Material strengths
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c392t-9962b861e45e623c31198c63b37a401536f6fbd526921c17f5bd3998562ff15e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://figshare.com/articles/journal_contribution/Strength_prediction_of_concrete-filled_steel_tubular_columns_using_Categorical_Gradient_Boosting_algorithm/14376713
PQID 2539562136
PQPubID 2045481
ParticipantIDs proquest_journals_2539562136
crossref_citationtrail_10_1016_j_engstruct_2021_112109
crossref_primary_10_1016_j_engstruct_2021_112109
elsevier_sciencedirect_doi_10_1016_j_engstruct_2021_112109
PublicationCentury 2000
PublicationDate 2021-07-01
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Engineering structures
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Tran, Thai, Nguyen (b0145) 2020; 151
Liew JR, Xiong M, Xiong D. Design of concrete filled tubular beam-columns with high strength steel and concrete. In: Structures, Vol. 8, Elsevier; 2016. p. 213–26.
Dorogush AV, Ershov V, Gulin A. Catboost: gradient boosting with categorical features support, ArXiv abs/1810.11363.
Solhmirzaei, Salehi, Kodur, Naser (b0110) 2020; 224
Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. Catboost: unbiased boosting with categorical features, in: Advances in neural information processing systems; 2018. p. 6638–6648.
Tran, Kim (b0140) 2020; 152
Ahmadi, Naderpour, Kheyroddin (b0130) 2017; 15
Dietterich (b0180) 2000
Olalusi, Awoyera (b0115) 2021; 227
Thai, Thai, Uy, Ngo (b0005) 2019; 157
Denavit M. Steel-concrete composite column database.
Knowles, Park (b0015) 1969; 95
Feng, Liu, Wang, Chen, Chang, Wei, Jiang (b0175) 2020; 230
Xiong, Xiong, Liew (b0050) 2017; 136
Feurer M, Eggensperger K, Falkner S, Lindauer M, Hutter F. Auto-sklearn 2.0: The next generation, arXiv preprint arXiv:2007.04074.
Stulp, Sigaud (b0170) 2015; 69
BS5400-5. Steel, concrete and composite bridges. Code of practice for design of composite bridges. British Standards Institute (BSI); 2005.
Wolpert (b0195) 1992; 5
Tao, Brian, Han, He (b0025) 2008; 8
Zhou (b0160) 2012
Ribeiro, dos Santos Coelho (b0205) 2020; 86
Hajjar J, Gourley B, Tort C, Denavit M, Schiller P, Mundis NL. Steel-concrete composite structural systems, Department of Civil and Environmental Engineering, Northeastern University.
Standards Australia. AS/NZS 2327 Composite structures - Composite steel-concrete construction in buildings; 2017.
Klöppel, Goder (b0010) 1957; 26
Goode (b0030) 2008; 86
Mursi, Uy (b0065) 2004; 60
AISC 360–16. Specification for structural steel buildings; 2016.
Schapire (b0190) 1990; 5
Naser, Thai, Thai (b0120) 2020
Du, Chen, Zhang, Cao (b0135) 2017; 11
GB 50936. Technical code for concrete-filled steel tubular structures. China National Standards; 2014.
Boulesteix, Bender, Lorenzo Bermejo, Strobl (b0235) 2011; 13
Dorogush AV, Ershov V, Gulin A. Catboost: gradient boosting with categorical features support, arXiv preprint arXiv:1810.11363.
Peng, Long, Ding (b0230) 2005; 27
Almustafa, Nehdi (b0105) 2020; 221
Bentéjac, Csörgő, Martínez-Muñoz (b0220) 2020
Ren, Li, Zhang, Shen, Si (b0150) 2019; 9
Architectural Institute of Japan (AIJ). Recommendations for design and construction of concrete filled steel tubular structures, Japan; 1997.
EN1994-1-1. Eurocode 4: Design of composite steel and concrete structures - Part 1–1: General rules and rules for buildings; 2004.
Leon, Perea, Hajjar, Denavit (b0035) 2011; 20
Khan, Uy, Tao, Mashiri (b0055) 2017; 147
Friedman (b0200) 2001
Uy (b0060) 2001; 57
Breiman (b0185) 1996; 24
Sakino, Nakahara, Morino, Nishiyama (b0070) 2004; 130
Mai SH, Ben Seghier MEA, Nguyen PL, Jafari-Asl J, Thai DK. A hybrid model for predicting the axial compression capacity of square concrete-filled steel tubular columns. Eng Comput. doi:https://doi.org/10.1007/s00366-020-01104-w.
Jegadesh, Jayalekshmi (b0125) 2015; 8
10.1016/j.engstruct.2021.112109_b0040
Boulesteix (10.1016/j.engstruct.2021.112109_b0235) 2011; 13
10.1016/j.engstruct.2021.112109_b0020
10.1016/j.engstruct.2021.112109_b0085
10.1016/j.engstruct.2021.112109_b0080
Tran (10.1016/j.engstruct.2021.112109_b0140) 2020; 152
Breiman (10.1016/j.engstruct.2021.112109_b0185) 1996; 24
Uy (10.1016/j.engstruct.2021.112109_b0060) 2001; 57
Solhmirzaei (10.1016/j.engstruct.2021.112109_b0110) 2020; 224
Dietterich (10.1016/j.engstruct.2021.112109_b0180) 2000
Tao (10.1016/j.engstruct.2021.112109_b0025) 2008; 8
Ahmadi (10.1016/j.engstruct.2021.112109_b0130) 2017; 15
Wolpert (10.1016/j.engstruct.2021.112109_b0195) 1992; 5
Olalusi (10.1016/j.engstruct.2021.112109_b0115) 2021; 227
Khan (10.1016/j.engstruct.2021.112109_b0055) 2017; 147
Zhou (10.1016/j.engstruct.2021.112109_b0160) 2012
Knowles (10.1016/j.engstruct.2021.112109_b0015) 1969; 95
Goode (10.1016/j.engstruct.2021.112109_b0030) 2008; 86
Friedman (10.1016/j.engstruct.2021.112109_b0200) 2001
10.1016/j.engstruct.2021.112109_b0215
Mursi (10.1016/j.engstruct.2021.112109_b0065) 2004; 60
Almustafa (10.1016/j.engstruct.2021.112109_b0105) 2020; 221
Du (10.1016/j.engstruct.2021.112109_b0135) 2017; 11
Thai (10.1016/j.engstruct.2021.112109_b0005) 2019; 157
10.1016/j.engstruct.2021.112109_b0155
10.1016/j.engstruct.2021.112109_b0210
Bentéjac (10.1016/j.engstruct.2021.112109_b0220) 2020
10.1016/j.engstruct.2021.112109_b0095
Naser (10.1016/j.engstruct.2021.112109_b0120) 2020
Leon (10.1016/j.engstruct.2021.112109_b0035) 2011; 20
10.1016/j.engstruct.2021.112109_b0075
Tran (10.1016/j.engstruct.2021.112109_b0145) 2020; 151
10.1016/j.engstruct.2021.112109_b0090
Schapire (10.1016/j.engstruct.2021.112109_b0190) 1990; 5
Ren (10.1016/j.engstruct.2021.112109_b0150) 2019; 9
Stulp (10.1016/j.engstruct.2021.112109_b0170) 2015; 69
Peng (10.1016/j.engstruct.2021.112109_b0230) 2005; 27
Sakino (10.1016/j.engstruct.2021.112109_b0070) 2004; 130
Feng (10.1016/j.engstruct.2021.112109_b0175) 2020; 230
Klöppel (10.1016/j.engstruct.2021.112109_b0010) 1957; 26
Ribeiro (10.1016/j.engstruct.2021.112109_b0205) 2020; 86
Jegadesh (10.1016/j.engstruct.2021.112109_b0125) 2015; 8
Xiong (10.1016/j.engstruct.2021.112109_b0050) 2017; 136
10.1016/j.engstruct.2021.112109_b0225
10.1016/j.engstruct.2021.112109_b0165
10.1016/j.engstruct.2021.112109_b0045
10.1016/j.engstruct.2021.112109_b0100
References_xml – volume: 5
  start-page: 241
  year: 1992
  end-page: 259
  ident: b0195
  article-title: Stacked generalization
  publication-title: Neural Networks
– volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  ident: b0230
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 136
  start-page: 494
  year: 2017
  end-page: 510
  ident: b0050
  article-title: Axial performance of short concrete filled steel tubes with high-and ultra-high-strength materials
  publication-title: Eng Struct
– reference: Mai SH, Ben Seghier MEA, Nguyen PL, Jafari-Asl J, Thai DK. A hybrid model for predicting the axial compression capacity of square concrete-filled steel tubular columns. Eng Comput. doi:https://doi.org/10.1007/s00366-020-01104-w.
– volume: 221
  start-page: 111109
  year: 2020
  ident: b0105
  article-title: Machine learning model for predicting structural response of RC slabs exposed to blast loading
  publication-title: Eng Struct
– volume: 157
  start-page: 161
  year: 2019
  end-page: 181
  ident: b0005
  article-title: Concrete-filled steel tubular columns: Test database, design and calibration
  publication-title: J Constr Steel Res
– start-page: 101888
  year: 2020
  ident: b0120
  article-title: Evaluating structural response of concrete-filled steel tubular columns through machine learning
  publication-title: J Build Eng
– volume: 15
  start-page: 213
  year: 2017
  end-page: 221
  ident: b0130
  article-title: ANN model for predicting the compressive strength of circular steel-confined concrete
  publication-title: Int J Civil Eng
– volume: 8
  start-page: 197
  year: 2008
  end-page: 214
  ident: b0025
  article-title: Design of concrete-filled steel tubular members according to the australian standard as 5100 model and calibration
  publication-title: Austral J Struct Eng
– volume: 147
  start-page: 458
  year: 2017
  end-page: 472
  ident: b0055
  article-title: Behaviour and design of short high-strength steel welded box and concrete-filled tube (CFT) sections
  publication-title: Eng Struct
– volume: 8
  start-page: 35
  year: 2015
  end-page: 42
  ident: b0125
  article-title: Application of artificial neural network for calculation of axial capacity of circular concrete filled steel tubular columns
  publication-title: Int J Earth Sci Eng
– reference: Denavit M. Steel-concrete composite column database.
– year: 2012
  ident: b0160
  article-title: Ensemble methods: foundations and algorithms
– reference: BS5400-5. Steel, concrete and composite bridges. Code of practice for design of composite bridges. British Standards Institute (BSI); 2005.
– volume: 224
  start-page: 111221
  year: 2020
  ident: b0110
  article-title: Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams
  publication-title: Eng Struct
– reference: Hajjar J, Gourley B, Tort C, Denavit M, Schiller P, Mundis NL. Steel-concrete composite structural systems, Department of Civil and Environmental Engineering, Northeastern University.
– volume: 13
  start-page: 292
  year: 2011
  end-page: 304
  ident: b0235
  article-title: Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations
  publication-title: Brief Bioinform
– volume: 151
  start-page: 106720
  year: 2020
  ident: b0145
  article-title: Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete
  publication-title: Thin-Wall Struct
– volume: 60
  start-page: 1825
  year: 2004
  end-page: 1848
  ident: b0065
  article-title: Strength of slender concrete filled high strength steel box columns
  publication-title: J Constr Steel Res
– volume: 69
  start-page: 60
  year: 2015
  end-page: 79
  ident: b0170
  article-title: Many regression algorithms, one unified model: A review
  publication-title: Neural Networks
– volume: 86
  start-page: 105837
  year: 2020
  ident: b0205
  article-title: Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series
  publication-title: Appl Soft Comput
– volume: 26
  start-page: 1
  year: 1957
  end-page: 10
  ident: b0010
  article-title: Traglastversuche mit ausbetonierten stahlrohen und aufstellung einer bemessungsformel
  publication-title: Der Stahlbau
– reference: Dorogush AV, Ershov V, Gulin A. Catboost: gradient boosting with categorical features support, arXiv preprint arXiv:1810.11363.
– volume: 152
  start-page: 106744
  year: 2020
  ident: b0140
  article-title: Efficiency of three advanced data-driven models for predicting axial compression capacity of CFDST columns
  publication-title: Thin-Wall Struct
– reference: Feurer M, Eggensperger K, Falkner S, Lindauer M, Hutter F. Auto-sklearn 2.0: The next generation, arXiv preprint arXiv:2007.04074.
– volume: 11
  start-page: 863
  year: 2017
  end-page: 873
  ident: b0135
  article-title: Research on axial bearing capacity of rectangular concrete-filled steel tubular columns based on artificial neural networks
  publication-title: Front Comput Sci
– reference: Dorogush AV, Ershov V, Gulin A. Catboost: gradient boosting with categorical features support, ArXiv abs/1810.11363.
– reference: Standards Australia. AS/NZS 2327 Composite structures - Composite steel-concrete construction in buildings; 2017.
– volume: 86
  start-page: 33
  year: 2008
  end-page: 38
  ident: b0030
  article-title: Composite columns-1819 tests on concrete-filled steel tube columns compared with eurocode 4
  publication-title: Struct Eng
– volume: 9
  start-page: 2802
  year: 2019
  ident: b0150
  article-title: Prediction of ultimate axial capacity of square concrete-filled steel tubular short columns using a hybrid intelligent algorithm
  publication-title: Appl Sci
– reference: Liew JR, Xiong M, Xiong D. Design of concrete filled tubular beam-columns with high strength steel and concrete. In: Structures, Vol. 8, Elsevier; 2016. p. 213–26.
– reference: EN1994-1-1. Eurocode 4: Design of composite steel and concrete structures - Part 1–1: General rules and rules for buildings; 2004.
– start-page: 1
  year: 2000
  end-page: 15
  ident: b0180
  article-title: Ensemble methods in machine learning
  publication-title: Multiple Classifier Systems
– reference: GB 50936. Technical code for concrete-filled steel tubular structures. China National Standards; 2014.
– reference: Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. Catboost: unbiased boosting with categorical features, in: Advances in neural information processing systems; 2018. p. 6638–6648.
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: b0185
  article-title: Bagging predictors
  publication-title: Mach Learn
– volume: 5
  start-page: 197
  year: 1990
  end-page: 227
  ident: b0190
  article-title: The strength of weak learnability
  publication-title: Mach Learn
– start-page: 1
  year: 2020
  end-page: 31
  ident: b0220
  article-title: A comparative analysis of gradient boosting algorithms
  publication-title: Artif Intell Rev
– volume: 130
  start-page: 180
  year: 2004
  end-page: 188
  ident: b0070
  article-title: Behavior of centrally loaded concrete-filled steel-tube short columns
  publication-title: J Struct Eng
– reference: AISC 360–16. Specification for structural steel buildings; 2016.
– volume: 95
  start-page: 2565
  year: 1969
  end-page: 2588
  ident: b0015
  article-title: Strength of concrete filled steel columns
  publication-title: J Struct Divis
– volume: 230
  start-page: 117000
  year: 2020
  ident: b0175
  article-title: Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach
  publication-title: Constr Build Mater
– reference: Architectural Institute of Japan (AIJ). Recommendations for design and construction of concrete filled steel tubular structures, Japan; 1997.
– volume: 227
  start-page: 111470
  year: 2021
  ident: b0115
  article-title: Shear capacity prediction of slender reinforced concrete structures with steel fibers using machine learning
  publication-title: Eng Struct
– start-page: 1189
  year: 2001
  end-page: 1232
  ident: b0200
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Annals Stat
– volume: 20
  start-page: 203
  year: 2011
  end-page: 212
  ident: b0035
  article-title: Concrete-filled tubes columns and beam-columns: a database for the aisc 2005 and 2010 specifications
  publication-title: Festschrift Gerhard Hanswille
– volume: 57
  start-page: 113
  year: 2001
  end-page: 134
  ident: b0060
  article-title: Strength of short concrete filled high strength steel box columns
  publication-title: J Constr Steel Res
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.engstruct.2021.112109_b0185
  article-title: Bagging predictors
  publication-title: Mach Learn
  doi: 10.1023/A:1018054314350
– volume: 224
  start-page: 111221
  year: 2020
  ident: 10.1016/j.engstruct.2021.112109_b0110
  article-title: Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2020.111221
– volume: 26
  start-page: 1
  issue: 1
  year: 1957
  ident: 10.1016/j.engstruct.2021.112109_b0010
  article-title: Traglastversuche mit ausbetonierten stahlrohen und aufstellung einer bemessungsformel
  publication-title: Der Stahlbau
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  ident: 10.1016/j.engstruct.2021.112109_b0230
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2005.159
– ident: 10.1016/j.engstruct.2021.112109_b0165
– volume: 157
  start-page: 161
  year: 2019
  ident: 10.1016/j.engstruct.2021.112109_b0005
  article-title: Concrete-filled steel tubular columns: Test database, design and calibration
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2019.02.024
– ident: 10.1016/j.engstruct.2021.112109_b0100
– volume: 136
  start-page: 494
  year: 2017
  ident: 10.1016/j.engstruct.2021.112109_b0050
  article-title: Axial performance of short concrete filled steel tubes with high-and ultra-high-strength materials
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2017.01.037
– volume: 147
  start-page: 458
  year: 2017
  ident: 10.1016/j.engstruct.2021.112109_b0055
  article-title: Behaviour and design of short high-strength steel welded box and concrete-filled tube (CFT) sections
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2017.06.016
– ident: 10.1016/j.engstruct.2021.112109_b0155
  doi: 10.1007/s00366-020-01104-w
– volume: 69
  start-page: 60
  year: 2015
  ident: 10.1016/j.engstruct.2021.112109_b0170
  article-title: Many regression algorithms, one unified model: A review
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2015.05.005
– start-page: 1
  year: 2020
  ident: 10.1016/j.engstruct.2021.112109_b0220
  article-title: A comparative analysis of gradient boosting algorithms
  publication-title: Artif Intell Rev
– volume: 86
  start-page: 105837
  year: 2020
  ident: 10.1016/j.engstruct.2021.112109_b0205
  article-title: Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105837
– volume: 11
  start-page: 863
  issue: 5
  year: 2017
  ident: 10.1016/j.engstruct.2021.112109_b0135
  article-title: Research on axial bearing capacity of rectangular concrete-filled steel tubular columns based on artificial neural networks
  publication-title: Front Comput Sci
  doi: 10.1007/s11704-016-5113-6
– ident: 10.1016/j.engstruct.2021.112109_b0085
– volume: 8
  start-page: 35
  year: 2015
  ident: 10.1016/j.engstruct.2021.112109_b0125
  article-title: Application of artificial neural network for calculation of axial capacity of circular concrete filled steel tubular columns
  publication-title: Int J Earth Sci Eng
– volume: 8
  start-page: 197
  issue: 3
  year: 2008
  ident: 10.1016/j.engstruct.2021.112109_b0025
  article-title: Design of concrete-filled steel tubular members according to the australian standard as 5100 model and calibration
  publication-title: Austral J Struct Eng
  doi: 10.1080/13287982.2008.11464998
– year: 2012
  ident: 10.1016/j.engstruct.2021.112109_b0160
– volume: 5
  start-page: 241
  issue: 2
  year: 1992
  ident: 10.1016/j.engstruct.2021.112109_b0195
  article-title: Stacked generalization
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80023-1
– start-page: 1189
  year: 2001
  ident: 10.1016/j.engstruct.2021.112109_b0200
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Annals Stat
– volume: 95
  start-page: 2565
  year: 1969
  ident: 10.1016/j.engstruct.2021.112109_b0015
  article-title: Strength of concrete filled steel columns
  publication-title: J Struct Divis
  doi: 10.1061/JSDEAG.0002425
– volume: 130
  start-page: 180
  issue: 2
  year: 2004
  ident: 10.1016/j.engstruct.2021.112109_b0070
  article-title: Behavior of centrally loaded concrete-filled steel-tube short columns
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(2004)130:2(180)
– ident: 10.1016/j.engstruct.2021.112109_b0090
– start-page: 101888
  year: 2020
  ident: 10.1016/j.engstruct.2021.112109_b0120
  article-title: Evaluating structural response of concrete-filled steel tubular columns through machine learning
  publication-title: J Build Eng
– volume: 15
  start-page: 213
  issue: 2
  year: 2017
  ident: 10.1016/j.engstruct.2021.112109_b0130
  article-title: ANN model for predicting the compressive strength of circular steel-confined concrete
  publication-title: Int J Civil Eng
  doi: 10.1007/s40999-016-0096-0
– volume: 221
  start-page: 111109
  year: 2020
  ident: 10.1016/j.engstruct.2021.112109_b0105
  article-title: Machine learning model for predicting structural response of RC slabs exposed to blast loading
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2020.111109
– volume: 227
  start-page: 111470
  year: 2021
  ident: 10.1016/j.engstruct.2021.112109_b0115
  article-title: Shear capacity prediction of slender reinforced concrete structures with steel fibers using machine learning
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2020.111470
– start-page: 1
  year: 2000
  ident: 10.1016/j.engstruct.2021.112109_b0180
  article-title: Ensemble methods in machine learning
– ident: 10.1016/j.engstruct.2021.112109_b0075
– ident: 10.1016/j.engstruct.2021.112109_b0225
– volume: 151
  start-page: 106720
  year: 2020
  ident: 10.1016/j.engstruct.2021.112109_b0145
  article-title: Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete
  publication-title: Thin-Wall Struct
  doi: 10.1016/j.tws.2020.106720
– volume: 13
  start-page: 292
  issue: 3
  year: 2011
  ident: 10.1016/j.engstruct.2021.112109_b0235
  article-title: Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbr053
– ident: 10.1016/j.engstruct.2021.112109_b0040
– ident: 10.1016/j.engstruct.2021.112109_b0045
  doi: 10.1016/j.istruc.2016.05.005
– ident: 10.1016/j.engstruct.2021.112109_b0080
– volume: 60
  start-page: 1825
  issue: 12
  year: 2004
  ident: 10.1016/j.engstruct.2021.112109_b0065
  article-title: Strength of slender concrete filled high strength steel box columns
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2004.05.002
– volume: 230
  start-page: 117000
  year: 2020
  ident: 10.1016/j.engstruct.2021.112109_b0175
  article-title: Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2019.117000
– volume: 9
  start-page: 2802
  issue: 14
  year: 2019
  ident: 10.1016/j.engstruct.2021.112109_b0150
  article-title: Prediction of ultimate axial capacity of square concrete-filled steel tubular short columns using a hybrid intelligent algorithm
  publication-title: Appl Sci
  doi: 10.3390/app9142802
– ident: 10.1016/j.engstruct.2021.112109_b0210
– ident: 10.1016/j.engstruct.2021.112109_b0215
– ident: 10.1016/j.engstruct.2021.112109_b0020
– volume: 57
  start-page: 113
  issue: 2
  year: 2001
  ident: 10.1016/j.engstruct.2021.112109_b0060
  article-title: Strength of short concrete filled high strength steel box columns
  publication-title: J Constr Steel Res
  doi: 10.1016/S0143-974X(00)00014-6
– volume: 86
  start-page: 33
  issue: 16
  year: 2008
  ident: 10.1016/j.engstruct.2021.112109_b0030
  article-title: Composite columns-1819 tests on concrete-filled steel tube columns compared with eurocode 4
  publication-title: Struct Eng
– volume: 20
  start-page: 203
  year: 2011
  ident: 10.1016/j.engstruct.2021.112109_b0035
  article-title: Concrete-filled tubes columns and beam-columns: a database for the aisc 2005 and 2010 specifications
  publication-title: Festschrift Gerhard Hanswille
– volume: 5
  start-page: 197
  issue: 2
  year: 1990
  ident: 10.1016/j.engstruct.2021.112109_b0190
  article-title: The strength of weak learnability
  publication-title: Mach Learn
  doi: 10.1023/A:1022648800760
– ident: 10.1016/j.engstruct.2021.112109_b0095
– volume: 152
  start-page: 106744
  year: 2020
  ident: 10.1016/j.engstruct.2021.112109_b0140
  article-title: Efficiency of three advanced data-driven models for predicting axial compression capacity of CFDST columns
  publication-title: Thin-Wall Struct
  doi: 10.1016/j.tws.2020.106744
SSID ssj0002880
Score 2.624326
Snippet •Categorical gradient Boosting (CatBoost) is presented to predict the strength of concrete-filled steel tubular columns.•A total of 3103 tests, which is...
Due to complexities from the interaction between steel tube and concrete filling of concrete-filled steel tubular (CFST) columns, their strengths are very...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112109
SubjectTerms Algorithms
Building codes
Categorical gradient Boosting (CatBoost)
Code predictions
Composite structures
Concrete columns
Concrete-filled steel tubular columns
Datasets
Diameters
Material strengths
Mechanical properties
Predictions
Slenderness ratio
Steel
Steel columns
Steel tubes
Strength of materials
Title Strength prediction of concrete-filled steel tubular columns using Categorical Gradient Boosting algorithm
URI https://dx.doi.org/10.1016/j.engstruct.2021.112109
https://www.proquest.com/docview/2539562136
Volume 238
WOSCitedRecordID wos000649652700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLbKxgEOiE8xGMgHxKXy1MSNHXObUMeYpoJENvVmNa5NW5W0tMk0fgj_l9exnazTYHDgEkVO7CR-n7x-bL8fCL2ZcChWVBNmtCF92lMk52NBkpxrkXDDhOrXySb4cJiORuJzp_Mz-MJcLHhRpJeXYvVfRQ1lIGzrOvsP4m4ahQI4B6HDEcQOx78SvN1nLr6WU-v-P5mpwAhh3gsEsdTEWO-_SRekqxfdssprO1RllVSx6VbODsCGj_DBQz6sa6Ow0npFbGob6fHCXiun37ZW9du4hl0Xk7Zat-aJ3tzniwbVMv3RYOl86WyUKtW6mWU-QfZxVZFsPLvWwslYT5d-sPVrFXHU2LX6BbTGieZ8a0kT7ouFD4jt1HDKKeHUeSIHPR27MDBe00Y36n-3FDE_gH5233pgX8P6SUU90Q55YZt_-EkenZ2eymwwyt6uvhObjMxu2vvMLHfQbswTAfp-9_DjYHTSDPFxWqfka159y3Dwxmf_jvZcIwA1q8keogd-OoIPHYweoY4uHqP7V4T5BM0DoHALKLw0-BqgcA0o7AGFPaBwDSh8BVA4AAoHQOEGUE_R2dEge39MfIYOooBXlwQmy3Geskj3Ew08WtEoEqliNKd8DBP3hDLDTD6xWezjSEXcJPkEGHEKpNuYKNH0GdoploV-jjATTBnQKELFoh9zIziQccE0_NkqpbS_h1joQKl8-HqbRWUhg53iXDY9L23PS9fze6jXVFy5CC63V3kXJCQ9EXUEUwLObq-8H2QqvVrYyDihAj46ouzFny-_RPfaH2cf7UDz-hW6qy7K2Wb92uPwF44juGs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strength+prediction+of+concrete-filled+steel+tubular+columns+using+Categorical+Gradient+Boosting+algorithm&rft.jtitle=Engineering+structures&rft.au=Lee%2C+Seunghye&rft.au=Vo%2C+Thuc+P&rft.au=Thai%2C+Huu-Tai&rft.au=Lee%2C+Jaehong&rft.date=2021-07-01&rft.pub=Elsevier+BV&rft.issn=0141-0296&rft.eissn=1873-7323&rft.volume=238&rft.spage=1&rft_id=info:doi/10.1016%2Fj.engstruct.2021.112109&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon