Strength prediction of concrete-filled steel tubular columns using Categorical Gradient Boosting algorithm
•Categorical gradient Boosting (CatBoost) is presented to predict the strength of concrete-filled steel tubular columns.•A total of 3103 tests, which is divided in four datasets, is collected to train and test the learners•The comparison of the present results and those from the code predictions sho...
Uloženo v:
| Vydáno v: | Engineering structures Ročník 238; s. 112109 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Kidlington
Elsevier Ltd
01.07.2021
Elsevier BV |
| Témata: | |
| ISSN: | 0141-0296, 1873-7323 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Categorical gradient Boosting (CatBoost) is presented to predict the strength of concrete-filled steel tubular columns.•A total of 3103 tests, which is divided in four datasets, is collected to train and test the learners•The comparison of the present results and those from the code predictions shows very high prediction accuracy•The coefficient of determination (R2), which is the lowest value (R2 = 0.964) for Dataset 2 and the highest one (R2 = 0.996) for Dataset 1.
Due to complexities from the interaction between steel tube and concrete filling of concrete-filled steel tubular (CFST) columns, their strengths are very complicated, which is a highly nonlinear relation with material strengths and geometry. Categorical gradient Boosting (CatBoost), which is advanced boosting machine, is presented to solve the problems. A total of 3103 tests, which is divided in four datasets, is trained and tested the learners to determine the ultimate axial strength as the output variable while the strength of materials (concrete and steel) and geometry (e.g., diameters/width/heights, thickness, effective length, eccentricities) are the input ones. The comparison of the present results from 10-fold cross validation and those from the code predictions (AISC 360-16, Eurocode 4 and AS/NZS 2327) and previous study shows very high prediction accuracy in terms of coefficient of determination (R2), which is the lowest value (R2 = 0.964) for Dataset 2 and the highest one (R2 = 0.996) for Dataset 1. While the predictions from three codes beyond material limit and slenderness are less conservative than those within it, CatBoost provides nearly similar experiment results with the mean values as unity without any limits. This algorithm can be used to predict an accurate strength of CFST columns. |
|---|---|
| AbstractList | Due to complexities from the interaction between steel tube and concrete filling of concrete-filled steel tubular (CFST) columns, their strengths are very complicated, which is a highly nonlinear relation with material strengths and geometry. Categorical gradient Boosting (CatBoost), which is advanced boosting machine, is presented to solve the problems. A total of 3103 tests, which is divided in four datasets, is trained and tested the learners to determine the ultimate axial strength as the output variable while the strength of materials (concrete and steel) and geometry (e.g., diameters/width/heights, thickness, effective length, eccentricities) are the input ones. The comparison of the present results from 10-fold cross validation and those from the code predictions (AISC 360-16, Eurocode 4 and AS/NZS 2327) and previous study shows very high prediction accuracy in terms of coefficient of determination (R2), which is the lowest value (R2 = 0.964) for Dataset 2 and the highest one (R2 = 0.996) for Dataset 1. While the predictions from three codes beyond material limit and slenderness are less conservative than those within it, CatBoost provides nearly similar experiment results with the mean values as unity without any limits. This algorithm can be used to predict an accurate strength of CFST columns. •Categorical gradient Boosting (CatBoost) is presented to predict the strength of concrete-filled steel tubular columns.•A total of 3103 tests, which is divided in four datasets, is collected to train and test the learners•The comparison of the present results and those from the code predictions shows very high prediction accuracy•The coefficient of determination (R2), which is the lowest value (R2 = 0.964) for Dataset 2 and the highest one (R2 = 0.996) for Dataset 1. Due to complexities from the interaction between steel tube and concrete filling of concrete-filled steel tubular (CFST) columns, their strengths are very complicated, which is a highly nonlinear relation with material strengths and geometry. Categorical gradient Boosting (CatBoost), which is advanced boosting machine, is presented to solve the problems. A total of 3103 tests, which is divided in four datasets, is trained and tested the learners to determine the ultimate axial strength as the output variable while the strength of materials (concrete and steel) and geometry (e.g., diameters/width/heights, thickness, effective length, eccentricities) are the input ones. The comparison of the present results from 10-fold cross validation and those from the code predictions (AISC 360-16, Eurocode 4 and AS/NZS 2327) and previous study shows very high prediction accuracy in terms of coefficient of determination (R2), which is the lowest value (R2 = 0.964) for Dataset 2 and the highest one (R2 = 0.996) for Dataset 1. While the predictions from three codes beyond material limit and slenderness are less conservative than those within it, CatBoost provides nearly similar experiment results with the mean values as unity without any limits. This algorithm can be used to predict an accurate strength of CFST columns. |
| ArticleNumber | 112109 |
| Author | Thai, Huu-Tai Lee, Seunghye Vo, Thuc P. Patel, Vipulkumar Lee, Jaehong |
| Author_xml | – sequence: 1 givenname: Seunghye surname: Lee fullname: Lee, Seunghye organization: Deep Learning Architecture Research Center, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea – sequence: 2 givenname: Thuc P. surname: Vo fullname: Vo, Thuc P. email: t.vo@latrobe.edu.au organization: School of Engineering and Mathematical Sciences, La Trobe University, Bundoora, VIC 3086, Australia – sequence: 3 givenname: Huu-Tai surname: Thai fullname: Thai, Huu-Tai organization: Department of Infrastructure Engineering, The University of Melbourne, Parkville VIC 3010, Australia – sequence: 4 givenname: Jaehong surname: Lee fullname: Lee, Jaehong organization: Deep Learning Architecture Research Center, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea – sequence: 5 givenname: Vipulkumar surname: Patel fullname: Patel, Vipulkumar organization: School of Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3552, Australia |
| BookMark | eNqNkE1v1DAQhi1UJLaF34Alztl67I0THziUFf2QKnGgnC3HGW8deePFdpD493W0iAMXeprD-z4zmueSXMxxRkI-AtsCA3k9bXE-5JIWW7accdgCcGDqDdlA34mmE1xckA2DHTSMK_mOXOY8McZ437MNmb6XVPnyTE8JR2-LjzONjto424QFG-dDwJHmghhoWYYlmFTTsBznTJfs5wPdm4KHmLw1gd4lM3qcC_0SYy5rasKalefje_LWmZDxw595RX7cfn3a3zeP3-4e9jePjRWKl0YpyYdeAu5alFxYAaB6K8UgOrNj0ArppBvGlkvFwULn2mEUSvWt5M5Bi-KKfDrvPaX4c8Fc9BSXNNeTmrdC1R4IWVufzy2bYs4Jnba-mPX9kowPGphe9epJ_9WrV736rLfy3T_8KfmjSb9fQd6cSawSfnlMOtuqzFb9CWt3jP6_O14A92edrA |
| CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2022_129227 crossref_primary_10_1108_ECAM_06_2024_0796 crossref_primary_10_1016_j_measurement_2024_115511 crossref_primary_10_1007_s41062_024_01593_4 crossref_primary_10_1016_j_jcsr_2022_107769 crossref_primary_10_1016_j_engstruct_2021_113803 crossref_primary_10_3390_ma15196624 crossref_primary_10_1002_suco_202100732 crossref_primary_10_1016_j_cscm_2025_e05162 crossref_primary_10_1038_s41598_022_12890_2 crossref_primary_10_3390_make6010020 crossref_primary_10_1007_s10999_023_09695_0 crossref_primary_10_1016_j_engappai_2024_108704 crossref_primary_10_1016_j_istruc_2024_106206 crossref_primary_10_1007_s11085_022_10123_5 crossref_primary_10_1155_2021_6745930 crossref_primary_10_3390_buildings11120629 crossref_primary_10_1016_j_scp_2025_101949 crossref_primary_10_1016_j_cscm_2024_e03935 crossref_primary_10_1016_j_istruc_2025_110119 crossref_primary_10_1016_j_probengmech_2025_103737 crossref_primary_10_1016_j_conbuildmat_2023_133293 crossref_primary_10_1016_j_cscm_2022_e01239 crossref_primary_10_1016_j_istruc_2021_09_060 crossref_primary_10_3389_fbuil_2023_1207193 crossref_primary_10_1088_1361_6501_ad1cc7 crossref_primary_10_1108_EC_06_2024_0507 crossref_primary_10_26599_OCEAN_2025_9470005 crossref_primary_10_1002_smr_2665 crossref_primary_10_1016_j_scitotenv_2023_169239 crossref_primary_10_1016_j_engstruct_2021_113479 crossref_primary_10_1108_IJSI_09_2024_0152 crossref_primary_10_1016_j_scitotenv_2022_159171 crossref_primary_10_1016_j_istruc_2025_109759 crossref_primary_10_3390_buildings14041040 crossref_primary_10_1016_j_conbuildmat_2024_138757 crossref_primary_10_1016_j_euromechsol_2022_104869 crossref_primary_10_1016_j_engstruct_2022_115001 crossref_primary_10_1007_s41939_024_00672_4 crossref_primary_10_1007_s43503_025_00061_x crossref_primary_10_3390_rs17122000 crossref_primary_10_1016_j_istruc_2022_11_047 crossref_primary_10_3390_su152316337 crossref_primary_10_1016_j_rineng_2025_105071 crossref_primary_10_1109_ACCESS_2024_3491831 crossref_primary_10_3390_ma15144993 crossref_primary_10_5004_dwt_2022_28960 crossref_primary_10_1016_j_istruc_2024_107084 crossref_primary_10_1016_j_tws_2023_110670 crossref_primary_10_1016_j_engstruct_2025_119652 crossref_primary_10_1016_j_jobe_2022_104470 crossref_primary_10_1007_s43452_023_00734_3 crossref_primary_10_3390_app12042165 crossref_primary_10_1016_j_istruc_2023_03_109 crossref_primary_10_1016_j_compstruc_2023_107181 crossref_primary_10_1016_j_measurement_2025_117916 crossref_primary_10_1007_s11356_022_19391_9 crossref_primary_10_1007_s12204_022_2495_5 crossref_primary_10_1177_16878132241293508 crossref_primary_10_1016_j_tws_2024_112669 crossref_primary_10_1177_13694332241281546 crossref_primary_10_1186_s40537_023_00739_y crossref_primary_10_1002_tal_2111 crossref_primary_10_1016_j_engappai_2025_111935 crossref_primary_10_1016_j_istruc_2024_106461 crossref_primary_10_1016_j_tws_2023_111051 crossref_primary_10_3390_polym15122633 crossref_primary_10_3390_app14177540 crossref_primary_10_1109_ACCESS_2023_3265019 crossref_primary_10_1016_j_engstruct_2022_115370 crossref_primary_10_1016_j_compag_2023_108306 crossref_primary_10_1038_s41598_024_64204_3 crossref_primary_10_1007_s40808_024_02063_7 crossref_primary_10_1016_j_istruc_2022_11_030 crossref_primary_10_1016_j_strusafe_2025_102596 crossref_primary_10_3389_fenvs_2022_1014021 crossref_primary_10_1016_j_conbuildmat_2023_130500 crossref_primary_10_3390_buildings14092967 crossref_primary_10_1016_j_enbuild_2021_111505 crossref_primary_10_1016_j_istruc_2025_108329 crossref_primary_10_1007_s41939_024_00423_5 crossref_primary_10_1016_j_istruc_2022_02_003 crossref_primary_10_1016_j_istruc_2023_02_102 crossref_primary_10_1007_s12145_025_01796_y crossref_primary_10_3390_ma17143540 crossref_primary_10_3390_ma17143584 crossref_primary_10_1002_suco_202200424 crossref_primary_10_1016_j_istruc_2024_107543 crossref_primary_10_1016_j_rineng_2025_104445 crossref_primary_10_1155_2022_4202084 crossref_primary_10_1016_j_eswa_2024_126096 crossref_primary_10_1016_j_jobe_2022_104279 crossref_primary_10_1007_s11269_025_04152_3 crossref_primary_10_1016_j_jcsr_2022_107653 crossref_primary_10_1016_j_jobe_2022_104316 |
| Cites_doi | 10.1023/A:1018054314350 10.1016/j.engstruct.2020.111221 10.1109/TPAMI.2005.159 10.1016/j.jcsr.2019.02.024 10.1016/j.engstruct.2017.01.037 10.1016/j.engstruct.2017.06.016 10.1007/s00366-020-01104-w 10.1016/j.neunet.2015.05.005 10.1016/j.asoc.2019.105837 10.1007/s11704-016-5113-6 10.1080/13287982.2008.11464998 10.1016/S0893-6080(05)80023-1 10.1061/JSDEAG.0002425 10.1061/(ASCE)0733-9445(2004)130:2(180) 10.1007/s40999-016-0096-0 10.1016/j.engstruct.2020.111109 10.1016/j.engstruct.2020.111470 10.1016/j.tws.2020.106720 10.1093/bib/bbr053 10.1016/j.istruc.2016.05.005 10.1016/j.jcsr.2004.05.002 10.1016/j.conbuildmat.2019.117000 10.3390/app9142802 10.1016/S0143-974X(00)00014-6 10.1023/A:1022648800760 10.1016/j.tws.2020.106744 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Jul 1, 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Jul 1, 2021 |
| DBID | AAYXX CITATION 7SR 7ST 8BQ 8FD C1K FR3 JG9 KR7 SOI |
| DOI | 10.1016/j.engstruct.2021.112109 |
| DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Environment Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Engineering Research Database Environment Abstracts METADEX Environmental Sciences and Pollution Management |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-7323 |
| ExternalDocumentID | 10_1016_j_engstruct_2021_112109 S0141029621002595 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACRLP ACSBN ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSE SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW VH1 WUQ ZY4 ~HD 7SR 7ST 8BQ 8FD AGCQF C1K FR3 JG9 KR7 SOI |
| ID | FETCH-LOGICAL-c392t-9962b861e45e623c31198c63b37a401536f6fbd526921c17f5bd3998562ff15e3 |
| ISICitedReferencesCount | 111 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000649652700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0141-0296 |
| IngestDate | Wed Aug 13 04:22:22 EDT 2025 Sat Nov 29 07:24:55 EST 2025 Tue Nov 18 22:22:50 EST 2025 Fri Feb 23 02:46:05 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Concrete-filled steel tubular columns Slenderness ratio Code predictions Categorical gradient Boosting (CatBoost) Material strengths |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c392t-9962b861e45e623c31198c63b37a401536f6fbd526921c17f5bd3998562ff15e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://figshare.com/articles/journal_contribution/Strength_prediction_of_concrete-filled_steel_tubular_columns_using_Categorical_Gradient_Boosting_algorithm/14376713 |
| PQID | 2539562136 |
| PQPubID | 2045481 |
| ParticipantIDs | proquest_journals_2539562136 crossref_citationtrail_10_1016_j_engstruct_2021_112109 crossref_primary_10_1016_j_engstruct_2021_112109 elsevier_sciencedirect_doi_10_1016_j_engstruct_2021_112109 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 2021-07-00 20210701 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Engineering structures |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Tran, Thai, Nguyen (b0145) 2020; 151 Liew JR, Xiong M, Xiong D. Design of concrete filled tubular beam-columns with high strength steel and concrete. In: Structures, Vol. 8, Elsevier; 2016. p. 213–26. Dorogush AV, Ershov V, Gulin A. Catboost: gradient boosting with categorical features support, ArXiv abs/1810.11363. Solhmirzaei, Salehi, Kodur, Naser (b0110) 2020; 224 Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. Catboost: unbiased boosting with categorical features, in: Advances in neural information processing systems; 2018. p. 6638–6648. Tran, Kim (b0140) 2020; 152 Ahmadi, Naderpour, Kheyroddin (b0130) 2017; 15 Dietterich (b0180) 2000 Olalusi, Awoyera (b0115) 2021; 227 Thai, Thai, Uy, Ngo (b0005) 2019; 157 Denavit M. Steel-concrete composite column database. Knowles, Park (b0015) 1969; 95 Feng, Liu, Wang, Chen, Chang, Wei, Jiang (b0175) 2020; 230 Xiong, Xiong, Liew (b0050) 2017; 136 Feurer M, Eggensperger K, Falkner S, Lindauer M, Hutter F. Auto-sklearn 2.0: The next generation, arXiv preprint arXiv:2007.04074. Stulp, Sigaud (b0170) 2015; 69 BS5400-5. Steel, concrete and composite bridges. Code of practice for design of composite bridges. British Standards Institute (BSI); 2005. Wolpert (b0195) 1992; 5 Tao, Brian, Han, He (b0025) 2008; 8 Zhou (b0160) 2012 Ribeiro, dos Santos Coelho (b0205) 2020; 86 Hajjar J, Gourley B, Tort C, Denavit M, Schiller P, Mundis NL. Steel-concrete composite structural systems, Department of Civil and Environmental Engineering, Northeastern University. Standards Australia. AS/NZS 2327 Composite structures - Composite steel-concrete construction in buildings; 2017. Klöppel, Goder (b0010) 1957; 26 Goode (b0030) 2008; 86 Mursi, Uy (b0065) 2004; 60 AISC 360–16. Specification for structural steel buildings; 2016. Schapire (b0190) 1990; 5 Naser, Thai, Thai (b0120) 2020 Du, Chen, Zhang, Cao (b0135) 2017; 11 GB 50936. Technical code for concrete-filled steel tubular structures. China National Standards; 2014. Boulesteix, Bender, Lorenzo Bermejo, Strobl (b0235) 2011; 13 Dorogush AV, Ershov V, Gulin A. Catboost: gradient boosting with categorical features support, arXiv preprint arXiv:1810.11363. Peng, Long, Ding (b0230) 2005; 27 Almustafa, Nehdi (b0105) 2020; 221 Bentéjac, Csörgő, Martínez-Muñoz (b0220) 2020 Ren, Li, Zhang, Shen, Si (b0150) 2019; 9 Architectural Institute of Japan (AIJ). Recommendations for design and construction of concrete filled steel tubular structures, Japan; 1997. EN1994-1-1. Eurocode 4: Design of composite steel and concrete structures - Part 1–1: General rules and rules for buildings; 2004. Leon, Perea, Hajjar, Denavit (b0035) 2011; 20 Khan, Uy, Tao, Mashiri (b0055) 2017; 147 Friedman (b0200) 2001 Uy (b0060) 2001; 57 Breiman (b0185) 1996; 24 Sakino, Nakahara, Morino, Nishiyama (b0070) 2004; 130 Mai SH, Ben Seghier MEA, Nguyen PL, Jafari-Asl J, Thai DK. A hybrid model for predicting the axial compression capacity of square concrete-filled steel tubular columns. Eng Comput. doi:https://doi.org/10.1007/s00366-020-01104-w. Jegadesh, Jayalekshmi (b0125) 2015; 8 10.1016/j.engstruct.2021.112109_b0040 Boulesteix (10.1016/j.engstruct.2021.112109_b0235) 2011; 13 10.1016/j.engstruct.2021.112109_b0020 10.1016/j.engstruct.2021.112109_b0085 10.1016/j.engstruct.2021.112109_b0080 Tran (10.1016/j.engstruct.2021.112109_b0140) 2020; 152 Breiman (10.1016/j.engstruct.2021.112109_b0185) 1996; 24 Uy (10.1016/j.engstruct.2021.112109_b0060) 2001; 57 Solhmirzaei (10.1016/j.engstruct.2021.112109_b0110) 2020; 224 Dietterich (10.1016/j.engstruct.2021.112109_b0180) 2000 Tao (10.1016/j.engstruct.2021.112109_b0025) 2008; 8 Ahmadi (10.1016/j.engstruct.2021.112109_b0130) 2017; 15 Wolpert (10.1016/j.engstruct.2021.112109_b0195) 1992; 5 Olalusi (10.1016/j.engstruct.2021.112109_b0115) 2021; 227 Khan (10.1016/j.engstruct.2021.112109_b0055) 2017; 147 Zhou (10.1016/j.engstruct.2021.112109_b0160) 2012 Knowles (10.1016/j.engstruct.2021.112109_b0015) 1969; 95 Goode (10.1016/j.engstruct.2021.112109_b0030) 2008; 86 Friedman (10.1016/j.engstruct.2021.112109_b0200) 2001 10.1016/j.engstruct.2021.112109_b0215 Mursi (10.1016/j.engstruct.2021.112109_b0065) 2004; 60 Almustafa (10.1016/j.engstruct.2021.112109_b0105) 2020; 221 Du (10.1016/j.engstruct.2021.112109_b0135) 2017; 11 Thai (10.1016/j.engstruct.2021.112109_b0005) 2019; 157 10.1016/j.engstruct.2021.112109_b0155 10.1016/j.engstruct.2021.112109_b0210 Bentéjac (10.1016/j.engstruct.2021.112109_b0220) 2020 10.1016/j.engstruct.2021.112109_b0095 Naser (10.1016/j.engstruct.2021.112109_b0120) 2020 Leon (10.1016/j.engstruct.2021.112109_b0035) 2011; 20 10.1016/j.engstruct.2021.112109_b0075 Tran (10.1016/j.engstruct.2021.112109_b0145) 2020; 151 10.1016/j.engstruct.2021.112109_b0090 Schapire (10.1016/j.engstruct.2021.112109_b0190) 1990; 5 Ren (10.1016/j.engstruct.2021.112109_b0150) 2019; 9 Stulp (10.1016/j.engstruct.2021.112109_b0170) 2015; 69 Peng (10.1016/j.engstruct.2021.112109_b0230) 2005; 27 Sakino (10.1016/j.engstruct.2021.112109_b0070) 2004; 130 Feng (10.1016/j.engstruct.2021.112109_b0175) 2020; 230 Klöppel (10.1016/j.engstruct.2021.112109_b0010) 1957; 26 Ribeiro (10.1016/j.engstruct.2021.112109_b0205) 2020; 86 Jegadesh (10.1016/j.engstruct.2021.112109_b0125) 2015; 8 Xiong (10.1016/j.engstruct.2021.112109_b0050) 2017; 136 10.1016/j.engstruct.2021.112109_b0225 10.1016/j.engstruct.2021.112109_b0165 10.1016/j.engstruct.2021.112109_b0045 10.1016/j.engstruct.2021.112109_b0100 |
| References_xml | – volume: 5 start-page: 241 year: 1992 end-page: 259 ident: b0195 article-title: Stacked generalization publication-title: Neural Networks – volume: 27 start-page: 1226 year: 2005 end-page: 1238 ident: b0230 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 136 start-page: 494 year: 2017 end-page: 510 ident: b0050 article-title: Axial performance of short concrete filled steel tubes with high-and ultra-high-strength materials publication-title: Eng Struct – reference: Mai SH, Ben Seghier MEA, Nguyen PL, Jafari-Asl J, Thai DK. A hybrid model for predicting the axial compression capacity of square concrete-filled steel tubular columns. Eng Comput. doi:https://doi.org/10.1007/s00366-020-01104-w. – volume: 221 start-page: 111109 year: 2020 ident: b0105 article-title: Machine learning model for predicting structural response of RC slabs exposed to blast loading publication-title: Eng Struct – volume: 157 start-page: 161 year: 2019 end-page: 181 ident: b0005 article-title: Concrete-filled steel tubular columns: Test database, design and calibration publication-title: J Constr Steel Res – start-page: 101888 year: 2020 ident: b0120 article-title: Evaluating structural response of concrete-filled steel tubular columns through machine learning publication-title: J Build Eng – volume: 15 start-page: 213 year: 2017 end-page: 221 ident: b0130 article-title: ANN model for predicting the compressive strength of circular steel-confined concrete publication-title: Int J Civil Eng – volume: 8 start-page: 197 year: 2008 end-page: 214 ident: b0025 article-title: Design of concrete-filled steel tubular members according to the australian standard as 5100 model and calibration publication-title: Austral J Struct Eng – volume: 147 start-page: 458 year: 2017 end-page: 472 ident: b0055 article-title: Behaviour and design of short high-strength steel welded box and concrete-filled tube (CFT) sections publication-title: Eng Struct – volume: 8 start-page: 35 year: 2015 end-page: 42 ident: b0125 article-title: Application of artificial neural network for calculation of axial capacity of circular concrete filled steel tubular columns publication-title: Int J Earth Sci Eng – reference: Denavit M. Steel-concrete composite column database. – year: 2012 ident: b0160 article-title: Ensemble methods: foundations and algorithms – reference: BS5400-5. Steel, concrete and composite bridges. Code of practice for design of composite bridges. British Standards Institute (BSI); 2005. – volume: 224 start-page: 111221 year: 2020 ident: b0110 article-title: Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams publication-title: Eng Struct – reference: Hajjar J, Gourley B, Tort C, Denavit M, Schiller P, Mundis NL. Steel-concrete composite structural systems, Department of Civil and Environmental Engineering, Northeastern University. – volume: 13 start-page: 292 year: 2011 end-page: 304 ident: b0235 article-title: Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations publication-title: Brief Bioinform – volume: 151 start-page: 106720 year: 2020 ident: b0145 article-title: Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete publication-title: Thin-Wall Struct – volume: 60 start-page: 1825 year: 2004 end-page: 1848 ident: b0065 article-title: Strength of slender concrete filled high strength steel box columns publication-title: J Constr Steel Res – volume: 69 start-page: 60 year: 2015 end-page: 79 ident: b0170 article-title: Many regression algorithms, one unified model: A review publication-title: Neural Networks – volume: 86 start-page: 105837 year: 2020 ident: b0205 article-title: Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series publication-title: Appl Soft Comput – volume: 26 start-page: 1 year: 1957 end-page: 10 ident: b0010 article-title: Traglastversuche mit ausbetonierten stahlrohen und aufstellung einer bemessungsformel publication-title: Der Stahlbau – reference: Dorogush AV, Ershov V, Gulin A. Catboost: gradient boosting with categorical features support, arXiv preprint arXiv:1810.11363. – volume: 152 start-page: 106744 year: 2020 ident: b0140 article-title: Efficiency of three advanced data-driven models for predicting axial compression capacity of CFDST columns publication-title: Thin-Wall Struct – reference: Feurer M, Eggensperger K, Falkner S, Lindauer M, Hutter F. Auto-sklearn 2.0: The next generation, arXiv preprint arXiv:2007.04074. – volume: 11 start-page: 863 year: 2017 end-page: 873 ident: b0135 article-title: Research on axial bearing capacity of rectangular concrete-filled steel tubular columns based on artificial neural networks publication-title: Front Comput Sci – reference: Dorogush AV, Ershov V, Gulin A. Catboost: gradient boosting with categorical features support, ArXiv abs/1810.11363. – reference: Standards Australia. AS/NZS 2327 Composite structures - Composite steel-concrete construction in buildings; 2017. – volume: 86 start-page: 33 year: 2008 end-page: 38 ident: b0030 article-title: Composite columns-1819 tests on concrete-filled steel tube columns compared with eurocode 4 publication-title: Struct Eng – volume: 9 start-page: 2802 year: 2019 ident: b0150 article-title: Prediction of ultimate axial capacity of square concrete-filled steel tubular short columns using a hybrid intelligent algorithm publication-title: Appl Sci – reference: Liew JR, Xiong M, Xiong D. Design of concrete filled tubular beam-columns with high strength steel and concrete. In: Structures, Vol. 8, Elsevier; 2016. p. 213–26. – reference: EN1994-1-1. Eurocode 4: Design of composite steel and concrete structures - Part 1–1: General rules and rules for buildings; 2004. – start-page: 1 year: 2000 end-page: 15 ident: b0180 article-title: Ensemble methods in machine learning publication-title: Multiple Classifier Systems – reference: GB 50936. Technical code for concrete-filled steel tubular structures. China National Standards; 2014. – reference: Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. Catboost: unbiased boosting with categorical features, in: Advances in neural information processing systems; 2018. p. 6638–6648. – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: b0185 article-title: Bagging predictors publication-title: Mach Learn – volume: 5 start-page: 197 year: 1990 end-page: 227 ident: b0190 article-title: The strength of weak learnability publication-title: Mach Learn – start-page: 1 year: 2020 end-page: 31 ident: b0220 article-title: A comparative analysis of gradient boosting algorithms publication-title: Artif Intell Rev – volume: 130 start-page: 180 year: 2004 end-page: 188 ident: b0070 article-title: Behavior of centrally loaded concrete-filled steel-tube short columns publication-title: J Struct Eng – reference: AISC 360–16. Specification for structural steel buildings; 2016. – volume: 95 start-page: 2565 year: 1969 end-page: 2588 ident: b0015 article-title: Strength of concrete filled steel columns publication-title: J Struct Divis – volume: 230 start-page: 117000 year: 2020 ident: b0175 article-title: Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach publication-title: Constr Build Mater – reference: Architectural Institute of Japan (AIJ). Recommendations for design and construction of concrete filled steel tubular structures, Japan; 1997. – volume: 227 start-page: 111470 year: 2021 ident: b0115 article-title: Shear capacity prediction of slender reinforced concrete structures with steel fibers using machine learning publication-title: Eng Struct – start-page: 1189 year: 2001 end-page: 1232 ident: b0200 article-title: Greedy function approximation: a gradient boosting machine publication-title: Annals Stat – volume: 20 start-page: 203 year: 2011 end-page: 212 ident: b0035 article-title: Concrete-filled tubes columns and beam-columns: a database for the aisc 2005 and 2010 specifications publication-title: Festschrift Gerhard Hanswille – volume: 57 start-page: 113 year: 2001 end-page: 134 ident: b0060 article-title: Strength of short concrete filled high strength steel box columns publication-title: J Constr Steel Res – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.engstruct.2021.112109_b0185 article-title: Bagging predictors publication-title: Mach Learn doi: 10.1023/A:1018054314350 – volume: 224 start-page: 111221 year: 2020 ident: 10.1016/j.engstruct.2021.112109_b0110 article-title: Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams publication-title: Eng Struct doi: 10.1016/j.engstruct.2020.111221 – volume: 26 start-page: 1 issue: 1 year: 1957 ident: 10.1016/j.engstruct.2021.112109_b0010 article-title: Traglastversuche mit ausbetonierten stahlrohen und aufstellung einer bemessungsformel publication-title: Der Stahlbau – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: 10.1016/j.engstruct.2021.112109_b0230 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.159 – ident: 10.1016/j.engstruct.2021.112109_b0165 – volume: 157 start-page: 161 year: 2019 ident: 10.1016/j.engstruct.2021.112109_b0005 article-title: Concrete-filled steel tubular columns: Test database, design and calibration publication-title: J Constr Steel Res doi: 10.1016/j.jcsr.2019.02.024 – ident: 10.1016/j.engstruct.2021.112109_b0100 – volume: 136 start-page: 494 year: 2017 ident: 10.1016/j.engstruct.2021.112109_b0050 article-title: Axial performance of short concrete filled steel tubes with high-and ultra-high-strength materials publication-title: Eng Struct doi: 10.1016/j.engstruct.2017.01.037 – volume: 147 start-page: 458 year: 2017 ident: 10.1016/j.engstruct.2021.112109_b0055 article-title: Behaviour and design of short high-strength steel welded box and concrete-filled tube (CFT) sections publication-title: Eng Struct doi: 10.1016/j.engstruct.2017.06.016 – ident: 10.1016/j.engstruct.2021.112109_b0155 doi: 10.1007/s00366-020-01104-w – volume: 69 start-page: 60 year: 2015 ident: 10.1016/j.engstruct.2021.112109_b0170 article-title: Many regression algorithms, one unified model: A review publication-title: Neural Networks doi: 10.1016/j.neunet.2015.05.005 – start-page: 1 year: 2020 ident: 10.1016/j.engstruct.2021.112109_b0220 article-title: A comparative analysis of gradient boosting algorithms publication-title: Artif Intell Rev – volume: 86 start-page: 105837 year: 2020 ident: 10.1016/j.engstruct.2021.112109_b0205 article-title: Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105837 – volume: 11 start-page: 863 issue: 5 year: 2017 ident: 10.1016/j.engstruct.2021.112109_b0135 article-title: Research on axial bearing capacity of rectangular concrete-filled steel tubular columns based on artificial neural networks publication-title: Front Comput Sci doi: 10.1007/s11704-016-5113-6 – ident: 10.1016/j.engstruct.2021.112109_b0085 – volume: 8 start-page: 35 year: 2015 ident: 10.1016/j.engstruct.2021.112109_b0125 article-title: Application of artificial neural network for calculation of axial capacity of circular concrete filled steel tubular columns publication-title: Int J Earth Sci Eng – volume: 8 start-page: 197 issue: 3 year: 2008 ident: 10.1016/j.engstruct.2021.112109_b0025 article-title: Design of concrete-filled steel tubular members according to the australian standard as 5100 model and calibration publication-title: Austral J Struct Eng doi: 10.1080/13287982.2008.11464998 – year: 2012 ident: 10.1016/j.engstruct.2021.112109_b0160 – volume: 5 start-page: 241 issue: 2 year: 1992 ident: 10.1016/j.engstruct.2021.112109_b0195 article-title: Stacked generalization publication-title: Neural Networks doi: 10.1016/S0893-6080(05)80023-1 – start-page: 1189 year: 2001 ident: 10.1016/j.engstruct.2021.112109_b0200 article-title: Greedy function approximation: a gradient boosting machine publication-title: Annals Stat – volume: 95 start-page: 2565 year: 1969 ident: 10.1016/j.engstruct.2021.112109_b0015 article-title: Strength of concrete filled steel columns publication-title: J Struct Divis doi: 10.1061/JSDEAG.0002425 – volume: 130 start-page: 180 issue: 2 year: 2004 ident: 10.1016/j.engstruct.2021.112109_b0070 article-title: Behavior of centrally loaded concrete-filled steel-tube short columns publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(2004)130:2(180) – ident: 10.1016/j.engstruct.2021.112109_b0090 – start-page: 101888 year: 2020 ident: 10.1016/j.engstruct.2021.112109_b0120 article-title: Evaluating structural response of concrete-filled steel tubular columns through machine learning publication-title: J Build Eng – volume: 15 start-page: 213 issue: 2 year: 2017 ident: 10.1016/j.engstruct.2021.112109_b0130 article-title: ANN model for predicting the compressive strength of circular steel-confined concrete publication-title: Int J Civil Eng doi: 10.1007/s40999-016-0096-0 – volume: 221 start-page: 111109 year: 2020 ident: 10.1016/j.engstruct.2021.112109_b0105 article-title: Machine learning model for predicting structural response of RC slabs exposed to blast loading publication-title: Eng Struct doi: 10.1016/j.engstruct.2020.111109 – volume: 227 start-page: 111470 year: 2021 ident: 10.1016/j.engstruct.2021.112109_b0115 article-title: Shear capacity prediction of slender reinforced concrete structures with steel fibers using machine learning publication-title: Eng Struct doi: 10.1016/j.engstruct.2020.111470 – start-page: 1 year: 2000 ident: 10.1016/j.engstruct.2021.112109_b0180 article-title: Ensemble methods in machine learning – ident: 10.1016/j.engstruct.2021.112109_b0075 – ident: 10.1016/j.engstruct.2021.112109_b0225 – volume: 151 start-page: 106720 year: 2020 ident: 10.1016/j.engstruct.2021.112109_b0145 article-title: Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete publication-title: Thin-Wall Struct doi: 10.1016/j.tws.2020.106720 – volume: 13 start-page: 292 issue: 3 year: 2011 ident: 10.1016/j.engstruct.2021.112109_b0235 article-title: Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations publication-title: Brief Bioinform doi: 10.1093/bib/bbr053 – ident: 10.1016/j.engstruct.2021.112109_b0040 – ident: 10.1016/j.engstruct.2021.112109_b0045 doi: 10.1016/j.istruc.2016.05.005 – ident: 10.1016/j.engstruct.2021.112109_b0080 – volume: 60 start-page: 1825 issue: 12 year: 2004 ident: 10.1016/j.engstruct.2021.112109_b0065 article-title: Strength of slender concrete filled high strength steel box columns publication-title: J Constr Steel Res doi: 10.1016/j.jcsr.2004.05.002 – volume: 230 start-page: 117000 year: 2020 ident: 10.1016/j.engstruct.2021.112109_b0175 article-title: Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2019.117000 – volume: 9 start-page: 2802 issue: 14 year: 2019 ident: 10.1016/j.engstruct.2021.112109_b0150 article-title: Prediction of ultimate axial capacity of square concrete-filled steel tubular short columns using a hybrid intelligent algorithm publication-title: Appl Sci doi: 10.3390/app9142802 – ident: 10.1016/j.engstruct.2021.112109_b0210 – ident: 10.1016/j.engstruct.2021.112109_b0215 – ident: 10.1016/j.engstruct.2021.112109_b0020 – volume: 57 start-page: 113 issue: 2 year: 2001 ident: 10.1016/j.engstruct.2021.112109_b0060 article-title: Strength of short concrete filled high strength steel box columns publication-title: J Constr Steel Res doi: 10.1016/S0143-974X(00)00014-6 – volume: 86 start-page: 33 issue: 16 year: 2008 ident: 10.1016/j.engstruct.2021.112109_b0030 article-title: Composite columns-1819 tests on concrete-filled steel tube columns compared with eurocode 4 publication-title: Struct Eng – volume: 20 start-page: 203 year: 2011 ident: 10.1016/j.engstruct.2021.112109_b0035 article-title: Concrete-filled tubes columns and beam-columns: a database for the aisc 2005 and 2010 specifications publication-title: Festschrift Gerhard Hanswille – volume: 5 start-page: 197 issue: 2 year: 1990 ident: 10.1016/j.engstruct.2021.112109_b0190 article-title: The strength of weak learnability publication-title: Mach Learn doi: 10.1023/A:1022648800760 – ident: 10.1016/j.engstruct.2021.112109_b0095 – volume: 152 start-page: 106744 year: 2020 ident: 10.1016/j.engstruct.2021.112109_b0140 article-title: Efficiency of three advanced data-driven models for predicting axial compression capacity of CFDST columns publication-title: Thin-Wall Struct doi: 10.1016/j.tws.2020.106744 |
| SSID | ssj0002880 |
| Score | 2.624326 |
| Snippet | •Categorical gradient Boosting (CatBoost) is presented to predict the strength of concrete-filled steel tubular columns.•A total of 3103 tests, which is... Due to complexities from the interaction between steel tube and concrete filling of concrete-filled steel tubular (CFST) columns, their strengths are very... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 112109 |
| SubjectTerms | Algorithms Building codes Categorical gradient Boosting (CatBoost) Code predictions Composite structures Concrete columns Concrete-filled steel tubular columns Datasets Diameters Material strengths Mechanical properties Predictions Slenderness ratio Steel Steel columns Steel tubes Strength of materials |
| Title | Strength prediction of concrete-filled steel tubular columns using Categorical Gradient Boosting algorithm |
| URI | https://dx.doi.org/10.1016/j.engstruct.2021.112109 https://www.proquest.com/docview/2539562136 |
| Volume | 238 |
| WOSCitedRecordID | wos000649652700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7323 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002880 issn: 0141-0296 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLbKxgEOiE8xGMgHxKXy1MSNHXObUMeYpoJENvVmNa5NW5W0tMk0fgj_l9exnazTYHDgEkVO7CR-n7x-bL8fCL2ZcChWVBNmtCF92lMk52NBkpxrkXDDhOrXySb4cJiORuJzp_Mz-MJcLHhRpJeXYvVfRQ1lIGzrOvsP4m4ahQI4B6HDEcQOx78SvN1nLr6WU-v-P5mpwAhh3gsEsdTEWO-_SRekqxfdssprO1RllVSx6VbODsCGj_DBQz6sa6Ow0npFbGob6fHCXiun37ZW9du4hl0Xk7Zat-aJ3tzniwbVMv3RYOl86WyUKtW6mWU-QfZxVZFsPLvWwslYT5d-sPVrFXHU2LX6BbTGieZ8a0kT7ouFD4jt1HDKKeHUeSIHPR27MDBe00Y36n-3FDE_gH5233pgX8P6SUU90Q55YZt_-EkenZ2eymwwyt6uvhObjMxu2vvMLHfQbswTAfp-9_DjYHTSDPFxWqfka159y3Dwxmf_jvZcIwA1q8keogd-OoIPHYweoY4uHqP7V4T5BM0DoHALKLw0-BqgcA0o7AGFPaBwDSh8BVA4AAoHQOEGUE_R2dEge39MfIYOooBXlwQmy3Geskj3Ew08WtEoEqliNKd8DBP3hDLDTD6xWezjSEXcJPkEGHEKpNuYKNH0GdoploV-jjATTBnQKELFoh9zIziQccE0_NkqpbS_h1joQKl8-HqbRWUhg53iXDY9L23PS9fze6jXVFy5CC63V3kXJCQ9EXUEUwLObq-8H2QqvVrYyDihAj46ouzFny-_RPfaH2cf7UDz-hW6qy7K2Wb92uPwF44juGs |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strength+prediction+of+concrete-filled+steel+tubular+columns+using+Categorical+Gradient+Boosting+algorithm&rft.jtitle=Engineering+structures&rft.au=Lee%2C+Seunghye&rft.au=Vo%2C+Thuc+P&rft.au=Thai%2C+Huu-Tai&rft.au=Lee%2C+Jaehong&rft.date=2021-07-01&rft.pub=Elsevier+BV&rft.issn=0141-0296&rft.eissn=1873-7323&rft.volume=238&rft.spage=1&rft_id=info:doi/10.1016%2Fj.engstruct.2021.112109&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon |