Algorithm for the Best Uniform Spline Approximation with Free Knots
An algorithm for the best uniform approximation by a spline with optimal knots is presented in the paper. Differential evolution is used to find optimal knots. It is one of the best evolutionary algorithms, which sustainably finds function’s global optimum in minimum time. Spline coefficients are co...
Gespeichert in:
| Veröffentlicht in: | Cybernetics and systems analysis Jg. 55; H. 3; S. 449 - 455 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.05.2019
Springer Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1060-0396, 1573-8337 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | An algorithm for the best uniform approximation by a spline with optimal knots is presented in the paper. Differential evolution is used to find optimal knots. It is one of the best evolutionary algorithms, which sustainably finds function’s global optimum in minimum time. Spline coefficients are computed as a solution of a spline-approximation problem with fixed knots. Results of the numerical experiment are given. |
|---|---|
| AbstractList | An algorithm for the best uniform approximation by a spline with optimal knots is presented in the paper. Differential evolution is used to find optimal knots. It is one of the best evolutionary algorithms, which sustainably finds function’s global optimum in minimum time. Spline coefficients are computed as a solution of a spline-approximation problem with fixed knots. Results of the numerical experiment are given. An algorithm for the best uniform approximation by a spline with optimal knots is presented in the paper. Differential evolution is used to find optimal knots. It is one of the best evolutionary algorithms, which sustainably finds function's global optimum in minimum time. Spline coefficients are computed as a solution of a spline-approximation problem with fixed knots. Results of the numerical experiment are given. Keywords: best uniform approximation, spline, optimal knots, differential evolution. |
| Audience | Academic |
| Author | Vakal, E. S. Vakal, L. P. |
| Author_xml | – sequence: 1 givenname: L. P. surname: Vakal fullname: Vakal, L. P. email: lara.vakal@gmail.com organization: V. M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine – sequence: 2 givenname: E. S. surname: Vakal fullname: Vakal, E. S. organization: Taras Shevchenko National University of Kyiv |
| BookMark | eNp9kU9PXCEUxUljk6rtF-iKpCsXz15gGGA5nag1mphoXROGxxsxb2AKTJx--159TRpdGEL4k_PjXs45Igcpp0DIVwanDEB9rwykNB0wnMAk7-QHcsikEp0WQh3gHubQgTDzT-So1kcAEKD0IVkuxnUusT1s6JALbQ-B_gi10fsU8byhd9sxpkAX223J-7hxLeZEn1BPz0sI9CrlVj-Tj4Mba_jybz0m9-dnv5Y_u-ubi8vl4rrzwvDWGd3POBMzB-BDb5hxggkFxnkBXkiv9Ur1TijO3ND74Fe96RkYrjiYlREzcUy-Te9iL7932KV9zLuSsKTlXDCjQcIcVaeTau3GYGMacivO4-jDJnq0bYh4v5BmrplWDBA4eQWgpoV9W7tdrfby7va1Vk9aX3KtJQzWx_ZiChaJo2Vgn_OwUx4W87AveViJKH-DbgsaWv68D4kJqihO61D-f_kd6i8EXZyz |
| CitedBy_id | crossref_primary_10_2478_lpts_2024_0047 |
| Cites_doi | 10.1007/BF01396309 10.1016/0021-9045(69)90033-1 10.1007/s10957-016-1048-1 10.1615/JAutomatInfScien.v48.i11.60 10.1090/S0025-5718-1989-0969492-7 10.1007/BF02437508 10.1137/0705051 10.1007/s10559-017-9978-7 10.1615/JAutomatInfScien.v48.i6.50 10.1093/comjnl/9.3.318 10.1023/A:1008202821328 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 COPYRIGHT 2019 Springer Copyright Springer Nature B.V. 2019 |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: COPYRIGHT 2019 Springer – notice: Copyright Springer Nature B.V. 2019 |
| DBID | AAYXX CITATION ISR JQ2 |
| DOI | 10.1007/s10559-019-00152-5 |
| DatabaseName | CrossRef Gale In Context: Science ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1573-8337 |
| EndPage | 455 |
| ExternalDocumentID | A596818710 10_1007_s10559_019_00152_5 |
| GroupedDBID | -52 -5D -5G -BR -EM -~C .86 .DC .VR 06D 0R~ 0VY 1N0 29F 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 7WY 8FL 8FW 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS HF~ HG6 HMJXF HQYDN HRMNR HVGLF IAO IJ- IKXTQ ISR ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LAK LLZTM M0C M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P9O PF0 PT4 PT5 Q2X QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WH7 WK8 XU3 YLTOR Z7R Z7U Z7X Z7Z Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ~A9 ~EX -Y2 .4S 1SB 2.D 28- 2P1 2VQ 5QI 642 8AO 8FE 8FG AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABJCF ABQSL ABRTQ ABULA ABUWG ACBXY ACSTC ADHKG ADKFA AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFFHD AFFNX AFGCZ AFHIU AFKRA AFOHR AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW ARAPS ARCSS ATHPR AZQEC BBWZM BENPR BEZIV BGLVJ BPHCQ CAG CCPQU CITATION COF DWQXO EDO FRNLG GNUQQ H13 HCIFZ HZ~ I-F ICD IHE K6V K7- KOW M7S MK~ N2Q NDZJH O9- OVD P62 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PTHSS RNI RZC RZE RZK S0W S1Z S26 S28 SCLPG SDD T16 TEORI UZXMN VFIZW ZWQNP JQ2 |
| ID | FETCH-LOGICAL-c392t-98d42134a00ced919a313709ac30c35c88b7da3721afdcecbd9d10927209b9343 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000469488000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1060-0396 |
| IngestDate | Wed Sep 17 23:58:32 EDT 2025 Sat Nov 29 09:49:46 EST 2025 Wed Nov 26 09:24:06 EST 2025 Sat Nov 29 01:48:32 EST 2025 Tue Nov 18 22:32:01 EST 2025 Fri Feb 21 02:41:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | best uniform approximation differential evolution spline optimal knots |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c392t-98d42134a00ced919a313709ac30c35c88b7da3721afdcecbd9d10927209b9343 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2231980506 |
| PQPubID | 48839 |
| PageCount | 7 |
| ParticipantIDs | proquest_journals_2231980506 gale_infotracacademiconefile_A596818710 gale_incontextgauss_ISR_A596818710 crossref_citationtrail_10_1007_s10559_019_00152_5 crossref_primary_10_1007_s10559_019_00152_5 springer_journals_10_1007_s10559_019_00152_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-01 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Cybernetics and systems analysis |
| PublicationTitleAbbrev | Cybern Syst Anal |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | VakalESKivvaSLMistetskiiGEStelyaOBSolution method for nonlinear parabolic equationsJ. of Math. Sciences19915427817860723.65086 L. P. Vakal, “Approximation of functions of many variables with the use of the differential evolution algorithm,” Matem. Mashiny i Systemy, No. 1, 90–96 (2017). L. P. Vakal, “Constructing best Chebyshev spline approximations,” Shtuchnyi Intelekt, No. 2, 94–100 (2017). EschREEastmanWLComputational methods for best spline function approximationJ. of Approximation Theory196921859624052010.1016/0021-9045(69)90033-10181.17604 SchumakerLL“Some algorithms for the computation of interpolating and approximating spline functions,” in: Theory and Applications of Spline Functions1969New YorkAcademic Press87102 VakalLPKalenchuk-PorkhanovaAAVakalESIncreasing the efficiency of Chebyshev segment fractional rational approximationCybern. Syst. Analysis2017535759765368469710.1007/s10559-017-9978-71381.41028 CrouzeixJPSukhorukovaNUgonJCharacterization theorem for best polynomial spline approximation with free knots, variable degree and fixed tailsJ. of Optimization Theory and Applications20171723950964361022810.1007/s10957-016-1048-11362.49009 VakalLPSeeking optimal knots for segment approximationJ. Autom. and Inform. Sci.20164811687510.1615/JAutomatInfScien.v48.i11.60 MalachivskiiPSSkopetskyVVContinuous and Smooth Minimax Spline Approximation [in Ukrainian]2013KyivNaukova Dumka BarrodaleJYoungAA note on numerical procedures for approximation by spline functionsComput. J.1966931832020227810.1093/comjnl/9.3.3180168.14905 SchumakerLLUniform approximation by Chebyshev spline functions. II. Free knotsSIAM J. of Numerical Analysis19685464765624186710.1137/07050510169.39404 PopovBAUniform Spline Approximation [in Russian]1989KyivNaukova Dumka KorneichukNPExact Constants in Approximation Theory [in Russian]1987MoscowNauka RemezEYFundamentals of Numerical Methods of Chebyshev Approximation [in Russian]1969KyivNaukova Dumka StornRPriceKDifferential evolution — a simple and efficient heuristic for global optimization over continuous spacesJ. of Global Optimization199711341359147955310.1023/A:10082028213280888.90135 MeinardusGNurnbergerGSommerMStraussHAlgorithm for piecewise polynomials and splines with free knotsMath. of Computation19895318723524796949210.1090/S0025-5718-1989-0969492-70668.41009 BerdyshevVIPetrakLVApproximation of Functions, Compression of Numerical Information, Applications [in Russian]1999EkaterinburgUrO RAN1206.41002 StechkinSBSubbotinYNSplines in Computing Mathematics [in Russian]1976MoscowNauka0462.65007 NurnbergerGSommerMARemez type algorithm for spline functionsNumer. Math.198341111714669655410.1007/BF013963090489.65011 VakalLPSolving uniform nonlinear approximation problem using continuous genetic algorithmJ. Autom. and Inform. Sci.2016486495910.1615/JAutomatInfScien.v48.i6.50 NurnbergerGBivariate segment approximation and free knot splines; research problems 96-4Constructive Approximation1996124555558141219910.1007/BF024375080886.41010 L. P. Vakal, “Genetic algorithms for Chebyshev approximation,” Komp. Zasoby, Merezhi ta Systemy, No. 12, 20–26 (2013). LL Schumaker (152_CR10) 1969 SB Stechkin (152_CR1) 1976 R Storn (152_CR19) 1997; 11 G Nurnberger (152_CR14) 1996; 12 J Barrodale (152_CR7) 1966; 9 152_CR20 ES Vakal (152_CR3) 1991; 54 RE Esch (152_CR8) 1969; 2 152_CR22 LL Schumaker (152_CR13) 1968; 5 VI Berdyshev (152_CR2) 1999 LP Vakal (152_CR21) 2016; 48 BA Popov (152_CR4) 1989 LP Vakal (152_CR18) 2017; 53 152_CR9 JP Crouzeix (152_CR15) 2017; 172 LP Vakal (152_CR17) 2016; 48 G Meinardus (152_CR16) 1989; 53 EY Remez (152_CR12) 1969 NP Korneichuk (152_CR6) 1987 G Nurnberger (152_CR11) 1983; 41 PS Malachivskii (152_CR5) 2013 |
| References_xml | – reference: SchumakerLL“Some algorithms for the computation of interpolating and approximating spline functions,” in: Theory and Applications of Spline Functions1969New YorkAcademic Press87102 – reference: NurnbergerGBivariate segment approximation and free knot splines; research problems 96-4Constructive Approximation1996124555558141219910.1007/BF024375080886.41010 – reference: MalachivskiiPSSkopetskyVVContinuous and Smooth Minimax Spline Approximation [in Ukrainian]2013KyivNaukova Dumka – reference: L. P. Vakal, “Approximation of functions of many variables with the use of the differential evolution algorithm,” Matem. Mashiny i Systemy, No. 1, 90–96 (2017). – reference: BerdyshevVIPetrakLVApproximation of Functions, Compression of Numerical Information, Applications [in Russian]1999EkaterinburgUrO RAN1206.41002 – reference: PopovBAUniform Spline Approximation [in Russian]1989KyivNaukova Dumka – reference: VakalLPKalenchuk-PorkhanovaAAVakalESIncreasing the efficiency of Chebyshev segment fractional rational approximationCybern. Syst. Analysis2017535759765368469710.1007/s10559-017-9978-71381.41028 – reference: VakalLPSolving uniform nonlinear approximation problem using continuous genetic algorithmJ. Autom. and Inform. Sci.2016486495910.1615/JAutomatInfScien.v48.i6.50 – reference: L. P. Vakal, “Constructing best Chebyshev spline approximations,” Shtuchnyi Intelekt, No. 2, 94–100 (2017). – reference: VakalLPSeeking optimal knots for segment approximationJ. Autom. and Inform. Sci.20164811687510.1615/JAutomatInfScien.v48.i11.60 – reference: StechkinSBSubbotinYNSplines in Computing Mathematics [in Russian]1976MoscowNauka0462.65007 – reference: KorneichukNPExact Constants in Approximation Theory [in Russian]1987MoscowNauka – reference: VakalESKivvaSLMistetskiiGEStelyaOBSolution method for nonlinear parabolic equationsJ. of Math. Sciences19915427817860723.65086 – reference: BarrodaleJYoungAA note on numerical procedures for approximation by spline functionsComput. J.1966931832020227810.1093/comjnl/9.3.3180168.14905 – reference: EschREEastmanWLComputational methods for best spline function approximationJ. of Approximation Theory196921859624052010.1016/0021-9045(69)90033-10181.17604 – reference: L. P. Vakal, “Genetic algorithms for Chebyshev approximation,” Komp. Zasoby, Merezhi ta Systemy, No. 12, 20–26 (2013). – reference: MeinardusGNurnbergerGSommerMStraussHAlgorithm for piecewise polynomials and splines with free knotsMath. of Computation19895318723524796949210.1090/S0025-5718-1989-0969492-70668.41009 – reference: NurnbergerGSommerMARemez type algorithm for spline functionsNumer. Math.198341111714669655410.1007/BF013963090489.65011 – reference: CrouzeixJPSukhorukovaNUgonJCharacterization theorem for best polynomial spline approximation with free knots, variable degree and fixed tailsJ. of Optimization Theory and Applications20171723950964361022810.1007/s10957-016-1048-11362.49009 – reference: StornRPriceKDifferential evolution — a simple and efficient heuristic for global optimization over continuous spacesJ. of Global Optimization199711341359147955310.1023/A:10082028213280888.90135 – reference: RemezEYFundamentals of Numerical Methods of Chebyshev Approximation [in Russian]1969KyivNaukova Dumka – reference: SchumakerLLUniform approximation by Chebyshev spline functions. II. Free knotsSIAM J. of Numerical Analysis19685464765624186710.1137/07050510169.39404 – ident: 152_CR9 – volume: 41 start-page: 117 issue: 1 year: 1983 ident: 152_CR11 publication-title: Numer. Math. doi: 10.1007/BF01396309 – volume: 2 start-page: 85 issue: 1 year: 1969 ident: 152_CR8 publication-title: J. of Approximation Theory doi: 10.1016/0021-9045(69)90033-1 – volume-title: Continuous and Smooth Minimax Spline Approximation [in Ukrainian] year: 2013 ident: 152_CR5 – volume: 172 start-page: 950 issue: 3 year: 2017 ident: 152_CR15 publication-title: J. of Optimization Theory and Applications doi: 10.1007/s10957-016-1048-1 – volume: 48 start-page: 68 issue: 11 year: 2016 ident: 152_CR17 publication-title: J. Autom. and Inform. Sci. doi: 10.1615/JAutomatInfScien.v48.i11.60 – volume: 53 start-page: 235 issue: 187 year: 1989 ident: 152_CR16 publication-title: Math. of Computation doi: 10.1090/S0025-5718-1989-0969492-7 – ident: 152_CR22 – volume-title: Splines in Computing Mathematics [in Russian] year: 1976 ident: 152_CR1 – volume-title: Uniform Spline Approximation [in Russian] year: 1989 ident: 152_CR4 – volume-title: Exact Constants in Approximation Theory [in Russian] year: 1987 ident: 152_CR6 – start-page: 87 volume-title: “Some algorithms for the computation of interpolating and approximating spline functions,” in: Theory and Applications of Spline Functions year: 1969 ident: 152_CR10 – volume: 12 start-page: 555 issue: 4 year: 1996 ident: 152_CR14 publication-title: Constructive Approximation doi: 10.1007/BF02437508 – volume: 5 start-page: 647 issue: 4 year: 1968 ident: 152_CR13 publication-title: SIAM J. of Numerical Analysis doi: 10.1137/0705051 – ident: 152_CR20 – volume-title: Fundamentals of Numerical Methods of Chebyshev Approximation [in Russian] year: 1969 ident: 152_CR12 – volume: 53 start-page: 759 issue: 5 year: 2017 ident: 152_CR18 publication-title: Cybern. Syst. Analysis doi: 10.1007/s10559-017-9978-7 – volume: 48 start-page: 49 issue: 6 year: 2016 ident: 152_CR21 publication-title: J. Autom. and Inform. Sci. doi: 10.1615/JAutomatInfScien.v48.i6.50 – volume: 9 start-page: 318 year: 1966 ident: 152_CR7 publication-title: Comput. J. doi: 10.1093/comjnl/9.3.318 – volume: 11 start-page: 341 year: 1997 ident: 152_CR19 publication-title: J. of Global Optimization doi: 10.1023/A:1008202821328 – volume-title: Approximation of Functions, Compression of Numerical Information, Applications [in Russian] year: 1999 ident: 152_CR2 – volume: 54 start-page: 781 issue: 2 year: 1991 ident: 152_CR3 publication-title: J. of Math. Sciences |
| SSID | ssj0003078 |
| Score | 2.097754 |
| Snippet | An algorithm for the best uniform approximation by a spline with optimal knots is presented in the paper. Differential evolution is used to find optimal knots.... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 449 |
| SubjectTerms | Algorithms Analysis Approximation Artificial Intelligence Control Evolutionary algorithms Evolutionary computation Knots Mathematics Mathematics and Statistics Optimization Processor Architectures Software Engineering/Programming and Operating Systems Software–Hardware Systems Systems Theory |
| Title | Algorithm for the Best Uniform Spline Approximation with Free Knots |
| URI | https://link.springer.com/article/10.1007/s10559-019-00152-5 https://www.proquest.com/docview/2231980506 |
| Volume | 55 |
| WOSCitedRecordID | wos000469488000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1573-8337 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0003078 issn: 1060-0396 databaseCode: 7WY dateStart: 20000901 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1573-8337 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0003078 issn: 1060-0396 databaseCode: M0C dateStart: 20000901 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-8337 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0003078 issn: 1060-0396 databaseCode: P5Z dateStart: 20000901 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-8337 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0003078 issn: 1060-0396 databaseCode: K7- dateStart: 20000901 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-8337 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0003078 issn: 1060-0396 databaseCode: M7S dateStart: 20000901 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-8337 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0003078 issn: 1060-0396 databaseCode: BENPR dateStart: 20000901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-8337 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003078 issn: 1060-0396 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6xjQf2AGwwrWNU1jQJEFhy6iSOH7tq1dC2qmphDF4sx3ZHpZFOTYb48zmnTseAIbGHWIpySezz-fz5x30G2HfGdkQqLI20lTR2MqV5xCdUMt3h3HCd1FMXZydiMMjOz-UwBIWVzW73Zkmy9tS_BLsh-sWhL17Yh-EQagXWsLsTfiPfaHy29L9otYsAuJRRxmUaQmX-_o1b3dHvTvmP1dG60-k_uV92n8LjADJJd2EVG_DAFZuwfrpkaC03YSM06pK8DszTb55Br3t5MZtPq6_fCGJZguLkADNIEJh6bEvGPnzXka7nIf8xXQQ9Ej-TS_pz58hxMavK5_Cxf_ihd0TDKQvUIDaqqMxs7GndNGPGWRlJzSMumNSGM8MTk2W5sJrjSFFPrHEmt9JGTPr1W5lLHvMtWC1mhdsG0pEsjnmaxE4gEET_ZfKYZ87F1hqZR2kLokbZygQKcn8SxqW6IU_2WlOoNVVrTSUteLt852pBwPFP6T1fh8ozWxR-68yFvi5L9X48Ul20OkQniKha8CoITWb4e6NDJAIWwpNh3ZLcbWxBhbZdKgRUkcxYwrA875q6v3l8d-Z2_k_8BTzq1Objd1fuwmo1v3Yv4aH5Xk3LeRtWxKfPbVg7OBwMR3h3LCimp6znUzHGdJh8adct4ycXBfzC |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RQGp7KM-qWx61UCVaQSQndh4-bhErEMsKsYC4WY7tpSvRbLUJVX8-46yzPApI9JBTxok9Ho-_sT2fAb5abaI0SU0QKiMCbkUS5CEbBIKqiDHNVFwvXVx0014vu7wUJz4prGxOuzdbkrWnvpfshugXQ198cA7DEOoNzPEIEb6L0fsXU_-LVjtJgEtoQJlIfKrM0994MB09dsr_7I7Wk05n4f-quwgfPMgk7YlVLMGMLZbh_fGUobVchiU_qEvyzTNPf1-Bvfb11Wg8rH7-IohlCYqTH1hBgsDUYVvSd-m7lrQdD_nf4STpkbiVXNIZW0uOilFVrsJ5Z_9s7yDwtywEGrFRFYjMcEfrpijV1ohQKBaylAqlGdUs1lmWp0YxjBTVwGircyNMSIXbvxW5YJx9hNliVNhPQCJBOWdJzG2KQBD9l845y6zlxmiRh0kLwkbZUnsKcncTxrW8I092WpOoNVlrTcYt2JmW-T0h4HhResv1oXTMFoU7OnOlbspSHvZPZRutDtEJIqoWbHuhwQh_r5XPRMBGODKsB5LrjS1IP7ZLiYAqFBmNKbZnt-n7u9fPV-7z68S_wNuDs-Ou7B72jtbgXVSbkjtpuQ6z1fjGbsC8_lMNy_Fmbf-3oDL5Ww |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT9swFL1iME3sAQYD0QGbNU3api2qUzsffiywaqisQuuGeLMc2y2VSlo1YdrP5zpxC2Uf0rSHPOUmsW-u7WP7nmOAN1abVhInJgiVEQG3Ig6ykA0CQVWLMc1UVC1dXJwlvV56eSnO77H4q2z3-ZZkzWlwKk152ZyaQfMe8Q2RME6D8cLxDKdTj2CNu3Q5N1_vXyz6YozgmgwX04AyEXvazO_fsTQ0Peygf9kprQagzub_F_0ZbHjwSdp1tGzBis234emXhXJrsQ1bvrEX5J1XpH7_HI7b4-FkNiqvrgliXILm5AgLSxCwOsxL-o7Wa0nb6ZP_HNVkSOJWeElnZi3p5pOy2IHvnU_fjj8H_vSFQCNmKgORGu7k3hSl2hoRCsVCllChNKOaRTpNs8QohjNINTDa6swIE1Lh9nVFJhhnu7CaT3K7B6QlKOcsjrhNECBiv6YzzlJruTFaZGHcgHDueKm9NLk7IWMs70SVndckek1WXpNRAz4snpnWwhx_tX7t_qd0ihe5S6kZqpuikKf9r7KN0YioBZFWA956o8EEP6-VZyhgJZxI1pLlwTwupG_zhUSgFYqURhTr83EeB3e3_1y4F_9m_gqenJ905Nlpr7sP660qklwC5gGslrMbewiP9Y9yVMxeVk3hFgCaAkU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ALGORITHM+FOR+THE+BEST+UNIFORM+SPLINE+APPROXIMATION+WITH+FREE+KNOTS&rft.jtitle=Cybernetics+and+systems+analysis&rft.au=Vakal%2C+L.P&rft.au=Vakal%2C+E.S&rft.date=2019-05-01&rft.pub=Springer&rft.issn=1060-0396&rft.volume=55&rft.issue=3&rft.spage=449&rft_id=info:doi/10.1007%2Fs10559-019-00152-5&rft.externalDBID=ISR&rft.externalDocID=A596818710 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1060-0396&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1060-0396&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1060-0396&client=summon |