Algorithm for the Best Uniform Spline Approximation with Free Knots

An algorithm for the best uniform approximation by a spline with optimal knots is presented in the paper. Differential evolution is used to find optimal knots. It is one of the best evolutionary algorithms, which sustainably finds function’s global optimum in minimum time. Spline coefficients are co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cybernetics and systems analysis Jg. 55; H. 3; S. 449 - 455
Hauptverfasser: Vakal, L. P., Vakal, E. S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.05.2019
Springer
Springer Nature B.V
Schlagworte:
ISSN:1060-0396, 1573-8337
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract An algorithm for the best uniform approximation by a spline with optimal knots is presented in the paper. Differential evolution is used to find optimal knots. It is one of the best evolutionary algorithms, which sustainably finds function’s global optimum in minimum time. Spline coefficients are computed as a solution of a spline-approximation problem with fixed knots. Results of the numerical experiment are given.
AbstractList An algorithm for the best uniform approximation by a spline with optimal knots is presented in the paper. Differential evolution is used to find optimal knots. It is one of the best evolutionary algorithms, which sustainably finds function’s global optimum in minimum time. Spline coefficients are computed as a solution of a spline-approximation problem with fixed knots. Results of the numerical experiment are given.
An algorithm for the best uniform approximation by a spline with optimal knots is presented in the paper. Differential evolution is used to find optimal knots. It is one of the best evolutionary algorithms, which sustainably finds function's global optimum in minimum time. Spline coefficients are computed as a solution of a spline-approximation problem with fixed knots. Results of the numerical experiment are given. Keywords: best uniform approximation, spline, optimal knots, differential evolution.
Audience Academic
Author Vakal, E. S.
Vakal, L. P.
Author_xml – sequence: 1
  givenname: L. P.
  surname: Vakal
  fullname: Vakal, L. P.
  email: lara.vakal@gmail.com
  organization: V. M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine
– sequence: 2
  givenname: E. S.
  surname: Vakal
  fullname: Vakal, E. S.
  organization: Taras Shevchenko National University of Kyiv
BookMark eNp9kU9PXCEUxUljk6rtF-iKpCsXz15gGGA5nag1mphoXROGxxsxb2AKTJx--159TRpdGEL4k_PjXs45Igcpp0DIVwanDEB9rwykNB0wnMAk7-QHcsikEp0WQh3gHubQgTDzT-So1kcAEKD0IVkuxnUusT1s6JALbQ-B_gi10fsU8byhd9sxpkAX223J-7hxLeZEn1BPz0sI9CrlVj-Tj4Mba_jybz0m9-dnv5Y_u-ubi8vl4rrzwvDWGd3POBMzB-BDb5hxggkFxnkBXkiv9Ur1TijO3ND74Fe96RkYrjiYlREzcUy-Te9iL7932KV9zLuSsKTlXDCjQcIcVaeTau3GYGMacivO4-jDJnq0bYh4v5BmrplWDBA4eQWgpoV9W7tdrfby7va1Vk9aX3KtJQzWx_ZiChaJo2Vgn_OwUx4W87AveViJKH-DbgsaWv68D4kJqihO61D-f_kd6i8EXZyz
CitedBy_id crossref_primary_10_2478_lpts_2024_0047
Cites_doi 10.1007/BF01396309
10.1016/0021-9045(69)90033-1
10.1007/s10957-016-1048-1
10.1615/JAutomatInfScien.v48.i11.60
10.1090/S0025-5718-1989-0969492-7
10.1007/BF02437508
10.1137/0705051
10.1007/s10559-017-9978-7
10.1615/JAutomatInfScien.v48.i6.50
10.1093/comjnl/9.3.318
10.1023/A:1008202821328
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
COPYRIGHT 2019 Springer
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: COPYRIGHT 2019 Springer
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
ISR
JQ2
DOI 10.1007/s10559-019-00152-5
DatabaseName CrossRef
Gale In Context: Science
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList


ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-8337
EndPage 455
ExternalDocumentID A596818710
10_1007_s10559_019_00152_5
GroupedDBID -52
-5D
-5G
-BR
-EM
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
29F
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
7WY
8FL
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
IAO
IJ-
IKXTQ
ISR
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LAK
LLZTM
M0C
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9O
PF0
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
-Y2
.4S
1SB
2.D
28-
2P1
2VQ
5QI
642
8AO
8FE
8FG
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABQSL
ABRTQ
ABULA
ABUWG
ACBXY
ACSTC
ADHKG
ADKFA
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFHD
AFFNX
AFGCZ
AFHIU
AFKRA
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ARAPS
ARCSS
ATHPR
AZQEC
BBWZM
BENPR
BEZIV
BGLVJ
BPHCQ
CAG
CCPQU
CITATION
COF
DWQXO
EDO
FRNLG
GNUQQ
H13
HCIFZ
HZ~
I-F
ICD
IHE
K6V
K7-
KOW
M7S
MK~
N2Q
NDZJH
O9-
OVD
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
RNI
RZC
RZE
RZK
S0W
S1Z
S26
S28
SCLPG
SDD
T16
TEORI
UZXMN
VFIZW
ZWQNP
JQ2
ID FETCH-LOGICAL-c392t-98d42134a00ced919a313709ac30c35c88b7da3721afdcecbd9d10927209b9343
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000469488000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1060-0396
IngestDate Wed Sep 17 23:58:32 EDT 2025
Sat Nov 29 09:49:46 EST 2025
Wed Nov 26 09:24:06 EST 2025
Sat Nov 29 01:48:32 EST 2025
Tue Nov 18 22:32:01 EST 2025
Fri Feb 21 02:41:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords best uniform approximation
differential evolution
spline
optimal knots
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-98d42134a00ced919a313709ac30c35c88b7da3721afdcecbd9d10927209b9343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2231980506
PQPubID 48839
PageCount 7
ParticipantIDs proquest_journals_2231980506
gale_infotracacademiconefile_A596818710
gale_incontextgauss_ISR_A596818710
crossref_citationtrail_10_1007_s10559_019_00152_5
crossref_primary_10_1007_s10559_019_00152_5
springer_journals_10_1007_s10559_019_00152_5
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Cybernetics and systems analysis
PublicationTitleAbbrev Cybern Syst Anal
PublicationYear 2019
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References VakalESKivvaSLMistetskiiGEStelyaOBSolution method for nonlinear parabolic equationsJ. of Math. Sciences19915427817860723.65086
L. P. Vakal, “Approximation of functions of many variables with the use of the differential evolution algorithm,” Matem. Mashiny i Systemy, No. 1, 90–96 (2017).
L. P. Vakal, “Constructing best Chebyshev spline approximations,” Shtuchnyi Intelekt, No. 2, 94–100 (2017).
EschREEastmanWLComputational methods for best spline function approximationJ. of Approximation Theory196921859624052010.1016/0021-9045(69)90033-10181.17604
SchumakerLL“Some algorithms for the computation of interpolating and approximating spline functions,” in: Theory and Applications of Spline Functions1969New YorkAcademic Press87102
VakalLPKalenchuk-PorkhanovaAAVakalESIncreasing the efficiency of Chebyshev segment fractional rational approximationCybern. Syst. Analysis2017535759765368469710.1007/s10559-017-9978-71381.41028
CrouzeixJPSukhorukovaNUgonJCharacterization theorem for best polynomial spline approximation with free knots, variable degree and fixed tailsJ. of Optimization Theory and Applications20171723950964361022810.1007/s10957-016-1048-11362.49009
VakalLPSeeking optimal knots for segment approximationJ. Autom. and Inform. Sci.20164811687510.1615/JAutomatInfScien.v48.i11.60
MalachivskiiPSSkopetskyVVContinuous and Smooth Minimax Spline Approximation [in Ukrainian]2013KyivNaukova Dumka
BarrodaleJYoungAA note on numerical procedures for approximation by spline functionsComput. J.1966931832020227810.1093/comjnl/9.3.3180168.14905
SchumakerLLUniform approximation by Chebyshev spline functions. II. Free knotsSIAM J. of Numerical Analysis19685464765624186710.1137/07050510169.39404
PopovBAUniform Spline Approximation [in Russian]1989KyivNaukova Dumka
KorneichukNPExact Constants in Approximation Theory [in Russian]1987MoscowNauka
RemezEYFundamentals of Numerical Methods of Chebyshev Approximation [in Russian]1969KyivNaukova Dumka
StornRPriceKDifferential evolution — a simple and efficient heuristic for global optimization over continuous spacesJ. of Global Optimization199711341359147955310.1023/A:10082028213280888.90135
MeinardusGNurnbergerGSommerMStraussHAlgorithm for piecewise polynomials and splines with free knotsMath. of Computation19895318723524796949210.1090/S0025-5718-1989-0969492-70668.41009
BerdyshevVIPetrakLVApproximation of Functions, Compression of Numerical Information, Applications [in Russian]1999EkaterinburgUrO RAN1206.41002
StechkinSBSubbotinYNSplines in Computing Mathematics [in Russian]1976MoscowNauka0462.65007
NurnbergerGSommerMARemez type algorithm for spline functionsNumer. Math.198341111714669655410.1007/BF013963090489.65011
VakalLPSolving uniform nonlinear approximation problem using continuous genetic algorithmJ. Autom. and Inform. Sci.2016486495910.1615/JAutomatInfScien.v48.i6.50
NurnbergerGBivariate segment approximation and free knot splines; research problems 96-4Constructive Approximation1996124555558141219910.1007/BF024375080886.41010
L. P. Vakal, “Genetic algorithms for Chebyshev approximation,” Komp. Zasoby, Merezhi ta Systemy, No. 12, 20–26 (2013).
LL Schumaker (152_CR10) 1969
SB Stechkin (152_CR1) 1976
R Storn (152_CR19) 1997; 11
G Nurnberger (152_CR14) 1996; 12
J Barrodale (152_CR7) 1966; 9
152_CR20
ES Vakal (152_CR3) 1991; 54
RE Esch (152_CR8) 1969; 2
152_CR22
LL Schumaker (152_CR13) 1968; 5
VI Berdyshev (152_CR2) 1999
LP Vakal (152_CR21) 2016; 48
BA Popov (152_CR4) 1989
LP Vakal (152_CR18) 2017; 53
152_CR9
JP Crouzeix (152_CR15) 2017; 172
LP Vakal (152_CR17) 2016; 48
G Meinardus (152_CR16) 1989; 53
EY Remez (152_CR12) 1969
NP Korneichuk (152_CR6) 1987
G Nurnberger (152_CR11) 1983; 41
PS Malachivskii (152_CR5) 2013
References_xml – reference: SchumakerLL“Some algorithms for the computation of interpolating and approximating spline functions,” in: Theory and Applications of Spline Functions1969New YorkAcademic Press87102
– reference: NurnbergerGBivariate segment approximation and free knot splines; research problems 96-4Constructive Approximation1996124555558141219910.1007/BF024375080886.41010
– reference: MalachivskiiPSSkopetskyVVContinuous and Smooth Minimax Spline Approximation [in Ukrainian]2013KyivNaukova Dumka
– reference: L. P. Vakal, “Approximation of functions of many variables with the use of the differential evolution algorithm,” Matem. Mashiny i Systemy, No. 1, 90–96 (2017).
– reference: BerdyshevVIPetrakLVApproximation of Functions, Compression of Numerical Information, Applications [in Russian]1999EkaterinburgUrO RAN1206.41002
– reference: PopovBAUniform Spline Approximation [in Russian]1989KyivNaukova Dumka
– reference: VakalLPKalenchuk-PorkhanovaAAVakalESIncreasing the efficiency of Chebyshev segment fractional rational approximationCybern. Syst. Analysis2017535759765368469710.1007/s10559-017-9978-71381.41028
– reference: VakalLPSolving uniform nonlinear approximation problem using continuous genetic algorithmJ. Autom. and Inform. Sci.2016486495910.1615/JAutomatInfScien.v48.i6.50
– reference: L. P. Vakal, “Constructing best Chebyshev spline approximations,” Shtuchnyi Intelekt, No. 2, 94–100 (2017).
– reference: VakalLPSeeking optimal knots for segment approximationJ. Autom. and Inform. Sci.20164811687510.1615/JAutomatInfScien.v48.i11.60
– reference: StechkinSBSubbotinYNSplines in Computing Mathematics [in Russian]1976MoscowNauka0462.65007
– reference: KorneichukNPExact Constants in Approximation Theory [in Russian]1987MoscowNauka
– reference: VakalESKivvaSLMistetskiiGEStelyaOBSolution method for nonlinear parabolic equationsJ. of Math. Sciences19915427817860723.65086
– reference: BarrodaleJYoungAA note on numerical procedures for approximation by spline functionsComput. J.1966931832020227810.1093/comjnl/9.3.3180168.14905
– reference: EschREEastmanWLComputational methods for best spline function approximationJ. of Approximation Theory196921859624052010.1016/0021-9045(69)90033-10181.17604
– reference: L. P. Vakal, “Genetic algorithms for Chebyshev approximation,” Komp. Zasoby, Merezhi ta Systemy, No. 12, 20–26 (2013).
– reference: MeinardusGNurnbergerGSommerMStraussHAlgorithm for piecewise polynomials and splines with free knotsMath. of Computation19895318723524796949210.1090/S0025-5718-1989-0969492-70668.41009
– reference: NurnbergerGSommerMARemez type algorithm for spline functionsNumer. Math.198341111714669655410.1007/BF013963090489.65011
– reference: CrouzeixJPSukhorukovaNUgonJCharacterization theorem for best polynomial spline approximation with free knots, variable degree and fixed tailsJ. of Optimization Theory and Applications20171723950964361022810.1007/s10957-016-1048-11362.49009
– reference: StornRPriceKDifferential evolution — a simple and efficient heuristic for global optimization over continuous spacesJ. of Global Optimization199711341359147955310.1023/A:10082028213280888.90135
– reference: RemezEYFundamentals of Numerical Methods of Chebyshev Approximation [in Russian]1969KyivNaukova Dumka
– reference: SchumakerLLUniform approximation by Chebyshev spline functions. II. Free knotsSIAM J. of Numerical Analysis19685464765624186710.1137/07050510169.39404
– ident: 152_CR9
– volume: 41
  start-page: 117
  issue: 1
  year: 1983
  ident: 152_CR11
  publication-title: Numer. Math.
  doi: 10.1007/BF01396309
– volume: 2
  start-page: 85
  issue: 1
  year: 1969
  ident: 152_CR8
  publication-title: J. of Approximation Theory
  doi: 10.1016/0021-9045(69)90033-1
– volume-title: Continuous and Smooth Minimax Spline Approximation [in Ukrainian]
  year: 2013
  ident: 152_CR5
– volume: 172
  start-page: 950
  issue: 3
  year: 2017
  ident: 152_CR15
  publication-title: J. of Optimization Theory and Applications
  doi: 10.1007/s10957-016-1048-1
– volume: 48
  start-page: 68
  issue: 11
  year: 2016
  ident: 152_CR17
  publication-title: J. Autom. and Inform. Sci.
  doi: 10.1615/JAutomatInfScien.v48.i11.60
– volume: 53
  start-page: 235
  issue: 187
  year: 1989
  ident: 152_CR16
  publication-title: Math. of Computation
  doi: 10.1090/S0025-5718-1989-0969492-7
– ident: 152_CR22
– volume-title: Splines in Computing Mathematics [in Russian]
  year: 1976
  ident: 152_CR1
– volume-title: Uniform Spline Approximation [in Russian]
  year: 1989
  ident: 152_CR4
– volume-title: Exact Constants in Approximation Theory [in Russian]
  year: 1987
  ident: 152_CR6
– start-page: 87
  volume-title: “Some algorithms for the computation of interpolating and approximating spline functions,” in: Theory and Applications of Spline Functions
  year: 1969
  ident: 152_CR10
– volume: 12
  start-page: 555
  issue: 4
  year: 1996
  ident: 152_CR14
  publication-title: Constructive Approximation
  doi: 10.1007/BF02437508
– volume: 5
  start-page: 647
  issue: 4
  year: 1968
  ident: 152_CR13
  publication-title: SIAM J. of Numerical Analysis
  doi: 10.1137/0705051
– ident: 152_CR20
– volume-title: Fundamentals of Numerical Methods of Chebyshev Approximation [in Russian]
  year: 1969
  ident: 152_CR12
– volume: 53
  start-page: 759
  issue: 5
  year: 2017
  ident: 152_CR18
  publication-title: Cybern. Syst. Analysis
  doi: 10.1007/s10559-017-9978-7
– volume: 48
  start-page: 49
  issue: 6
  year: 2016
  ident: 152_CR21
  publication-title: J. Autom. and Inform. Sci.
  doi: 10.1615/JAutomatInfScien.v48.i6.50
– volume: 9
  start-page: 318
  year: 1966
  ident: 152_CR7
  publication-title: Comput. J.
  doi: 10.1093/comjnl/9.3.318
– volume: 11
  start-page: 341
  year: 1997
  ident: 152_CR19
  publication-title: J. of Global Optimization
  doi: 10.1023/A:1008202821328
– volume-title: Approximation of Functions, Compression of Numerical Information, Applications [in Russian]
  year: 1999
  ident: 152_CR2
– volume: 54
  start-page: 781
  issue: 2
  year: 1991
  ident: 152_CR3
  publication-title: J. of Math. Sciences
SSID ssj0003078
Score 2.097754
Snippet An algorithm for the best uniform approximation by a spline with optimal knots is presented in the paper. Differential evolution is used to find optimal knots....
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 449
SubjectTerms Algorithms
Analysis
Approximation
Artificial Intelligence
Control
Evolutionary algorithms
Evolutionary computation
Knots
Mathematics
Mathematics and Statistics
Optimization
Processor Architectures
Software Engineering/Programming and Operating Systems
Software–Hardware Systems
Systems Theory
Title Algorithm for the Best Uniform Spline Approximation with Free Knots
URI https://link.springer.com/article/10.1007/s10559-019-00152-5
https://www.proquest.com/docview/2231980506
Volume 55
WOSCitedRecordID wos000469488000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-8337
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0003078
  issn: 1060-0396
  databaseCode: 7WY
  dateStart: 20000901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-8337
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0003078
  issn: 1060-0396
  databaseCode: M0C
  dateStart: 20000901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-8337
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0003078
  issn: 1060-0396
  databaseCode: P5Z
  dateStart: 20000901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-8337
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0003078
  issn: 1060-0396
  databaseCode: K7-
  dateStart: 20000901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-8337
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0003078
  issn: 1060-0396
  databaseCode: M7S
  dateStart: 20000901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-8337
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0003078
  issn: 1060-0396
  databaseCode: BENPR
  dateStart: 20000901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-8337
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003078
  issn: 1060-0396
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6xjQf2AGwwrWNU1jQJEFhy6iSOH7tq1dC2qmphDF4sx3ZHpZFOTYb48zmnTseAIbGHWIpySezz-fz5x30G2HfGdkQqLI20lTR2MqV5xCdUMt3h3HCd1FMXZydiMMjOz-UwBIWVzW73Zkmy9tS_BLsh-sWhL17Yh-EQagXWsLsTfiPfaHy29L9otYsAuJRRxmUaQmX-_o1b3dHvTvmP1dG60-k_uV92n8LjADJJd2EVG_DAFZuwfrpkaC03YSM06pK8DszTb55Br3t5MZtPq6_fCGJZguLkADNIEJh6bEvGPnzXka7nIf8xXQQ9Ej-TS_pz58hxMavK5_Cxf_ihd0TDKQvUIDaqqMxs7GndNGPGWRlJzSMumNSGM8MTk2W5sJrjSFFPrHEmt9JGTPr1W5lLHvMtWC1mhdsG0pEsjnmaxE4gEET_ZfKYZ87F1hqZR2kLokbZygQKcn8SxqW6IU_2WlOoNVVrTSUteLt852pBwPFP6T1fh8ozWxR-68yFvi5L9X48Ul20OkQniKha8CoITWb4e6NDJAIWwpNh3ZLcbWxBhbZdKgRUkcxYwrA875q6v3l8d-Z2_k_8BTzq1Objd1fuwmo1v3Yv4aH5Xk3LeRtWxKfPbVg7OBwMR3h3LCimp6znUzHGdJh8adct4ycXBfzC
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RQGp7KM-qWx61UCVaQSQndh4-bhErEMsKsYC4WY7tpSvRbLUJVX8-46yzPApI9JBTxok9Ho-_sT2fAb5abaI0SU0QKiMCbkUS5CEbBIKqiDHNVFwvXVx0014vu7wUJz4prGxOuzdbkrWnvpfshugXQ198cA7DEOoNzPEIEb6L0fsXU_-LVjtJgEtoQJlIfKrM0994MB09dsr_7I7Wk05n4f-quwgfPMgk7YlVLMGMLZbh_fGUobVchiU_qEvyzTNPf1-Bvfb11Wg8rH7-IohlCYqTH1hBgsDUYVvSd-m7lrQdD_nf4STpkbiVXNIZW0uOilFVrsJ5Z_9s7yDwtywEGrFRFYjMcEfrpijV1ohQKBaylAqlGdUs1lmWp0YxjBTVwGircyNMSIXbvxW5YJx9hNliVNhPQCJBOWdJzG2KQBD9l845y6zlxmiRh0kLwkbZUnsKcncTxrW8I092WpOoNVlrTcYt2JmW-T0h4HhResv1oXTMFoU7OnOlbspSHvZPZRutDtEJIqoWbHuhwQh_r5XPRMBGODKsB5LrjS1IP7ZLiYAqFBmNKbZnt-n7u9fPV-7z68S_wNuDs-Ou7B72jtbgXVSbkjtpuQ6z1fjGbsC8_lMNy_Fmbf-3oDL5Ww
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT9swFL1iME3sAQYD0QGbNU3api2qUzsffiywaqisQuuGeLMc2y2VSlo1YdrP5zpxC2Uf0rSHPOUmsW-u7WP7nmOAN1abVhInJgiVEQG3Ig6ykA0CQVWLMc1UVC1dXJwlvV56eSnO77H4q2z3-ZZkzWlwKk152ZyaQfMe8Q2RME6D8cLxDKdTj2CNu3Q5N1_vXyz6YozgmgwX04AyEXvazO_fsTQ0Peygf9kprQagzub_F_0ZbHjwSdp1tGzBis234emXhXJrsQ1bvrEX5J1XpH7_HI7b4-FkNiqvrgliXILm5AgLSxCwOsxL-o7Wa0nb6ZP_HNVkSOJWeElnZi3p5pOy2IHvnU_fjj8H_vSFQCNmKgORGu7k3hSl2hoRCsVCllChNKOaRTpNs8QohjNINTDa6swIE1Lh9nVFJhhnu7CaT3K7B6QlKOcsjrhNECBiv6YzzlJruTFaZGHcgHDueKm9NLk7IWMs70SVndckek1WXpNRAz4snpnWwhx_tX7t_qd0ihe5S6kZqpuikKf9r7KN0YioBZFWA956o8EEP6-VZyhgJZxI1pLlwTwupG_zhUSgFYqURhTr83EeB3e3_1y4F_9m_gqenJ905Nlpr7sP660qklwC5gGslrMbewiP9Y9yVMxeVk3hFgCaAkU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ALGORITHM+FOR+THE+BEST+UNIFORM+SPLINE+APPROXIMATION+WITH+FREE+KNOTS&rft.jtitle=Cybernetics+and+systems+analysis&rft.au=Vakal%2C+L.P&rft.au=Vakal%2C+E.S&rft.date=2019-05-01&rft.pub=Springer&rft.issn=1060-0396&rft.volume=55&rft.issue=3&rft.spage=449&rft_id=info:doi/10.1007%2Fs10559-019-00152-5&rft.externalDBID=ISR&rft.externalDocID=A596818710
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1060-0396&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1060-0396&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1060-0396&client=summon