Adaptive generalized ZEM-ZEV feedback guidance for planetary landing via a deep reinforcement learning approach

Precision landing on large and small planetary bodies is a technology of utmost importance for future human and robotic exploration of the solar system. In this context, the Zero-Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) feedback guidance algorithm has been studied extensively and is still a field...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta astronautica Jg. 171; S. 156 - 171
Hauptverfasser: Furfaro, Roberto, Scorsoglio, Andrea, Linares, Richard, Massari, Mauro
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elmsford Elsevier Ltd 01.06.2020
Elsevier BV
Schlagworte:
ISSN:0094-5765, 1879-2030
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Precision landing on large and small planetary bodies is a technology of utmost importance for future human and robotic exploration of the solar system. In this context, the Zero-Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) feedback guidance algorithm has been studied extensively and is still a field of active research. The algorithm, although powerful in terms of accuracy and ease of implementation, has some limitations. Therefore with this paper we present an adaptive guidance algorithm based on classical ZEM/ZEV in which machine learning is used to overcome its limitations and create a closed loop guidance algorithm that is sufficiently lightweight to be implemented on board spacecraft and flexible enough to be able to adapt to the given constraint scenario. The adopted methodology is an actor-critic reinforcement learning algorithm that learns the parameters of the above-mentioned guidance architecture according to the given problem constraints. •A Deep Reinforcement Learning (DRL) framework for structured planetary landing guidance is presented.•The DRL framework is based on a customized actor-critic approach that employs Extreme Learning Machines (ELM).•The algorithm learns the ZEM/ZEV generalized feedback guidance gains as function of the spacecraft state.•The gains are adapted to ensure both quasi-optimality and flight-constraints.•Stability analysis shows the proposed approach is globally stable.
AbstractList Precision landing on large and small planetary bodies is a technology of utmost importance for future human and robotic exploration of the solar system. In this context, the Zero-Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) feedback guidance algorithm has been studied extensively and is still a field of active research. The algorithm, although powerful in terms of accuracy and ease of implementation, has some limitations. Therefore with this paper we present an adaptive guidance algorithm based on classical ZEM/ZEV in which machine learning is used to overcome its limitations and create a closed loop guidance algorithm that is sufficiently lightweight to be implemented on board spacecraft and flexible enough to be able to adapt to the given constraint scenario. The adopted methodology is an actor-critic reinforcement learning algorithm that learns the parameters of the above-mentioned guidance architecture according to the given problem constraints.
Precision landing on large and small planetary bodies is a technology of utmost importance for future human and robotic exploration of the solar system. In this context, the Zero-Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) feedback guidance algorithm has been studied extensively and is still a field of active research. The algorithm, although powerful in terms of accuracy and ease of implementation, has some limitations. Therefore with this paper we present an adaptive guidance algorithm based on classical ZEM/ZEV in which machine learning is used to overcome its limitations and create a closed loop guidance algorithm that is sufficiently lightweight to be implemented on board spacecraft and flexible enough to be able to adapt to the given constraint scenario. The adopted methodology is an actor-critic reinforcement learning algorithm that learns the parameters of the above-mentioned guidance architecture according to the given problem constraints. •A Deep Reinforcement Learning (DRL) framework for structured planetary landing guidance is presented.•The DRL framework is based on a customized actor-critic approach that employs Extreme Learning Machines (ELM).•The algorithm learns the ZEM/ZEV generalized feedback guidance gains as function of the spacecraft state.•The gains are adapted to ensure both quasi-optimality and flight-constraints.•Stability analysis shows the proposed approach is globally stable.
Author Linares, Richard
Scorsoglio, Andrea
Massari, Mauro
Furfaro, Roberto
Author_xml – sequence: 1
  givenname: Roberto
  orcidid: 0000-0001-6076-8992
  surname: Furfaro
  fullname: Furfaro, Roberto
  email: robertof@email.arizona.edu
  organization: Department of Systems & Industrial Engineering, Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721, USA
– sequence: 2
  givenname: Andrea
  orcidid: 0000-0001-5875-3804
  surname: Scorsoglio
  fullname: Scorsoglio, Andrea
  email: andreascorsoglio@email.arizona.edu
  organization: Department of Systems & Industrial Engineering, University of Arizona, Tucson, AZ, 85721, USA
– sequence: 3
  givenname: Richard
  surname: Linares
  fullname: Linares, Richard
  email: linaresr@mit.edu
  organization: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
– sequence: 4
  givenname: Mauro
  orcidid: 0000-0003-4535-8543
  surname: Massari
  fullname: Massari, Mauro
  email: mauro.massari@polimi.it
  organization: Department of Aerospace Science and Technology, Politecnico di Milano, Milan, 20156, ITA, Italy
BookMark eNqNkD1vFDEQhi0UJC4hvwFL1LuMvR-3LihO0RGQgmhIijTWrD0-fGzsxes7CX59fDpEQQPVTPE-72ieS3YRYiDG3gioBYj-3b5GkxGXnGItQUINsoZOvGArMaxVJaGBC7YCUG3VrfvuFbtclj0ArOWgVixuLM7ZH4nvKFDCyf8iyx-3n6vH7QN3RHZE853vDt5iMMRdTHyeMFDG9JOXxfqw40ePHLklmnkiH0rI0BOFzCfCFE4JnOcU0Xx7zV46nBa6_j2v2P2H7debj9Xdl9tPN5u7yjRK5kp14ygtUNMoGgU0CrrOGSUIURp0imRrrFStM27sBwTbdraXAw7YqtEpaK7Y23NvOfvjQEvW-3hIoZzUsm1FA0PfnVLrc8qkuCyJnJ6TfyqfaQH6ZFfv9R-7-mRXg9TFbiHf_0UanzH7GHJCP_0HvznzVCQcPSW9GE_FsPWJTNY2-n92PAP8cqAI
CitedBy_id crossref_primary_10_1109_TAES_2021_3117094
crossref_primary_10_1016_j_ast_2024_109316
crossref_primary_10_1016_j_ast_2023_108303
crossref_primary_10_1016_j_ast_2023_108666
crossref_primary_10_1016_j_arcontrol_2021_04_013
crossref_primary_10_2514_1_G007039
crossref_primary_10_1016_j_actaastro_2021_05_014
crossref_primary_10_1016_j_paerosci_2021_100696
crossref_primary_10_3390_aerospace9100569
crossref_primary_10_1177_09544100221088361
crossref_primary_10_1016_j_actaastro_2021_05_018
crossref_primary_10_1016_j_ast_2022_107812
crossref_primary_10_1007_s00521_024_10520_8
crossref_primary_10_3390_aerospace10070590
crossref_primary_10_3389_frobt_2021_650885
crossref_primary_10_1016_j_cja_2024_02_024
crossref_primary_10_1007_s42405_025_00917_7
crossref_primary_10_2514_1_G008085
crossref_primary_10_1016_j_asr_2022_07_020
crossref_primary_10_3390_geosciences12060248
crossref_primary_10_3390_drones7100626
crossref_primary_10_1016_j_actaastro_2021_07_010
crossref_primary_10_1007_s42064_024_0252_2
crossref_primary_10_1016_j_ast_2022_107765
crossref_primary_10_3390_aerospace10020133
crossref_primary_10_1016_j_asr_2022_08_002
crossref_primary_10_1007_s40295_023_00428_1
crossref_primary_10_1177_09544100221138911
crossref_primary_10_1016_j_actaastro_2022_03_005
crossref_primary_10_1109_TMECH_2021_3121434
crossref_primary_10_2514_1_G006832
crossref_primary_10_3389_frspt_2023_1263489
crossref_primary_10_1109_TRO_2025_3600160
crossref_primary_10_2514_1_G006792
crossref_primary_10_3390_aerospace10110948
crossref_primary_10_1016_j_arcontrol_2022_07_004
crossref_primary_10_1016_j_ast_2022_107677
crossref_primary_10_3390_app12105106
crossref_primary_10_1016_j_actaastro_2025_07_007
crossref_primary_10_1109_TAES_2022_3183961
crossref_primary_10_1016_j_paerosci_2025_101129
crossref_primary_10_1016_j_actaastro_2024_11_028
crossref_primary_10_23919_JSEE_2024_000111
crossref_primary_10_3390_aerospace10070634
crossref_primary_10_1007_s42423_023_00143_x
crossref_primary_10_1016_j_actaastro_2022_07_013
crossref_primary_10_2514_1_G007903
crossref_primary_10_1016_j_ast_2024_109405
crossref_primary_10_3390_math11020288
crossref_primary_10_1016_j_asr_2021_04_023
crossref_primary_10_1016_j_cnsns_2025_109218
crossref_primary_10_1109_TAES_2024_3471494
crossref_primary_10_1002_msd2_70039
crossref_primary_10_1016_j_actaastro_2022_08_047
crossref_primary_10_1007_s12555_021_0402_8
crossref_primary_10_1016_j_asr_2022_04_009
crossref_primary_10_1016_j_dt_2023_02_016
crossref_primary_10_1061__ASCE_AS_1943_5525_0001381
crossref_primary_10_2514_1_G005242
crossref_primary_10_1007_s40747_023_01312_z
crossref_primary_10_1016_j_ast_2025_110656
crossref_primary_10_3390_aerospace12040352
Cites_doi 10.1080/00207177808922395
10.1016/0005-1098(74)90019-3
10.2514/1.58098
10.1145/2558904
10.1109/72.329697
10.2514/1.58099
10.1007/s13042-011-0019-y
10.1007/s12559-015-9333-0
10.1007/s42064-017-0003-8
10.2514/1.47202
10.2514/1.36084
10.2514/1.G003243
10.2514/1.45632
10.1007/s11214-012-9892-2
10.1016/j.actaastro.2005.03.038
ContentType Journal Article
Copyright 2020 IAA
Copyright Elsevier BV Jun 2020
Copyright_xml – notice: 2020 IAA
– notice: Copyright Elsevier BV Jun 2020
DBID AAYXX
CITATION
7TB
7TG
8FD
FR3
H8D
KL.
L7M
DOI 10.1016/j.actaastro.2020.02.051
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2030
EndPage 171
ExternalDocumentID 10_1016_j_actaastro_2020_02_051
S0094576520301247
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BELOY
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
T9H
VH1
VOH
WUQ
ZMT
~02
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
7TB
7TG
8FD
AGCQF
FR3
H8D
KL.
L7M
ID FETCH-LOGICAL-c392t-95bb2d0e339eb1039055fc91eaa2caf9e24cd294fcfb68a0d45d628a8a49bf903
ISICitedReferencesCount 72
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524257600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-5765
IngestDate Wed Aug 13 02:58:40 EDT 2025
Tue Nov 18 21:31:45 EST 2025
Sat Nov 29 07:21:45 EST 2025
Sun Apr 06 06:53:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Optimal landing guidance
Closed-loop guidance
Deep reinfocement learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c392t-95bb2d0e339eb1039055fc91eaa2caf9e24cd294fcfb68a0d45d628a8a49bf903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6076-8992
0000-0003-4535-8543
0000-0001-5875-3804
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0094576520301247
PQID 2441308650
PQPubID 2045287
PageCount 16
ParticipantIDs proquest_journals_2441308650
crossref_primary_10_1016_j_actaastro_2020_02_051
crossref_citationtrail_10_1016_j_actaastro_2020_02_051
elsevier_sciencedirect_doi_10_1016_j_actaastro_2020_02_051
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace Elmsford
PublicationPlace_xml – name: Elmsford
PublicationTitle Acta astronautica
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Lu (bib12) 2017; 41
Grotzinger, Crisp, Vasavada, Ashwin, Anderson, Baker, Barry, Blake, Conrad, Edgett, Ferdowski (bib2) 2012; 170
Patterson, Rao (bib36) 2014; 41
Guo, Hawkins, Wie (bib24) 2011; 36
Lu, Sostaric, Mendeck (bib13) 2018
Steltzner, Adam, Burkhart, Chen, Comeaux, Guernsey, Kipp, Lorenzoni, Mendeck, Powell, Rivellini, others (bib4) 2010
Singh, SanMartin, Wong (bib6) 2007
Hagan, Menhaj (bib34) 1994; 5
Burns, Jack, Mellinkoff, Spydell, Fong, Kring, Pratt, Cichan, Edwards, Christine (bib3) 2018
Huang, Wang, Lan (bib28) 2011; 2
Liu, Lu, Pan (bib11) 2017; 1
Lu, Pan (bib14) 2010; 33
Silver, Lever, Heess, Degris, Wierstra, Riedmiller (bib29) 2014
Lu, Forbes, Baldwin (bib16) 2012
Williams (bib32) 1992
Sutton, Barto (bib30) 1998; 1
Wu (bib33) 1978; 24
Lu, Griffin, Dukeman, Chavez (bib15) 2008; 31
Klumpp (bib5) 1974; 10
Blackmore, Acikmese, Scharf (bib8) 2010; 33
Trawny, Benito, Tweddle, Bergh, Khanoyan, Vaughan, Zheng, Villalpando, Cheng, Scharf, others (bib10) 2015
Sutton, McAllester, Singh, Mansour (bib31) 2000
Guo, Hawkins, Wie (bib23) 2013; 36
Rowell (bib35) 2002
Furfaro, Linares (bib25) 2017
Guo, Hawkins, Wie (bib17) 2013; 36
Shotwell (bib1) 2005; 57
Huang (bib27) 2015; 7
Furfaro, Wibben (bib26) 2016
Guo (10.1016/j.actaastro.2020.02.051_bib24) 2011; 36
Lu (10.1016/j.actaastro.2020.02.051_bib12) 2017; 41
Furfaro (10.1016/j.actaastro.2020.02.051_bib26) 2016
Lu (10.1016/j.actaastro.2020.02.051_bib15) 2008; 31
Lu (10.1016/j.actaastro.2020.02.051_bib16) 2012
Blackmore (10.1016/j.actaastro.2020.02.051_bib8) 2010; 33
Huang (10.1016/j.actaastro.2020.02.051_bib28) 2011; 2
Patterson (10.1016/j.actaastro.2020.02.051_bib36) 2014; 41
Klumpp (10.1016/j.actaastro.2020.02.051_bib5) 1974; 10
Shotwell (10.1016/j.actaastro.2020.02.051_bib1) 2005; 57
Singh (10.1016/j.actaastro.2020.02.051_bib6) 2007
Williams (10.1016/j.actaastro.2020.02.051_bib32) 1992
Steltzner (10.1016/j.actaastro.2020.02.051_bib4) 2010
Silver (10.1016/j.actaastro.2020.02.051_bib29) 2014
Grotzinger (10.1016/j.actaastro.2020.02.051_bib2) 2012; 170
Liu (10.1016/j.actaastro.2020.02.051_bib11) 2017; 1
Sutton (10.1016/j.actaastro.2020.02.051_bib31) 2000
Rowell (10.1016/j.actaastro.2020.02.051_bib35) 2002
Furfaro (10.1016/j.actaastro.2020.02.051_bib25) 2017
Hagan (10.1016/j.actaastro.2020.02.051_bib34) 1994; 5
Huang (10.1016/j.actaastro.2020.02.051_bib27) 2015; 7
Sutton (10.1016/j.actaastro.2020.02.051_bib30) 1998; 1
Wu (10.1016/j.actaastro.2020.02.051_bib33) 1978; 24
Guo (10.1016/j.actaastro.2020.02.051_bib17) 2013; 36
Trawny (10.1016/j.actaastro.2020.02.051_bib10) 2015
Lu (10.1016/j.actaastro.2020.02.051_bib13) 2018
Guo (10.1016/j.actaastro.2020.02.051_bib23) 2013; 36
Lu (10.1016/j.actaastro.2020.02.051_bib14) 2010; 33
Burns (10.1016/j.actaastro.2020.02.051_bib3) 2018
References_xml – volume: 41
  start-page: 1
  year: 2014
  end-page: 37
  ident: bib36
  article-title: GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming
  publication-title: ACM Trans. Math Software
– year: 2002
  ident: bib35
  article-title: Time-domain solution of LTI state equations
  publication-title: Class Handout in Analysis and Design of Feedback Control System
– volume: 31
  start-page: 1656
  year: 2008
  end-page: 1664
  ident: bib15
  article-title: Rapid optimal multiburn ascent planning and guidance
  publication-title: J. Guidance, Contr. Dynam.
– volume: 2
  start-page: 107
  year: 2011
  end-page: 122
  ident: bib28
  article-title: Extreme learning machines: a survey
  publication-title: Int. J. Mach. Learn. Cybernet.
– volume: 36
  start-page: 799
  year: 2013
  end-page: 809
  ident: bib17
  article-title: Waypoint-optimized zero-effort-miss/zero-effort-velocity feedback guidance for mars landing”
  publication-title: J. Guid. Contr. Dynam.
– year: 2018
  ident: bib3
  article-title: Science on the lunar surface facilitated by low latency telerobotics from a lunar orbital platform-gateway
  publication-title: Acta Astronautica
– year: 2014
  ident: bib29
  article-title: Deterministic Policy Gradient Algorithms
  publication-title: ICML
– year: 2017
  ident: bib25
  article-title: Waypoint-based generalized ZEM/ZEV feedback guidance for planetary landing via a reinforcement learning approach
  publication-title: 3rd IAA Conference on Dynamics and Control of Space Systems
– year: 2018
  ident: bib13
  article-title: Adaptive powered descent initiation and fuel-optimal guidance for mars applications
  publication-title: 2018 AIAA Guidance, Navigation, and Control Conference
– volume: 24
  start-page: 589
  year: 1978
  end-page: 602
  ident: bib33
  article-title: Transformation of a linear time-varying system into a linear time-invariant system
  publication-title: Int. J. Contr.
– volume: 36
  start-page: 588
  year: 2011
  ident: bib24
  article-title: Optimal feedback guidance algorithms for planetary landing and asteroid intercept
  publication-title: AAS/AIAA astrodynamics specialist conference
– volume: 33
  start-page: 1161
  year: 2010
  end-page: 1171
  ident: bib8
  article-title: Minimum-landing-error powered-descent guidance for Mars landing using convex optimization
  publication-title: J. Guid. Contr. Dynam.
– volume: 57
  start-page: 121
  year: 2005
  end-page: 134
  ident: bib1
  article-title: “Phoenix–the first mars scout mission”
  publication-title: Acta Astronaut.
– volume: 1
  start-page: 23
  year: 2017
  end-page: 40
  ident: bib11
  article-title: Survey of convex optimization for aerospace applications
  publication-title: Astrodynamics
– start-page: 4843
  year: 2012
  ident: bib16
  article-title: A Versatile Powered Guidance Algorithm
  publication-title: AIAA Guidance, Navigation, and Control Conference
– start-page: 4418
  year: 2015
  ident: bib10
  article-title: Flight testing of terrain-relative navigation and large-divert guidance on a VTVL rocket
  publication-title: AIAA SPACE 2015 Conference and Exposition
– volume: 41
  start-page: 813
  year: 2017
  end-page: 826
  ident: bib12
  article-title: Propellant-optimal powered descent guidance
  publication-title: J. Guid. Contr. Dynam.
– volume: 10
  start-page: 133
  year: 1974
  end-page: 146
  ident: bib5
  article-title: Apollo lunar descent guidance
  publication-title: Automatica
– year: 2000
  ident: bib31
  article-title: Policy Gradient Methods for Reinforcement Learning with Function Approximation
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 36
  start-page: 810
  year: 2013
  end-page: 820
  ident: bib23
  article-title: Applications of generalized zero-effort-miss/zero-effort-velocity feedback guidance algorithm
  publication-title: J. Guid. Contr. Dynam.
– volume: 33
  start-page: 404
  year: 2010
  end-page: 414
  ident: bib14
  article-title: Highly constrained optimal launch ascent guidance
  publication-title: J. Guid. Contr. Dynam.
– volume: 7
  year: 2015
  ident: bib27
  article-title: What are extreme learning machines? filling the gap between frank rosenblatt’s dream and john von neumann’s puzzle
  publication-title: Cognitive Comput.
– volume: 5
  start-page: 989
  year: 1994
  end-page: 993
  ident: bib34
  article-title: Training feedforward networks with the Marquardt algorithm
  publication-title: IEEE Trans. Neural Network.
– volume: 170
  start-page: 5
  year: 2012
  end-page: 56
  ident: bib2
  article-title: Mars Science Laboratory mission and science investigation
  publication-title: Space Sci. Rev.
– year: 1992
  ident: bib32
  article-title: Reinforcement Learning
– volume: 1
  year: 1998
  ident: bib30
  publication-title: Reinforcement learning: an introduction
– year: 2016
  ident: bib26
  article-title: Robustification of a class of guidance algorithms for planetary landing: theory and applications
  publication-title: 26th AAS/AIAA Space Flight Mechanics Meeting
– start-page: 1
  year: 2007
  end-page: 8
  ident: bib6
  article-title: Guidance and control design for powered descent and landing on mars
  publication-title: Aerospace Conference
– year: 2010
  ident: bib4
  article-title: Mars Science Laboratory Entry, Descent, and Landing System Overview
– volume: 24
  start-page: 589
  issue: 4
  year: 1978
  ident: 10.1016/j.actaastro.2020.02.051_bib33
  article-title: Transformation of a linear time-varying system into a linear time-invariant system
  publication-title: Int. J. Contr.
  doi: 10.1080/00207177808922395
– start-page: 4418
  year: 2015
  ident: 10.1016/j.actaastro.2020.02.051_bib10
  article-title: Flight testing of terrain-relative navigation and large-divert guidance on a VTVL rocket
– year: 2000
  ident: 10.1016/j.actaastro.2020.02.051_bib31
  article-title: Policy Gradient Methods for Reinforcement Learning with Function Approximation
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2018
  ident: 10.1016/j.actaastro.2020.02.051_bib3
  article-title: Science on the lunar surface facilitated by low latency telerobotics from a lunar orbital platform-gateway
  publication-title: Acta Astronautica
– year: 1992
  ident: 10.1016/j.actaastro.2020.02.051_bib32
– year: 2017
  ident: 10.1016/j.actaastro.2020.02.051_bib25
  article-title: Waypoint-based generalized ZEM/ZEV feedback guidance for planetary landing via a reinforcement learning approach
– start-page: 4843
  year: 2012
  ident: 10.1016/j.actaastro.2020.02.051_bib16
  article-title: A Versatile Powered Guidance Algorithm
– volume: 10
  start-page: 133
  issue: No. 2
  year: 1974
  ident: 10.1016/j.actaastro.2020.02.051_bib5
  article-title: Apollo lunar descent guidance
  publication-title: Automatica
  doi: 10.1016/0005-1098(74)90019-3
– volume: 36
  start-page: 799
  issue: No. 3
  year: 2013
  ident: 10.1016/j.actaastro.2020.02.051_bib17
  article-title: Waypoint-optimized zero-effort-miss/zero-effort-velocity feedback guidance for mars landing”
  publication-title: J. Guid. Contr. Dynam.
  doi: 10.2514/1.58098
– volume: 36
  start-page: 588
  year: 2011
  ident: 10.1016/j.actaastro.2020.02.051_bib24
  article-title: Optimal feedback guidance algorithms for planetary landing and asteroid intercept
– volume: 41
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.actaastro.2020.02.051_bib36
  article-title: GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming
  publication-title: ACM Trans. Math Software
  doi: 10.1145/2558904
– volume: 1
  year: 1998
  ident: 10.1016/j.actaastro.2020.02.051_bib30
– volume: 5
  start-page: 989
  issue: No. 6
  year: 1994
  ident: 10.1016/j.actaastro.2020.02.051_bib34
  article-title: Training feedforward networks with the Marquardt algorithm
  publication-title: IEEE Trans. Neural Network.
  doi: 10.1109/72.329697
– volume: 36
  start-page: 810
  issue: 3
  year: 2013
  ident: 10.1016/j.actaastro.2020.02.051_bib23
  article-title: Applications of generalized zero-effort-miss/zero-effort-velocity feedback guidance algorithm
  publication-title: J. Guid. Contr. Dynam.
  doi: 10.2514/1.58099
– volume: 2
  start-page: 107
  issue: No. 2
  year: 2011
  ident: 10.1016/j.actaastro.2020.02.051_bib28
  article-title: Extreme learning machines: a survey
  publication-title: Int. J. Mach. Learn. Cybernet.
  doi: 10.1007/s13042-011-0019-y
– year: 2010
  ident: 10.1016/j.actaastro.2020.02.051_bib4
– volume: 7
  issue: 3
  year: 2015
  ident: 10.1016/j.actaastro.2020.02.051_bib27
  article-title: What are extreme learning machines? filling the gap between frank rosenblatt’s dream and john von neumann’s puzzle
  publication-title: Cognitive Comput.
  doi: 10.1007/s12559-015-9333-0
– start-page: 1
  year: 2007
  ident: 10.1016/j.actaastro.2020.02.051_bib6
  article-title: Guidance and control design for powered descent and landing on mars
– volume: 1
  start-page: 23
  issue: No. 1
  year: 2017
  ident: 10.1016/j.actaastro.2020.02.051_bib11
  article-title: Survey of convex optimization for aerospace applications
  publication-title: Astrodynamics
  doi: 10.1007/s42064-017-0003-8
– year: 2014
  ident: 10.1016/j.actaastro.2020.02.051_bib29
  article-title: Deterministic Policy Gradient Algorithms
  publication-title: ICML
– year: 2018
  ident: 10.1016/j.actaastro.2020.02.051_bib13
  article-title: Adaptive powered descent initiation and fuel-optimal guidance for mars applications
– year: 2016
  ident: 10.1016/j.actaastro.2020.02.051_bib26
  article-title: Robustification of a class of guidance algorithms for planetary landing: theory and applications
– volume: 33
  start-page: 1161
  issue: No. 4
  year: 2010
  ident: 10.1016/j.actaastro.2020.02.051_bib8
  article-title: Minimum-landing-error powered-descent guidance for Mars landing using convex optimization
  publication-title: J. Guid. Contr. Dynam.
  doi: 10.2514/1.47202
– volume: 31
  start-page: 1656
  issue: No. 6
  year: 2008
  ident: 10.1016/j.actaastro.2020.02.051_bib15
  article-title: Rapid optimal multiburn ascent planning and guidance
  publication-title: J. Guidance, Contr. Dynam.
  doi: 10.2514/1.36084
– volume: 41
  start-page: 813
  issue: No. 4
  year: 2017
  ident: 10.1016/j.actaastro.2020.02.051_bib12
  article-title: Propellant-optimal powered descent guidance
  publication-title: J. Guid. Contr. Dynam.
  doi: 10.2514/1.G003243
– year: 2002
  ident: 10.1016/j.actaastro.2020.02.051_bib35
  article-title: Time-domain solution of LTI state equations
– volume: 33
  start-page: 404
  issue: No. 2
  year: 2010
  ident: 10.1016/j.actaastro.2020.02.051_bib14
  article-title: Highly constrained optimal launch ascent guidance
  publication-title: J. Guid. Contr. Dynam.
  doi: 10.2514/1.45632
– volume: 170
  start-page: 5
  issue: No. 1–4
  year: 2012
  ident: 10.1016/j.actaastro.2020.02.051_bib2
  article-title: Mars Science Laboratory mission and science investigation
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-012-9892-2
– volume: 57
  start-page: 121
  issue: No. 2–8
  year: 2005
  ident: 10.1016/j.actaastro.2020.02.051_bib1
  article-title: “Phoenix–the first mars scout mission”
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2005.03.038
SSID ssj0007289
Score 2.5530052
Snippet Precision landing on large and small planetary bodies is a technology of utmost importance for future human and robotic exploration of the solar system. In...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 156
SubjectTerms Adaptive algorithms
Algorithms
Closed loops
Closed-loop guidance
Deep reinfocement learning
Feedback
Machine learning
Optimal landing guidance
Planetary landing
Solar system
Spacecraft
Spacecraft guidance
Title Adaptive generalized ZEM-ZEV feedback guidance for planetary landing via a deep reinforcement learning approach
URI https://dx.doi.org/10.1016/j.actaastro.2020.02.051
https://www.proquest.com/docview/2441308650
Volume 171
WOSCitedRecordID wos000524257600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2030
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007289
  issn: 0094-5765
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKywEOiKcoFOQD4hItcr1Pc4tQKkBp4JBWUS-W12tHaaPskmyiij_E32S8tjcbXoUDl1W0q0lWM1_Gn8fzQOhVSpWGZzrImUqCSCd5kOeZCtJCEi0oUzHRzbCJdDTKJhP2eW_vm6-F2czTxSK7vmbVfzU13ANjm9LZfzB3-6VwAz6D0eEKZofrXxm-X4iqyQea2o7Ss6_AKS8Gp8HF4LynYbHKhbzqTdezoqkWMGmGlcl4rU3-3NxVuWxMrVavUKrqLVXTXFU2cUQ_ZWLaNiPvstu-rEFsZaLrogmSt-hYL7WwFTU2lbvcHgCVQPmn81nZple2UkNTK2zdWKf-38bPVytha-RPxXpZdmMXlGxzrGxArS2qOe_6aBYFsAuyZ93KuuUsZWBkd4Lj_bad3eI877HtT_7TimCDE5eAzlo0CnhjXqTp0-o63e704B594idnwyEfDybj19WXwIwnM8f4blbLLXRA05iB-zzofxhMPraLfkozu9NyL7-TSvjL3_4dEfqBEjQ8Z3wf3XMbFNy3wHqA9tTiIbrbaVv5CJUeYrgDMewghj3EsIcYBvTgFmLYQQwDxLDABmJ4B2LYQwx7iD1GZyeD8bv3gRvcEUig23XA4jynBVFhyIAKkJCRONaSHSshqBSaKRrJgrJIS50nmSBFFBcJzUQmIpZrRsInaH9RLtRThCUs1lGsSahVFsVRlBXAOHUShiEVUhfqECVei1y6rvZmuMqc-_TFS96qnxv1c0I5qP8QkVawso1dbhZ5683EHT-1vJMD2G4WPvKG5c5brDhwa-CQGeySnv358XN0Z_v_OUL79XKtXqDbclPPVsuXDozfAVDcwco
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+generalized+ZEM-ZEV+feedback+guidance+for+planetary+landing+via+a+deep+reinforcement+learning+approach&rft.jtitle=Acta+astronautica&rft.au=Furfaro%2C+Roberto&rft.au=Scorsoglio%2C+Andrea&rft.au=Linares%2C+Richard&rft.au=Massari%2C+Mauro&rft.date=2020-06-01&rft.pub=Elsevier+BV&rft.issn=0094-5765&rft.eissn=1879-2030&rft.volume=171&rft.spage=156&rft_id=info:doi/10.1016%2Fj.actaastro.2020.02.051&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon