SDNet: A Versatile Squeeze-and-Decomposition Network for Real-Time Image Fusion

In this paper, a squeeze-and-decomposition network (SDNet) is proposed to realize multi-modal and digital photography image fusion in real time. Firstly, we generally transform multiple fusion problems into the extraction and reconstruction of gradient and intensity information, and design a univers...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computer vision Ročník 129; číslo 10; s. 2761 - 2785
Hlavní autoři: Zhang, Hao, Ma, Jiayi
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2021
Springer
Springer Nature B.V
Témata:
ISSN:0920-5691, 1573-1405
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, a squeeze-and-decomposition network (SDNet) is proposed to realize multi-modal and digital photography image fusion in real time. Firstly, we generally transform multiple fusion problems into the extraction and reconstruction of gradient and intensity information, and design a universal form of loss function accordingly, which is composed of intensity term and gradient term. For the gradient term, we introduce an adaptive decision block to decide the optimization target of the gradient distribution according to the texture richness at the pixel scale, so as to guide the fused image to contain richer texture details. For the intensity term, we adjust the weight of each intensity loss term to change the proportion of intensity information from different images, so that it can be adapted to multiple image fusion tasks. Secondly, we introduce the idea of squeeze and decomposition into image fusion. Specifically, we consider not only the squeeze process from source images to the fused result, but also the decomposition process from the fused result to source images. Because the quality of decomposed images directly depends on the fused result, it can force the fused result to contain more scene details. Experimental results demonstrate the superiority of our method over the state-of-the-arts in terms of subjective visual effect and quantitative metrics in a variety of fusion tasks. Moreover, our method is much faster than the state-of-the-arts, which can deal with real-time fusion tasks.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0920-5691
1573-1405
DOI:10.1007/s11263-021-01501-8