Causal Priors and Their Influence on Judgements of Causality in Visualized Data

“Correlation does not imply causation” is a famous mantra in statistical and visual analysis. However, consumers of visualizations often draw causal conclusions when only correlations between variables are shown. In this paper, we investigate factors that contribute to causal relationships users per...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on visualization and computer graphics Ročník 31; číslo 1; s. 765 - 775
Hlavní autori: Wang, Arran Zeyu, Borland, David, Peck, Tabitha C., Wang, Wenyuan, Gotz, David
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.01.2025
Predmet:
ISSN:1077-2626, 1941-0506, 1941-0506
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract “Correlation does not imply causation” is a famous mantra in statistical and visual analysis. However, consumers of visualizations often draw causal conclusions when only correlations between variables are shown. In this paper, we investigate factors that contribute to causal relationships users perceive in visualizations. We collected a corpus of concept pairs from variables in widely used datasets and created visualizations that depict varying correlative associations using three typical statistical chart types. We conducted two MTurk studies on (1) preconceived notions on causal relations without charts, and (2) perceived causal relations with charts, for each concept pair. Our results indicate that people make assumptions about causal relationships between pairs of concepts even without seeing any visualized data. Moreover, our results suggest that these assumptions constitute causal priors that, in combination with visualized association, impact how data visualizations are interpreted. The results also suggest that causal priors may lead to over- or under-estimation in perceived causal relations in different circumstances, and that those priors can also impact users' confidence in their causal assessments. In addition, our results align with prior work, indicating that chart type may also affect causal inference. Using data from the studies, we develop a model to capture the interaction between causal priors and visualized associations as they combine to impact a user's perceived causal relations. In addition to reporting the study results and analyses, we provide an open dataset of causal priors for 56 specific concept pairs that can serve as a potential benchmark for future studies. We also suggest remaining challenges and heuristic-based guidelines to help designers improve visualization design choices to better support visual causal inference.
AbstractList “Correlation does not imply causation” is a famous mantra in statistical and visual analysis. However, consumers of visualizations often draw causal conclusions when only correlations between variables are shown. In this paper, we investigate factors that contribute to causal relationships users perceive in visualizations. We collected a corpus of concept pairs from variables in widely used datasets and created visualizations that depict varying correlative associations using three typical statistical chart types. We conducted two MTurk studies on (1) preconceived notions on causal relations without charts, and (2) perceived causal relations with charts, for each concept pair. Our results indicate that people make assumptions about causal relationships between pairs of concepts even without seeing any visualized data. Moreover, our results suggest that these assumptions constitute causal priors that, in combination with visualized association, impact how data visualizations are interpreted. The results also suggest that causal priors may lead to over- or under-estimation in perceived causal relations in different circumstances, and that those priors can also impact users' confidence in their causal assessments. In addition, our results align with prior work, indicating that chart type may also affect causal inference. Using data from the studies, we develop a model to capture the interaction between causal priors and visualized associations as they combine to impact a user's perceived causal relations. In addition to reporting the study results and analyses, we provide an open dataset of causal priors for 56 specific concept pairs that can serve as a potential benchmark for future studies. We also suggest remaining challenges and heuristic-based guidelines to help designers improve visualization design choices to better support visual causal inference.
"Correlation does not imply causation" is a famous mantra in statistical and visual analysis. However, consumers of visualizations often draw causal conclusions when only correlations between variables are shown. In this paper, we investigate factors that contribute to causal relationships users perceive in visualizations. We collected a corpus of concept pairs from variables in widely used datasets and created visualizations that depict varying correlative associations using three typical statistical chart types. We conducted two MTurk studies on (1) preconceived notions on causal relations without charts, and (2) perceived causal relations with charts, for each concept pair. Our results indicate that people make assumptions about causal relationships between pairs of concepts even without seeing any visualized data. Moreover, our results suggest that these assumptions constitute causal priors that, in combination with visualized association, impact how data visualizations are interpreted. The results also suggest that causal priors may lead to over- or under-estimation in perceived causal relations in different circumstances, and that those priors can also impact users' confidence in their causal assessments. In addition, our results align with prior work, indicating that chart type may also affect causal inference. Using data from the studies, we develop a model to capture the interaction between causal priors and visualized associations as they combine to impact a user's perceived causal relations. In addition to reporting the study results and analyses, we provide an open dataset of causal priors for 56 specific concept pairs that can serve as a potential benchmark for future studies. We also suggest remaining challenges and heuristic-based guidelines to help designers improve visualization design choices to better support visual causal inference."Correlation does not imply causation" is a famous mantra in statistical and visual analysis. However, consumers of visualizations often draw causal conclusions when only correlations between variables are shown. In this paper, we investigate factors that contribute to causal relationships users perceive in visualizations. We collected a corpus of concept pairs from variables in widely used datasets and created visualizations that depict varying correlative associations using three typical statistical chart types. We conducted two MTurk studies on (1) preconceived notions on causal relations without charts, and (2) perceived causal relations with charts, for each concept pair. Our results indicate that people make assumptions about causal relationships between pairs of concepts even without seeing any visualized data. Moreover, our results suggest that these assumptions constitute causal priors that, in combination with visualized association, impact how data visualizations are interpreted. The results also suggest that causal priors may lead to over- or under-estimation in perceived causal relations in different circumstances, and that those priors can also impact users' confidence in their causal assessments. In addition, our results align with prior work, indicating that chart type may also affect causal inference. Using data from the studies, we develop a model to capture the interaction between causal priors and visualized associations as they combine to impact a user's perceived causal relations. In addition to reporting the study results and analyses, we provide an open dataset of causal priors for 56 specific concept pairs that can serve as a potential benchmark for future studies. We also suggest remaining challenges and heuristic-based guidelines to help designers improve visualization design choices to better support visual causal inference.
Author Gotz, David
Wang, Arran Zeyu
Peck, Tabitha C.
Wang, Wenyuan
Borland, David
Author_xml – sequence: 1
  givenname: Arran Zeyu
  orcidid: 0000-0002-7491-7570
  surname: Wang
  fullname: Wang, Arran Zeyu
  email: zeyuwang@cs.unc.edu
  organization: University of North Carolina at Chapel Hill (UNC), USA
– sequence: 2
  givenname: David
  orcidid: 0000-0002-0162-4080
  surname: Borland
  fullname: Borland, David
  email: borland@renci.org
  organization: RENCI at UNC, USA
– sequence: 3
  givenname: Tabitha C.
  orcidid: 0000-0002-3667-7713
  surname: Peck
  fullname: Peck, Tabitha C.
  email: tapeck@davidson.edu
  organization: Davidson College, USA
– sequence: 4
  givenname: Wenyuan
  orcidid: 0000-0001-8765-6675
  surname: Wang
  fullname: Wang, Wenyuan
  email: vaapad@live.unc.edu
  organization: University of North Carolina at Chapel Hill (UNC), USA
– sequence: 5
  givenname: David
  orcidid: 0000-0002-6424-7374
  surname: Gotz
  fullname: Gotz, David
  email: gotz@unc.edu
  organization: University of North Carolina at Chapel Hill (UNC), USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39255145$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LwzAYgINM3If-AEEkRy-d-WraHGXqnAzmYe4asvaNRrp0Ju1h_no7NkE8eEoCz_Pm5Rminq89IHRJyZhSom6Xq8l0zAgTYy5SyXN6ggZUCZqQlMhedydZljDJZB8NY_wghAqRqzPU54qlKRXpAC0mpo2mwi_B1SFi40u8fAcX8MzbqgVfAK49fm7LN9iAbyKuLT4ortlh5_HKxbZ7fEGJ701jztGpNVWEi-M5Qq-PD8vJUzJfTGeTu3lSdH83iaJUZoxaxVipOOQclAClrLXd_oIbkqeCS8JtCdymdg1sLWkBkpRlXhTU8hG6OczdhvqzhdjojYsFVJXxULdRc0pYnmWSiA69PqLtegOl3ga3MWGnfyJ0QHYAilDHGMDqwjWmcbVvgnGVpkTvc-t9br3PrY-5O5P-MX-G_-dcHRwHAL94mXW7cv4NgMCJwg
CODEN ITVGEA
CitedBy_id crossref_primary_10_1109_TVCG_2024_3496789
crossref_primary_10_1109_TVCG_2024_3456369
Cites_doi 10.1109/TVCG.2006.163
10.1111/j.1551-6708.1987.tb00863.x
10.1109/TVCG.2019.2934399
10.1109/mcg.2023.3338788
10.1109/TVCG.2015.2467671
10.1038/s42256-020-0197-y
10.1109/TVCG.2017.2744359
10.1017/CBO9780511803161
10.1145/2883851.2883904
10.1145/3290605.3300474
10.3758/s13423-016-1174-7
10.1145/3544548.3581236
10.1162/99608f92.3ab8a587
10.4324/9781315009292
10.1007/978-3-031-34738-2
10.1109/TVCG.2021.3114824
10.1007/978-3-319-26633-6_13
10.1111/cgf.13678
10.1111/j.1467-8659.2009.01694.x
10.1093/ije/dyh299
10.1109/TVCG.2012.196
10.3758/s13428-010-0023-2
10.1177/14738716241265120
10.7551/mitpress/1754.001.0001
10.1109/TVCG.2014.2346574
10.1109/TVCG.2021.3102051
10.1109/TVCG.2018.2865266
10.1109/beliv51497.2020.00010
10.1177/15291006211051956
10.1145/1502650.1502695
10.1109/TVCG.2020.3028984
10.1109/TVCG.2021.3114805
10.1186/s41235-018-0120-9
10.1177/14738716241229437
10.1145/3613904.3642813
10.1109/TVCG.2022.3207929
10.1201/9781315370279
10.1109/TVCG.2022.3209405
10.1109/TVCG.2018.2865147
10.1109/tvcg.2015.2467931
10.1057/ivs.2008.31
10.1145/3411764.3445674
10.1109/TVCG.2021.3114779
10.1109/TVCG.2017.2787113
10.1037/0033-2909.121.2.192
10.1109/TVCG.2021.3114875
10.3758/BRM.40.3.760
10.1145/3637298
10.3115/v1/W14-0707
10.1111/cgf.13680
10.1080/01621459.1988.10478598
10.1109/TVCG.2022.3209484
10.1016/S0020-7373(86)80019-0
10.1016/j.visinf.2024.06.002
10.1109/TVCG.2014.2346979
10.1109/TVCG.2010.177
10.1016/j.cogpsych.2005.05.004
10.1109/TVCG.2020.3030465
10.1145/3544548.3581524
10.1109/TVCG.2021.3098240
10.1109/TVCG.2010.164
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TVCG.2024.3456381
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 775
ExternalDocumentID 39255145
10_1109_TVCG_2024_3456381
10670433
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: 2211845
  funderid: 10.13039/100000001
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
RIG
7X8
ID FETCH-LOGICAL-c392t-9116721f922d93e83e94e99fff19443a08543603fde3f5fbe2b61ce60dd8cc1f3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001367808800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1077-2626
1941-0506
IngestDate Sun Sep 28 09:39:52 EDT 2025
Wed Mar 05 02:44:39 EST 2025
Sat Nov 29 03:31:50 EST 2025
Tue Nov 18 20:58:11 EST 2025
Wed Aug 27 03:03:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-9116721f922d93e83e94e99fff19443a08543603fde3f5fbe2b61ce60dd8cc1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6424-7374
0000-0002-0162-4080
0000-0002-3667-7713
0000-0001-8765-6675
0000-0002-7491-7570
PMID 39255145
PQID 3102877604
PQPubID 23479
PageCount 11
ParticipantIDs pubmed_primary_39255145
crossref_citationtrail_10_1109_TVCG_2024_3456381
proquest_miscellaneous_3102877604
crossref_primary_10_1109_TVCG_2024_3456381
ieee_primary_10670433
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Vigen (ref52) 2015
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
Tukey (ref51) 1977; 2
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref21
ref65
ref28
ref27
ref29
Wang (ref53) 2023
ref60
Asuncion (ref1) 2007
ref62
ref61
References_xml – year: 2007
  ident: ref1
  publication-title: Uci machine learning repository
– year: 2023
  ident: ref53
  article-title: Countering simpsons paradox with counterfactuals
  publication-title: IEEE VIS Posters
– ident: ref23
  doi: 10.1109/TVCG.2006.163
– ident: ref32
  doi: 10.1111/j.1551-6708.1987.tb00863.x
– ident: ref62
  doi: 10.1109/TVCG.2019.2934399
– ident: ref5
  doi: 10.1109/mcg.2023.3338788
– ident: ref29
  doi: 10.1109/TVCG.2015.2467671
– ident: ref37
  doi: 10.1038/s42256-020-0197-y
– ident: ref48
  doi: 10.1109/TVCG.2017.2744359
– ident: ref35
  doi: 10.1017/CBO9780511803161
– ident: ref4
  doi: 10.1145/2883851.2883904
– ident: ref36
  doi: 10.1145/3290605.3300474
– ident: ref40
  doi: 10.3758/s13423-016-1174-7
– ident: ref20
  doi: 10.1145/3544548.3581236
– ident: ref25
  doi: 10.1162/99608f92.3ab8a587
– ident: ref31
  doi: 10.4324/9781315009292
– ident: ref49
  doi: 10.1007/978-3-031-34738-2
– ident: ref27
  doi: 10.1109/TVCG.2021.3114824
– ident: ref11
  doi: 10.1007/978-3-319-26633-6_13
– ident: ref3
  doi: 10.1111/cgf.13678
– ident: ref41
  doi: 10.1111/j.1467-8659.2009.01694.x
– ident: ref2
  doi: 10.1093/ije/dyh299
– ident: ref50
  doi: 10.1109/TVCG.2012.196
– ident: ref12
  doi: 10.3758/s13428-010-0023-2
– ident: ref55
  doi: 10.1177/14738716241265120
– ident: ref46
  doi: 10.7551/mitpress/1754.001.0001
– ident: ref47
  doi: 10.1109/TVCG.2014.2346574
– ident: ref24
  doi: 10.1109/TVCG.2021.3102051
– year: 2015
  ident: ref52
  publication-title: Spurious correlations
– ident: ref59
  doi: 10.1109/TVCG.2018.2865266
– ident: ref7
  doi: 10.1109/beliv51497.2020.00010
– ident: ref13
  doi: 10.1177/15291006211051956
– ident: ref16
  doi: 10.1145/1502650.1502695
– ident: ref30
  doi: 10.1109/TVCG.2020.3028984
– ident: ref21
  doi: 10.1109/TVCG.2021.3114805
– ident: ref34
  doi: 10.1186/s41235-018-0120-9
– ident: ref54
  doi: 10.1177/14738716241229437
– ident: ref39
  doi: 10.1145/3613904.3642813
– ident: ref58
  doi: 10.1109/TVCG.2022.3207929
– ident: ref61
  doi: 10.1201/9781315370279
– ident: ref63
  doi: 10.1109/TVCG.2022.3209405
– ident: ref45
  doi: 10.1109/TVCG.2018.2865147
– ident: ref57
  doi: 10.1109/tvcg.2015.2467931
– ident: ref17
  doi: 10.1057/ivs.2008.31
– ident: ref65
  doi: 10.1145/3411764.3445674
– ident: ref28
  doi: 10.1109/TVCG.2021.3114779
– ident: ref60
  doi: 10.1109/TVCG.2017.2787113
– ident: ref43
  doi: 10.1037/0033-2909.121.2.192
– ident: ref10
  doi: 10.1109/TVCG.2021.3114875
– ident: ref15
  doi: 10.3758/BRM.40.3.760
– ident: ref44
  doi: 10.1145/3637298
– ident: ref42
  doi: 10.3115/v1/W14-0707
– ident: ref64
  doi: 10.1111/cgf.13680
– ident: ref8
  doi: 10.1080/01621459.1988.10478598
– ident: ref14
  doi: 10.1109/TVCG.2022.3209484
– ident: ref9
  doi: 10.1016/S0020-7373(86)80019-0
– volume: 2
  volume-title: Exploratory Data Analysis
  year: 1977
  ident: ref51
– ident: ref56
  doi: 10.1016/j.visinf.2024.06.002
– ident: ref22
  doi: 10.1109/TVCG.2014.2346979
– ident: ref33
  doi: 10.1109/TVCG.2010.177
– ident: ref19
  doi: 10.1016/j.cogpsych.2005.05.004
– ident: ref26
  doi: 10.1109/TVCG.2020.3030465
– ident: ref6
  doi: 10.1145/3544548.3581524
– ident: ref38
  doi: 10.1109/TVCG.2021.3098240
– ident: ref18
  doi: 10.1109/TVCG.2010.164
SSID ssj0014489
Score 2.4610174
Snippet “Correlation does not imply causation” is a famous mantra in statistical and visual analysis. However, consumers of visualizations often draw causal...
"Correlation does not imply causation" is a famous mantra in statistical and visual analysis. However, consumers of visualizations often draw causal...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 765
SubjectTerms Association
Bars
Causal inference
Causal prior
Causality
Cause effect analysis
Cognition
Correlation
Data visualization
Guidelines
Perception and cognition
Visualization
Title Causal Priors and Their Influence on Judgements of Causality in Visualized Data
URI https://ieeexplore.ieee.org/document/10670433
https://www.ncbi.nlm.nih.gov/pubmed/39255145
https://www.proquest.com/docview/3102877604
Volume 31
WOSCitedRecordID wos001367808800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014489
  issn: 1077-2626
  databaseCode: RIE
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5sEdGD70d9sYInITXNbpPsUeobqR6q9BbS3VkoSCJN48Ff7-wmLfWg4C2HmZDMTDLf7LwAzmNDgU8YaS-WhntCm8CTfOR7KAyBex8DmbqR-U9Rvx8Ph_KlblZ3vTCI6IrPsG0vXS5f56q0R2WXdtyZHbjVgEYUhVWz1jxlQHGGrAoMIy8gmF6nMDu-vBy89e4oFAxEmxNeIB-1CiuECyxY6P7wR27Byu9Y0_mc241_Pu0mrNfgkl1V1rAFS5htw9rCyMEdeO6lZUE0L5NxPilYmmk2sLkC9jDbVsLyjD2WuqqJKVhuWMVCcJ2NM_Y2Lmwf5hdqdp1O0114vb0Z9O69eqmCp-iVp_bnFlLUZ2QQaMkx5igFSmmM6UgheEoQTPDQ50YjN10zwmAUdhSGvtaxUh3D96CZ5RkeAOORInxphCaALroxSoqllJbEFxkVqqgF_ky0iaonjtvFF--Jizx8mVjFJFYxSa2YFlzMWT6qcRt_Ee9aqS8QVgJvwdlMgQl9LDYDkmaYl0XCLZwi0_FFC_Yrzc65ZwZx-Mtdj2A1sLt_3fHLMTSnkxJPYFl9TsfF5JQschifOov8BgEe2Ho
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5RQC0cKG1pCVC6lXqq5LDZ3djeIwrvhsAhRdwsZ3dWioRsFMcc-us7u3YiegCpNx9mLHtm7Plm5wXwI3UU-MSJjVLtZKSsE5GWEx6hcgTuOQqdh5H5w2Q0Su_v9W3brB56YRAxFJ9h11-GXL4tTe2Pyo78uDM_cOsNrPWVErxp11omDSjS0E2JYRIJAuptErPH9dH4bnBOwaBQXUmIgbzUBrwlZODhQv8fjxRWrLyMNoPXOXv_n8-7DVstvGTHjT18gBUsPsLms6GDn-BmkNcV0dzOpuWsYnlh2dhnC9jlYl8JKwt2VdumKqZipWMNCwF2Ni3Y3bTynZh_0LKTfJ7vwO-z0_HgImrXKkSGXnnuf28xxX1OC2G1xFSiVqi1c66nlZI5gTAlYy6dRen6boJiEvcMxtza1Jiek59htSgL3AUmE0MI0ylLEF31U9QUTRmriS9xJjZJB_hCtJlpZ4771RcPWYg9uM68YjKvmKxVTAd-Llkem4EbrxHveKk_I2wE3oHvCwVm9Ln4HEheYFlXmfSAKklirjrwpdHsknthEHsv3PUbvLsYXw-z4eXo1z5sCL8JOBzGHMDqfFbjV1g3T_NpNTsMdvkXVCfa2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Causal+Priors+and+Their+Influence+on+Judgements+of+Causality+in+Visualized+Data&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Wang%2C+Arran+Zeyu&rft.au=Borland%2C+David&rft.au=Peck%2C+Tabitha+C&rft.au=Wang%2C+Wenyuan&rft.date=2025-01-01&rft.eissn=1941-0506&rft.volume=31&rft.issue=1&rft.spage=765&rft_id=info:doi/10.1109%2FTVCG.2024.3456381&rft_id=info%3Apmid%2F39255145&rft.externalDocID=39255145
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon