Pattern recognition algorithm for analysis of chugging direct contact condensation
•Pattern recognition applied to rapidly condensing large bubbles.•Bubble volume and surface area were estimated from pattern recognition data.•Surface velocity and acceleration were acquired.•The data is used to estimate chugging frequency and wavelengths of instabilities. Direct contact condensatio...
Saved in:
| Published in: | Nuclear engineering and design Vol. 332; pp. 202 - 212 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
01.06.2018
Elsevier BV |
| Subjects: | |
| ISSN: | 0029-5493, 1872-759X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Pattern recognition applied to rapidly condensing large bubbles.•Bubble volume and surface area were estimated from pattern recognition data.•Surface velocity and acceleration were acquired.•The data is used to estimate chugging frequency and wavelengths of instabilities.
Direct contact condensation of steam bubbles in a boiling water reactor suppression pool has long been studied utilizing video recording of experiments. The use of video recording enables observation of the behaviour of the bubble surface area and can assist in validation of computational fluid dynamics models.
A direct contact condensation experiment of the suppression pool test facility PPOOLEX was recorded using high-speed cameras. The recorded video material was used for development of a pattern recognition and data analysis algorithm. 300 fps video of 48 s duration was cut into frames with a resolution of 768px×768px. The side profile of the bubbles was identified and the volumes and surface areas of the bubbles were evaluated using a voxel-based method.
The purpose of the algorithm was to determine the shape and size of steam bubbles during their formation, expansion, collapse and re-formation. The most probabilistic chugging frequencies were estimated. The bubble geometry data were also used to determine the velocity and acceleration of the phase interface, as condensation induced Rayleigh-Taylor instability develops on the bubble surface during the bubble collapse, as the heavy phase accelerates towards the light phase. Knowledge of the critical wave length is necessary for mesh spacing in CFD calculations.
The algorithm appears to be promising. Some limitations exist and approximations need to be made due to the challenging video shooting conditions. The algorithm works well for cylindrical bubbles and provides important data on the dynamics of the phase interface necessary for numerical modelling of direct contact condensation. |
|---|---|
| AbstractList | •Pattern recognition applied to rapidly condensing large bubbles.•Bubble volume and surface area were estimated from pattern recognition data.•Surface velocity and acceleration were acquired.•The data is used to estimate chugging frequency and wavelengths of instabilities.
Direct contact condensation of steam bubbles in a boiling water reactor suppression pool has long been studied utilizing video recording of experiments. The use of video recording enables observation of the behaviour of the bubble surface area and can assist in validation of computational fluid dynamics models.
A direct contact condensation experiment of the suppression pool test facility PPOOLEX was recorded using high-speed cameras. The recorded video material was used for development of a pattern recognition and data analysis algorithm. 300 fps video of 48 s duration was cut into frames with a resolution of 768px×768px. The side profile of the bubbles was identified and the volumes and surface areas of the bubbles were evaluated using a voxel-based method.
The purpose of the algorithm was to determine the shape and size of steam bubbles during their formation, expansion, collapse and re-formation. The most probabilistic chugging frequencies were estimated. The bubble geometry data were also used to determine the velocity and acceleration of the phase interface, as condensation induced Rayleigh-Taylor instability develops on the bubble surface during the bubble collapse, as the heavy phase accelerates towards the light phase. Knowledge of the critical wave length is necessary for mesh spacing in CFD calculations.
The algorithm appears to be promising. Some limitations exist and approximations need to be made due to the challenging video shooting conditions. The algorithm works well for cylindrical bubbles and provides important data on the dynamics of the phase interface necessary for numerical modelling of direct contact condensation. Direct contact condensation of steam bubbles in a boiling water reactor suppression pool has long been studied utilizing video recording of experiments. The use of video recording enables observation of the behaviour of the bubble surface area and can assist in validation of computational fluid dynamics models. A direct contact condensation experiment of the suppression pool test facility PPOOLEX was recorded using high-speed cameras. The recorded video material was used for development of a pattern recognition and data analysis algorithm. 300 fps video of 48 s duration was cut into frames with a resolution of 768 px ×768 px. The side profile of the bubbles was identified and the volumes and surface areas of the bubbles were evaluated using a voxel-based method. The purpose of the algorithm was to determine the shape and size of steam bubbles during their formation, expansion, collapse and re-formation. The most probabilistic chugging frequencies were estimated. The bubble geometry data were also used to determine the velocity and acceleration of the phase interface, as condensation induced Rayleigh-Taylor instability develops on the bubble surface during the bubble collapse, as the heavy phase accelerates towards the light phase. Knowledge of the critical wave length is necessary for mesh spacing in CFD calculations. The algorithm appears to be promising. Some limitations exist and approximations need to be made due to the challenging video shooting conditions. The algorithm works well for cylindrical bubbles and provides important data on the dynamics of the phase interface necessary for numerical modelling of direct contact condensation. |
| Author | Hujala, Elina Hyvärinen, Juhani Tanskanen, Vesa |
| Author_xml | – sequence: 1 givenname: Elina surname: Hujala fullname: Hujala, Elina email: Elina.Hujala@lut.fi – sequence: 2 givenname: Vesa surname: Tanskanen fullname: Tanskanen, Vesa – sequence: 3 givenname: Juhani surname: Hyvärinen fullname: Hyvärinen, Juhani |
| BookMark | eNqNkE1LAzEQhoNUsK3-Bhc8b83HNrs5eCjFLxAUUfAW0uxkm9ImNckK_ffuuuLBiw4Dc5nn5eWZoJHzDhA6J3hGMOGXm5lrNbimhjijmFQzzLqlR2hMqpLm5Vy8jdAYYyryeSHYCZrEuMH9CDpGz08qJQguC6B942yy3mVq2_hg03qXGR8y5dT2EG3MvMn0um0a65qsth2QMu1dUsOtwUXV46fo2KhthLPvO0WvN9cvy7v84fH2frl4yDUTNOUCM-Cgi3olDCZEc4b1CsqinBtCGKnnilNeGMqAmoKD0ZxqTLlYVQVTRW3YFF0Mufvg31uISW58G7qyUVLMq6LiRNDu62r40sHHGMBIbdNXzxSU3UqCZa9RbuSPRtlrlJh12_PlL34f7E6Fwz_IxUBCJ-HDQpBRW3AaBney9vbPjE9_IZXj |
| CitedBy_id | crossref_primary_10_1080_00295450_2024_2399986 crossref_primary_10_1016_j_anucene_2024_111004 crossref_primary_10_1016_j_nucengdes_2021_111142 crossref_primary_10_1016_j_applthermaleng_2024_124039 crossref_primary_10_1016_j_ijheatmasstransfer_2019_119024 crossref_primary_10_1016_j_applthermaleng_2023_121671 crossref_primary_10_1016_j_ijheatmasstransfer_2023_125076 crossref_primary_10_1016_j_nucengdes_2023_112197 crossref_primary_10_1016_j_nucengdes_2018_09_018 crossref_primary_10_1016_j_anucene_2022_108980 crossref_primary_10_1016_j_icheatmasstransfer_2024_108244 crossref_primary_10_1016_j_nucengdes_2024_112935 |
| Cites_doi | 10.1016/j.anucene.2013.12.007 10.1115/1.3245083 10.1016/j.ijmultiphaseflow.2016.09.020 10.1146/annurev.fluid.34.090101.162238 10.1080/18811248.1984.9731045 10.1080/00223131.2015.1134359 10.1016/S0031-3203(03)00173-0 10.1080/18811248.1980.9732617 10.1016/j.nucengdes.2016.08.026 10.1002/cpa.3160130207 10.1098/rspa.1950.0052 10.1016/j.nucengdes.2014.04.006 10.1016/0029-5493(84)90172-9 10.1080/18811248.1983.9733383 10.1016/j.ijheatmasstransfer.2013.11.049 10.1016/0029-5493(87)90105-1 10.1007/BF01015969 10.1016/0029-5493(87)90256-1 10.1016/0301-9322(82)90003-9 10.1155/2011/941239 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. Copyright Elsevier BV Jun 2018 |
| Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier BV Jun 2018 |
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 KR7 L7M SOI |
| DOI | 10.1016/j.nucengdes.2018.03.032 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1872-759X |
| EndPage | 212 |
| ExternalDocumentID | 10_1016_j_nucengdes_2018_03_032 S0029549318303315 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HME HVGLF HZ~ IHE J1W JARJE JJJVA KOM LY6 LY7 LZ3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SES SET SEW SHN SPC SPCBC SSR SST SSZ T5K TN5 UHS WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SP 7ST 7TB 8FD AGCQF C1K FR3 KR7 L7M SOI |
| ID | FETCH-LOGICAL-c392t-903e6ec4db9f011c630cbe7475f1131d5a6264f23e2f46efc62c0269b843a4df3 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430395700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-5493 |
| IngestDate | Wed Aug 13 08:08:14 EDT 2025 Tue Nov 18 20:40:08 EST 2025 Sat Nov 29 07:29:26 EST 2025 Fri Feb 23 02:34:42 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c392t-903e6ec4db9f011c630cbe7475f1131d5a6264f23e2f46efc62c0269b843a4df3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0029549318303315 |
| PQID | 2068486192 |
| PQPubID | 2045424 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2068486192 crossref_citationtrail_10_1016_j_nucengdes_2018_03_032 crossref_primary_10_1016_j_nucengdes_2018_03_032 elsevier_sciencedirect_doi_10_1016_j_nucengdes_2018_03_032 |
| PublicationCentury | 2000 |
| PublicationDate | June 2018 2018-06-00 20180601 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Nuclear engineering and design |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Drazin (b0045) 2002 Pellegrini, M., Naitoh, M., Josey, C., Baglietto, E., 2015. Modeling of Rayleigh-Taylor instability for steam direct contact condensation. In: The 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16), Chicago, IL, August 30-September 4, pp. 15. Brennen (b0030) 2014 Kukita, Namatame, Takeshita, Shiba (b0085) 1987; 102 Ishii, Hibiki (b0070) 2011 Puustinen, M., Kyrki-Rajamäki, R., Tanskanen, V., Räsänen, A., Purhonen, H., Riikonen, V., Laine, J., Hujala, E., 2013. BWR Suppression Pool Studies with POOLEX and PPOOLEX Test Facilities at LUT. In: The 15th International Topical Meeting on Nuclear Thermal Hydraulics (NURETH-15), Pisa, Italy, 12–17 May, pp. 061. Richtmyer (b0140) 1960 Patel, Tanskanen, Hujala, Hyvärinen (b0115) 2017; 321 Gregu, Takahashi, Pellegrini, Mereu (b0050) 2017; 88 MATLAB, 2017. version 9.2.0 (R2017a). The MathWorks Inc., Natick, Massachusetts, USA. Hujala, E., Tanskanen, V., Puustinen, M., 2013. Progress in the development of pattern recognition algorithm for the PPOOLEX video data. Technical Report. Lappeenranta University of Technology, School of Technology, Laboratory of Nuclear Engineering. Aya, Nariai, Kobayashi (b0020) 1980; 17 Motoaki Utamura, Uozumi (b0110) 1984; 21 Lahey, Moody (b0090) 1993 Issa, Weisensee, Macian-Juan (b0075) 2014; 70 Kukita, Namatame, Shiba (b0080) 1984; 77 Aya, Nariai (b0015) 1987; 99 Hujala, E., 2013. Evaluation of Bubble Formation and Break Up in Suppression Pools by Using Pattern Recognition Methods (Master thesis). Lappeenranta University of Technology. LUT Energy, Lappeenranta, Finland. Available online Mimouni, S., Mechitoua, N., Foissac, A., Hassanaly, M., Ouraou, M., 2011. CFD modeling of wall steam condensation: Two-phase flow approach versus homogeneous flow approach. Science and Technology of Nuclear Installations 2011. Tanskanen, V., Hujala, E., Puustinen, M., 2014a. Numerical simulation and analysis of PPOOLEX DCC-05 chugging test. Technical Report. Lappeenranta University of Technology, School of Energy Systems, Nuclear Engineering. Aya, Kobayashi (b0010) 1983; 20 Meshkov (b0100) 1969; 4 Windreich, Kiryati, Lohmann (b0170) 2003; 36 Puustinen, M., Laine, J., Räsänen, A., Hujala, E., 2014. Chugging Test with DN100 Blowdown Pipe in the PPOOLEX Facility. Technical Report. Lappeenranta University of Technology, Nuclear Safety Research Unit. . Aust, Schultheiss, Seeliger, McCauley (b0005) 1983 Pellegrini, Araneo, Ninokata, Ricotti, Naitoh, Achilli (b0120) 2016; 53 Simpson, Chan (b0145) 1982; 104 Bestion (b0025) 2014; 279 Strutt (b0150) 1883; 14 Tanskanen, Jordan, Puustinen, Kyrki-Rajamäki (b0160) 2014; 66 Brouillette (b0035) 2002; 34 Chan, Lee (b0040) 1982; 8 Hujala, E., Tanskanen, V., Hyvärinen, J., 2017. Frequency analysis of chugging condensation in pressure suppression pool system with pattern recognition. In: The 17th International Topical Meeting on Nuclear Thermal Hydraulics (NURETH-17), Xi’an, Shaanxi, China, September 3–8. Taylor (b0165) 1950; 201 Aust (10.1016/j.nucengdes.2018.03.032_b0005) 1983 10.1016/j.nucengdes.2018.03.032_b0135 Taylor (10.1016/j.nucengdes.2018.03.032_b0165) 1950; 201 10.1016/j.nucengdes.2018.03.032_b0130 Tanskanen (10.1016/j.nucengdes.2018.03.032_b0160) 2014; 66 10.1016/j.nucengdes.2018.03.032_b0055 10.1016/j.nucengdes.2018.03.032_b0155 Kukita (10.1016/j.nucengdes.2018.03.032_b0085) 1987; 102 Gregu (10.1016/j.nucengdes.2018.03.032_b0050) 2017; 88 Meshkov (10.1016/j.nucengdes.2018.03.032_b0100) 1969; 4 Windreich (10.1016/j.nucengdes.2018.03.032_b0170) 2003; 36 Aya (10.1016/j.nucengdes.2018.03.032_b0010) 1983; 20 Chan (10.1016/j.nucengdes.2018.03.032_b0040) 1982; 8 Motoaki Utamura (10.1016/j.nucengdes.2018.03.032_b0110) 1984; 21 Drazin (10.1016/j.nucengdes.2018.03.032_b0045) 2002 10.1016/j.nucengdes.2018.03.032_b0095 Strutt (10.1016/j.nucengdes.2018.03.032_b0150) 1883; 14 Issa (10.1016/j.nucengdes.2018.03.032_b0075) 2014; 70 Pellegrini (10.1016/j.nucengdes.2018.03.032_b0120) 2016; 53 10.1016/j.nucengdes.2018.03.032_b0125 Patel (10.1016/j.nucengdes.2018.03.032_b0115) 2017; 321 Brouillette (10.1016/j.nucengdes.2018.03.032_b0035) 2002; 34 10.1016/j.nucengdes.2018.03.032_b0065 Simpson (10.1016/j.nucengdes.2018.03.032_b0145) 1982; 104 Bestion (10.1016/j.nucengdes.2018.03.032_b0025) 2014; 279 Kukita (10.1016/j.nucengdes.2018.03.032_b0080) 1984; 77 10.1016/j.nucengdes.2018.03.032_b0105 Ishii (10.1016/j.nucengdes.2018.03.032_b0070) 2011 Aya (10.1016/j.nucengdes.2018.03.032_b0015) 1987; 99 Aya (10.1016/j.nucengdes.2018.03.032_b0020) 1980; 17 Richtmyer (10.1016/j.nucengdes.2018.03.032_b0140) 1960 10.1016/j.nucengdes.2018.03.032_b0060 Brennen (10.1016/j.nucengdes.2018.03.032_b0030) 2014 Lahey (10.1016/j.nucengdes.2018.03.032_b0090) 1993 |
| References_xml | – volume: 34 start-page: 445 year: 2002 end-page: 468 ident: b0035 article-title: The Richtmyer-Meshkov instability publication-title: Annu. Rev. Fluid Mech. – volume: 70 start-page: 918 year: 2014 end-page: 929 ident: b0075 article-title: Experimental investigation of steam bubble condensation in vertical large diameter geometry under atmospheric pressure and different flow conditions publication-title: Int. J. Heat Mass Transf. – reference: MATLAB, 2017. version 9.2.0 (R2017a). The MathWorks Inc., Natick, Massachusetts, USA. – year: 2002 ident: b0045 article-title: Introduction to Hydrodynamic Stability. Cambridge Texts in Applied Mathematics – reference: Mimouni, S., Mechitoua, N., Foissac, A., Hassanaly, M., Ouraou, M., 2011. CFD modeling of wall steam condensation: Two-phase flow approach versus homogeneous flow approach. Science and Technology of Nuclear Installations 2011. – volume: 8 start-page: 11 year: 1982 end-page: 20 ident: b0040 article-title: A regime map for direct contact condensation publication-title: Int. J. Multiph. Flow – volume: 36 start-page: 2531 year: 2003 end-page: 2541 ident: b0170 article-title: Voxel-based surface area estimation: from theory to practice publication-title: Pattern Recogn. – volume: 88 start-page: 87 year: 2017 end-page: 98 ident: b0050 article-title: Experimental study on steam chugging phenomenon in a vertical sparger publication-title: Int. J. Multiph. Flow – volume: 66 start-page: 133 year: 2014 end-page: 143 ident: b0160 article-title: CFD simulation and pattern recognition analysis of the chugging condensation regime publication-title: Ann. Nucl. Energy – volume: 14 start-page: 170 year: 1883 end-page: 177 ident: b0150 article-title: Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density publication-title: Proc. London Math. Soc. – start-page: 297 year: 1960 end-page: 319 ident: b0140 article-title: Taylor instability in shock acceleration of compressible fluids publication-title: Commun. Pure Appl. Math. XIII – volume: 321 start-page: 328 year: 2017 end-page: 342 ident: b0115 article-title: Direct contact condensation modeling in pressure suppression pool system publication-title: Nucl. Eng. Des. – reference: Puustinen, M., Kyrki-Rajamäki, R., Tanskanen, V., Räsänen, A., Purhonen, H., Riikonen, V., Laine, J., Hujala, E., 2013. BWR Suppression Pool Studies with POOLEX and PPOOLEX Test Facilities at LUT. In: The 15th International Topical Meeting on Nuclear Thermal Hydraulics (NURETH-15), Pisa, Italy, 12–17 May, pp. 061. – year: 2011 ident: b0070 publication-title: Thermo-Fluid Dynamics of Two-Phase Flow – volume: 99 start-page: 31 year: 1987 end-page: 40 ident: b0015 article-title: Boundaries between regimes of pressure oscillation induced by steam condensation in pressure suppression containment publication-title: Nucl. Eng. Des. – reference: Hujala, E., Tanskanen, V., Hyvärinen, J., 2017. Frequency analysis of chugging condensation in pressure suppression pool system with pattern recognition. In: The 17th International Topical Meeting on Nuclear Thermal Hydraulics (NURETH-17), Xi’an, Shaanxi, China, September 3–8. – volume: 17 start-page: 499 year: 1980 end-page: 515 ident: b0020 article-title: Pressure and fluid oscillations in vent system due to steam condensation, (I) experimental results and analysis model for chugging publication-title: J. Nucl. Sci. Technol. – year: 2014 ident: b0030 publication-title: Cavitation and Bubble Dynamics – reference: Puustinen, M., Laine, J., Räsänen, A., Hujala, E., 2014. Chugging Test with DN100 Blowdown Pipe in the PPOOLEX Facility. Technical Report. Lappeenranta University of Technology, Nuclear Safety Research Unit. – volume: 104 start-page: 271 year: 1982 end-page: 278 ident: b0145 article-title: Hydrodynamics of a subsonic vapor jet in subcooled liquid publication-title: J. Heat Transfer – volume: 20 start-page: 213 year: 1983 end-page: 227 ident: b0010 article-title: Pressure and fluid oscillations in vent system due to steam condensation, (II) high-frequency component of pressure oscillations in vent tubes under at chugging and condensation oscillation publication-title: J. Nucl. Sci. Technol. – volume: 201 start-page: 192 year: 1950 end-page: 196 ident: b0165 article-title: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Part I publication-title: Proc. R. Soc. London, Ser. A – volume: 102 start-page: 225 year: 1987 end-page: 228 ident: b0085 article-title: LOCA steam condensation loads in BWR Mark II pressure suppression containment system publication-title: Nucl. Eng. Des. – start-page: 43 year: 1983 end-page: 50 ident: b0005 article-title: Experimental results about dynamic load mitigation for BWR-pressure suppression containments under LOCA-conditions publication-title: J. Loading Conditions Struct. Anal. Reactor Containment IASMiRT – volume: 279 start-page: 116 year: 2014 end-page: 125 ident: b0025 article-title: The difficult challenge of a two-phase CFD modelling for all flow regimes publication-title: Nucl. Eng. Des. – volume: 21 start-page: 279 year: 1984 end-page: 287 ident: b0110 article-title: Numerical analysis on pressure propagation in pressure suppression system due to steam bubble collapse publication-title: J. Nucl. Sci. Technol. – reference: . – year: 1993 ident: b0090 article-title: The Thermal-Hydraulics of a Boiling Water Reactor – reference: Hujala, E., Tanskanen, V., Puustinen, M., 2013. Progress in the development of pattern recognition algorithm for the PPOOLEX video data. Technical Report. Lappeenranta University of Technology, School of Technology, Laboratory of Nuclear Engineering. – volume: 77 start-page: 117 year: 1984 end-page: 129 ident: b0080 article-title: The LOCA air-injection loads in BWR Mark II pressure suppression containment systems publication-title: Nucl. Eng. Des. – reference: Tanskanen, V., Hujala, E., Puustinen, M., 2014a. Numerical simulation and analysis of PPOOLEX DCC-05 chugging test. Technical Report. Lappeenranta University of Technology, School of Energy Systems, Nuclear Engineering. – reference: Hujala, E., 2013. Evaluation of Bubble Formation and Break Up in Suppression Pools by Using Pattern Recognition Methods (Master thesis). Lappeenranta University of Technology. LUT Energy, Lappeenranta, Finland. Available online: – volume: 53 start-page: 614 year: 2016 end-page: 629 ident: b0120 article-title: Suppression pool testing at the SIET laboratory: experimental investigation of critical phenomena expected in the Fukushima Daiichi suppression chamber publication-title: J. Nucl. Sci. Technol. – volume: 4 start-page: 101 year: 1969 end-page: 104 ident: b0100 article-title: Instability of the interface of two gases accelerated by a shock wave publication-title: Sov. Fluid Dyn. – reference: Pellegrini, M., Naitoh, M., Josey, C., Baglietto, E., 2015. Modeling of Rayleigh-Taylor instability for steam direct contact condensation. In: The 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16), Chicago, IL, August 30-September 4, pp. 15. – volume: 66 start-page: 133 year: 2014 ident: 10.1016/j.nucengdes.2018.03.032_b0160 article-title: CFD simulation and pattern recognition analysis of the chugging condensation regime publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2013.12.007 – volume: 104 start-page: 271 year: 1982 ident: 10.1016/j.nucengdes.2018.03.032_b0145 article-title: Hydrodynamics of a subsonic vapor jet in subcooled liquid publication-title: J. Heat Transfer doi: 10.1115/1.3245083 – start-page: 43 year: 1983 ident: 10.1016/j.nucengdes.2018.03.032_b0005 article-title: Experimental results about dynamic load mitigation for BWR-pressure suppression containments under LOCA-conditions publication-title: J. Loading Conditions Struct. Anal. Reactor Containment IASMiRT – ident: 10.1016/j.nucengdes.2018.03.032_b0095 – volume: 88 start-page: 87 year: 2017 ident: 10.1016/j.nucengdes.2018.03.032_b0050 article-title: Experimental study on steam chugging phenomenon in a vertical sparger publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2016.09.020 – ident: 10.1016/j.nucengdes.2018.03.032_b0060 – year: 1993 ident: 10.1016/j.nucengdes.2018.03.032_b0090 – ident: 10.1016/j.nucengdes.2018.03.032_b0135 – volume: 34 start-page: 445 year: 2002 ident: 10.1016/j.nucengdes.2018.03.032_b0035 article-title: The Richtmyer-Meshkov instability publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.34.090101.162238 – volume: 21 start-page: 279 year: 1984 ident: 10.1016/j.nucengdes.2018.03.032_b0110 article-title: Numerical analysis on pressure propagation in pressure suppression system due to steam bubble collapse publication-title: J. Nucl. Sci. Technol. doi: 10.1080/18811248.1984.9731045 – year: 2002 ident: 10.1016/j.nucengdes.2018.03.032_b0045 – year: 2011 ident: 10.1016/j.nucengdes.2018.03.032_b0070 – ident: 10.1016/j.nucengdes.2018.03.032_b0055 – volume: 53 start-page: 614 year: 2016 ident: 10.1016/j.nucengdes.2018.03.032_b0120 article-title: Suppression pool testing at the SIET laboratory: experimental investigation of critical phenomena expected in the Fukushima Daiichi suppression chamber publication-title: J. Nucl. Sci. Technol. doi: 10.1080/00223131.2015.1134359 – volume: 36 start-page: 2531 year: 2003 ident: 10.1016/j.nucengdes.2018.03.032_b0170 article-title: Voxel-based surface area estimation: from theory to practice publication-title: Pattern Recogn. doi: 10.1016/S0031-3203(03)00173-0 – volume: 17 start-page: 499 year: 1980 ident: 10.1016/j.nucengdes.2018.03.032_b0020 article-title: Pressure and fluid oscillations in vent system due to steam condensation, (I) experimental results and analysis model for chugging publication-title: J. Nucl. Sci. Technol. doi: 10.1080/18811248.1980.9732617 – volume: 321 start-page: 328 year: 2017 ident: 10.1016/j.nucengdes.2018.03.032_b0115 article-title: Direct contact condensation modeling in pressure suppression pool system publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2016.08.026 – start-page: 297 year: 1960 ident: 10.1016/j.nucengdes.2018.03.032_b0140 article-title: Taylor instability in shock acceleration of compressible fluids publication-title: Commun. Pure Appl. Math. XIII doi: 10.1002/cpa.3160130207 – volume: 201 start-page: 192 year: 1950 ident: 10.1016/j.nucengdes.2018.03.032_b0165 article-title: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Part I publication-title: Proc. R. Soc. London, Ser. A doi: 10.1098/rspa.1950.0052 – ident: 10.1016/j.nucengdes.2018.03.032_b0065 – volume: 279 start-page: 116 year: 2014 ident: 10.1016/j.nucengdes.2018.03.032_b0025 article-title: The difficult challenge of a two-phase CFD modelling for all flow regimes publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2014.04.006 – volume: 77 start-page: 117 year: 1984 ident: 10.1016/j.nucengdes.2018.03.032_b0080 article-title: The LOCA air-injection loads in BWR Mark II pressure suppression containment systems publication-title: Nucl. Eng. Des. doi: 10.1016/0029-5493(84)90172-9 – volume: 20 start-page: 213 year: 1983 ident: 10.1016/j.nucengdes.2018.03.032_b0010 article-title: Pressure and fluid oscillations in vent system due to steam condensation, (II) high-frequency component of pressure oscillations in vent tubes under at chugging and condensation oscillation publication-title: J. Nucl. Sci. Technol. doi: 10.1080/18811248.1983.9733383 – volume: 14 start-page: 170 year: 1883 ident: 10.1016/j.nucengdes.2018.03.032_b0150 article-title: Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density publication-title: Proc. London Math. Soc. – volume: 70 start-page: 918 year: 2014 ident: 10.1016/j.nucengdes.2018.03.032_b0075 article-title: Experimental investigation of steam bubble condensation in vertical large diameter geometry under atmospheric pressure and different flow conditions publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.11.049 – volume: 99 start-page: 31 year: 1987 ident: 10.1016/j.nucengdes.2018.03.032_b0015 article-title: Boundaries between regimes of pressure oscillation induced by steam condensation in pressure suppression containment publication-title: Nucl. Eng. Des. doi: 10.1016/0029-5493(87)90105-1 – ident: 10.1016/j.nucengdes.2018.03.032_b0130 – ident: 10.1016/j.nucengdes.2018.03.032_b0155 – volume: 4 start-page: 101 year: 1969 ident: 10.1016/j.nucengdes.2018.03.032_b0100 article-title: Instability of the interface of two gases accelerated by a shock wave publication-title: Sov. Fluid Dyn. doi: 10.1007/BF01015969 – volume: 102 start-page: 225 year: 1987 ident: 10.1016/j.nucengdes.2018.03.032_b0085 article-title: LOCA steam condensation loads in BWR Mark II pressure suppression containment system publication-title: Nucl. Eng. Des. doi: 10.1016/0029-5493(87)90256-1 – volume: 8 start-page: 11 year: 1982 ident: 10.1016/j.nucengdes.2018.03.032_b0040 article-title: A regime map for direct contact condensation publication-title: Int. J. Multiph. Flow doi: 10.1016/0301-9322(82)90003-9 – ident: 10.1016/j.nucengdes.2018.03.032_b0105 doi: 10.1155/2011/941239 – year: 2014 ident: 10.1016/j.nucengdes.2018.03.032_b0030 – ident: 10.1016/j.nucengdes.2018.03.032_b0125 |
| SSID | ssj0000092 |
| Score | 2.324691 |
| Snippet | •Pattern recognition applied to rapidly condensing large bubbles.•Bubble volume and surface area were estimated from pattern recognition data.•Surface velocity... Direct contact condensation of steam bubbles in a boiling water reactor suppression pool has long been studied utilizing video recording of experiments. The... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 202 |
| SubjectTerms | Algorithms Boiling water reactors Bubbles Cameras Collapse Computational fluid dynamics Computer applications Condensates Condensation Data analysis Data processing Experiments Finite element method Fluid dynamics High speed cameras Hydrodynamics Interface stability Mathematical models Pattern analysis Pattern recognition Surface area Surface stability Taylor instability Ultrasonic testing |
| Title | Pattern recognition algorithm for analysis of chugging direct contact condensation |
| URI | https://dx.doi.org/10.1016/j.nucengdes.2018.03.032 https://www.proquest.com/docview/2068486192 |
| Volume | 332 |
| WOSCitedRecordID | wos000430395700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-759X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000092 issn: 0029-5493 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELailAMcqvISfYB84IYW7a69u3ZvFWoVEKoqFKrcVrteOw-CU-WlcuSfM37sIxRUEEKKNtEmdhLP5_HM-JsxQq-TktOMVDRQlQQHpeQ8gE8a2l9VhSrJisKGsq8_ZpeXbDTiV73e9zoXZjvPtGa3t_zmv4oa7oGwTersX4i76RRuwGsQOlxB7HD9I8Ff2YqZJkvFU4MM33g-Xiyn68lXT5psC5GIyWZszylya5ulrhfuGTTSqpXbrM7TFeagiTeyrWNo9x-qHSbIYDMr5oWnjelG8w9hXfxSaKfpruWqeWPwbWt37KnJRfTZIpNCT7sxiYi13CkXKLuTLOMTB3gA7qjTZ9LpW5aBgZ_Y03QbhUx8xNOr1DDurM6xI13fUfwuBjF7q2FC6DH8Z8PaY7Z-re9tt6q22aQ2O5xGpYWEmDIFezH8ENZHe2fvz0cfOj4Uj2uekGmwQxL85df9zsT5abG3FszwAO171wOfOcg8Rj2pn6BHnYKUT9EnDx7cAQ9uwIMBPLgGD14oXIMHO_BgDx7cBc8z9PnifPhuEPhTNwIBtvI64CGRKUzXquQKlL9ISShKCV5noqKIRFVSgA9MVUxkrGgqlUhjAY48LxklBa0UeY76eqHlC4Q5-MsldKfMqUIJpzyiYF5KlshYgGPOD1FaD1QufEl6czLKPK-5h7O8GeHcjHAeEnjEhyhsGt64qiz3NzmtJZF749KNTQ4Qur_xSS273E91837KKDMBiKN_6fsYPWyn0Anqr5cb-RI9ENv1dLV85dH4A5o_r3Y |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pattern+recognition+algorithm+for+analysis+of+chugging+direct+contact+condensation&rft.jtitle=Nuclear+engineering+and+design&rft.au=Hujala%2C+Elina&rft.au=Tanskanen%2C+Vesa&rft.au=Hyv%C3%A4rinen%2C+Juhani&rft.date=2018-06-01&rft.pub=Elsevier+B.V&rft.issn=0029-5493&rft.eissn=1872-759X&rft.volume=332&rft.spage=202&rft.epage=212&rft_id=info:doi/10.1016%2Fj.nucengdes.2018.03.032&rft.externalDocID=S0029549318303315 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5493&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5493&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5493&client=summon |