Pattern recognition algorithm for analysis of chugging direct contact condensation

•Pattern recognition applied to rapidly condensing large bubbles.•Bubble volume and surface area were estimated from pattern recognition data.•Surface velocity and acceleration were acquired.•The data is used to estimate chugging frequency and wavelengths of instabilities. Direct contact condensatio...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear engineering and design Vol. 332; pp. 202 - 212
Main Authors: Hujala, Elina, Tanskanen, Vesa, Hyvärinen, Juhani
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.06.2018
Elsevier BV
Subjects:
ISSN:0029-5493, 1872-759X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Pattern recognition applied to rapidly condensing large bubbles.•Bubble volume and surface area were estimated from pattern recognition data.•Surface velocity and acceleration were acquired.•The data is used to estimate chugging frequency and wavelengths of instabilities. Direct contact condensation of steam bubbles in a boiling water reactor suppression pool has long been studied utilizing video recording of experiments. The use of video recording enables observation of the behaviour of the bubble surface area and can assist in validation of computational fluid dynamics models. A direct contact condensation experiment of the suppression pool test facility PPOOLEX was recorded using high-speed cameras. The recorded video material was used for development of a pattern recognition and data analysis algorithm. 300 fps video of 48 s duration was cut into frames with a resolution of 768px×768px. The side profile of the bubbles was identified and the volumes and surface areas of the bubbles were evaluated using a voxel-based method. The purpose of the algorithm was to determine the shape and size of steam bubbles during their formation, expansion, collapse and re-formation. The most probabilistic chugging frequencies were estimated. The bubble geometry data were also used to determine the velocity and acceleration of the phase interface, as condensation induced Rayleigh-Taylor instability develops on the bubble surface during the bubble collapse, as the heavy phase accelerates towards the light phase. Knowledge of the critical wave length is necessary for mesh spacing in CFD calculations. The algorithm appears to be promising. Some limitations exist and approximations need to be made due to the challenging video shooting conditions. The algorithm works well for cylindrical bubbles and provides important data on the dynamics of the phase interface necessary for numerical modelling of direct contact condensation.
AbstractList •Pattern recognition applied to rapidly condensing large bubbles.•Bubble volume and surface area were estimated from pattern recognition data.•Surface velocity and acceleration were acquired.•The data is used to estimate chugging frequency and wavelengths of instabilities. Direct contact condensation of steam bubbles in a boiling water reactor suppression pool has long been studied utilizing video recording of experiments. The use of video recording enables observation of the behaviour of the bubble surface area and can assist in validation of computational fluid dynamics models. A direct contact condensation experiment of the suppression pool test facility PPOOLEX was recorded using high-speed cameras. The recorded video material was used for development of a pattern recognition and data analysis algorithm. 300 fps video of 48 s duration was cut into frames with a resolution of 768px×768px. The side profile of the bubbles was identified and the volumes and surface areas of the bubbles were evaluated using a voxel-based method. The purpose of the algorithm was to determine the shape and size of steam bubbles during their formation, expansion, collapse and re-formation. The most probabilistic chugging frequencies were estimated. The bubble geometry data were also used to determine the velocity and acceleration of the phase interface, as condensation induced Rayleigh-Taylor instability develops on the bubble surface during the bubble collapse, as the heavy phase accelerates towards the light phase. Knowledge of the critical wave length is necessary for mesh spacing in CFD calculations. The algorithm appears to be promising. Some limitations exist and approximations need to be made due to the challenging video shooting conditions. The algorithm works well for cylindrical bubbles and provides important data on the dynamics of the phase interface necessary for numerical modelling of direct contact condensation.
Direct contact condensation of steam bubbles in a boiling water reactor suppression pool has long been studied utilizing video recording of experiments. The use of video recording enables observation of the behaviour of the bubble surface area and can assist in validation of computational fluid dynamics models. A direct contact condensation experiment of the suppression pool test facility PPOOLEX was recorded using high-speed cameras. The recorded video material was used for development of a pattern recognition and data analysis algorithm. 300 fps video of 48 s duration was cut into frames with a resolution of 768 px ×768 px. The side profile of the bubbles was identified and the volumes and surface areas of the bubbles were evaluated using a voxel-based method. The purpose of the algorithm was to determine the shape and size of steam bubbles during their formation, expansion, collapse and re-formation. The most probabilistic chugging frequencies were estimated. The bubble geometry data were also used to determine the velocity and acceleration of the phase interface, as condensation induced Rayleigh-Taylor instability develops on the bubble surface during the bubble collapse, as the heavy phase accelerates towards the light phase. Knowledge of the critical wave length is necessary for mesh spacing in CFD calculations. The algorithm appears to be promising. Some limitations exist and approximations need to be made due to the challenging video shooting conditions. The algorithm works well for cylindrical bubbles and provides important data on the dynamics of the phase interface necessary for numerical modelling of direct contact condensation.
Author Hujala, Elina
Hyvärinen, Juhani
Tanskanen, Vesa
Author_xml – sequence: 1
  givenname: Elina
  surname: Hujala
  fullname: Hujala, Elina
  email: Elina.Hujala@lut.fi
– sequence: 2
  givenname: Vesa
  surname: Tanskanen
  fullname: Tanskanen, Vesa
– sequence: 3
  givenname: Juhani
  surname: Hyvärinen
  fullname: Hyvärinen, Juhani
BookMark eNqNkE1LAzEQhoNUsK3-Bhc8b83HNrs5eCjFLxAUUfAW0uxkm9ImNckK_ffuuuLBiw4Dc5nn5eWZoJHzDhA6J3hGMOGXm5lrNbimhjijmFQzzLqlR2hMqpLm5Vy8jdAYYyryeSHYCZrEuMH9CDpGz08qJQguC6B942yy3mVq2_hg03qXGR8y5dT2EG3MvMn0um0a65qsth2QMu1dUsOtwUXV46fo2KhthLPvO0WvN9cvy7v84fH2frl4yDUTNOUCM-Cgi3olDCZEc4b1CsqinBtCGKnnilNeGMqAmoKD0ZxqTLlYVQVTRW3YFF0Mufvg31uISW58G7qyUVLMq6LiRNDu62r40sHHGMBIbdNXzxSU3UqCZa9RbuSPRtlrlJh12_PlL34f7E6Fwz_IxUBCJ-HDQpBRW3AaBney9vbPjE9_IZXj
CitedBy_id crossref_primary_10_1080_00295450_2024_2399986
crossref_primary_10_1016_j_anucene_2024_111004
crossref_primary_10_1016_j_nucengdes_2021_111142
crossref_primary_10_1016_j_applthermaleng_2024_124039
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119024
crossref_primary_10_1016_j_applthermaleng_2023_121671
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125076
crossref_primary_10_1016_j_nucengdes_2023_112197
crossref_primary_10_1016_j_nucengdes_2018_09_018
crossref_primary_10_1016_j_anucene_2022_108980
crossref_primary_10_1016_j_icheatmasstransfer_2024_108244
crossref_primary_10_1016_j_nucengdes_2024_112935
Cites_doi 10.1016/j.anucene.2013.12.007
10.1115/1.3245083
10.1016/j.ijmultiphaseflow.2016.09.020
10.1146/annurev.fluid.34.090101.162238
10.1080/18811248.1984.9731045
10.1080/00223131.2015.1134359
10.1016/S0031-3203(03)00173-0
10.1080/18811248.1980.9732617
10.1016/j.nucengdes.2016.08.026
10.1002/cpa.3160130207
10.1098/rspa.1950.0052
10.1016/j.nucengdes.2014.04.006
10.1016/0029-5493(84)90172-9
10.1080/18811248.1983.9733383
10.1016/j.ijheatmasstransfer.2013.11.049
10.1016/0029-5493(87)90105-1
10.1007/BF01015969
10.1016/0029-5493(87)90256-1
10.1016/0301-9322(82)90003-9
10.1155/2011/941239
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV Jun 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV Jun 2018
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
KR7
L7M
SOI
DOI 10.1016/j.nucengdes.2018.03.032
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-759X
EndPage 212
ExternalDocumentID 10_1016_j_nucengdes_2018_03_032
S0029549318303315
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HME
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
LY7
LZ3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SHN
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
UHS
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
7ST
7TB
8FD
AGCQF
C1K
FR3
KR7
L7M
SOI
ID FETCH-LOGICAL-c392t-903e6ec4db9f011c630cbe7475f1131d5a6264f23e2f46efc62c0269b843a4df3
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430395700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5493
IngestDate Wed Aug 13 08:08:14 EDT 2025
Tue Nov 18 20:40:08 EST 2025
Sat Nov 29 07:29:26 EST 2025
Fri Feb 23 02:34:42 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c392t-903e6ec4db9f011c630cbe7475f1131d5a6264f23e2f46efc62c0269b843a4df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0029549318303315
PQID 2068486192
PQPubID 2045424
PageCount 11
ParticipantIDs proquest_journals_2068486192
crossref_citationtrail_10_1016_j_nucengdes_2018_03_032
crossref_primary_10_1016_j_nucengdes_2018_03_032
elsevier_sciencedirect_doi_10_1016_j_nucengdes_2018_03_032
PublicationCentury 2000
PublicationDate June 2018
2018-06-00
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Nuclear engineering and design
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Drazin (b0045) 2002
Pellegrini, M., Naitoh, M., Josey, C., Baglietto, E., 2015. Modeling of Rayleigh-Taylor instability for steam direct contact condensation. In: The 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16), Chicago, IL, August 30-September 4, pp. 15.
Brennen (b0030) 2014
Kukita, Namatame, Takeshita, Shiba (b0085) 1987; 102
Ishii, Hibiki (b0070) 2011
Puustinen, M., Kyrki-Rajamäki, R., Tanskanen, V., Räsänen, A., Purhonen, H., Riikonen, V., Laine, J., Hujala, E., 2013. BWR Suppression Pool Studies with POOLEX and PPOOLEX Test Facilities at LUT. In: The 15th International Topical Meeting on Nuclear Thermal Hydraulics (NURETH-15), Pisa, Italy, 12–17 May, pp. 061.
Richtmyer (b0140) 1960
Patel, Tanskanen, Hujala, Hyvärinen (b0115) 2017; 321
Gregu, Takahashi, Pellegrini, Mereu (b0050) 2017; 88
MATLAB, 2017. version 9.2.0 (R2017a). The MathWorks Inc., Natick, Massachusetts, USA.
Hujala, E., Tanskanen, V., Puustinen, M., 2013. Progress in the development of pattern recognition algorithm for the PPOOLEX video data. Technical Report. Lappeenranta University of Technology, School of Technology, Laboratory of Nuclear Engineering.
Aya, Nariai, Kobayashi (b0020) 1980; 17
Motoaki Utamura, Uozumi (b0110) 1984; 21
Lahey, Moody (b0090) 1993
Issa, Weisensee, Macian-Juan (b0075) 2014; 70
Kukita, Namatame, Shiba (b0080) 1984; 77
Aya, Nariai (b0015) 1987; 99
Hujala, E., 2013. Evaluation of Bubble Formation and Break Up in Suppression Pools by Using Pattern Recognition Methods (Master thesis). Lappeenranta University of Technology. LUT Energy, Lappeenranta, Finland. Available online
Mimouni, S., Mechitoua, N., Foissac, A., Hassanaly, M., Ouraou, M., 2011. CFD modeling of wall steam condensation: Two-phase flow approach versus homogeneous flow approach. Science and Technology of Nuclear Installations 2011.
Tanskanen, V., Hujala, E., Puustinen, M., 2014a. Numerical simulation and analysis of PPOOLEX DCC-05 chugging test. Technical Report. Lappeenranta University of Technology, School of Energy Systems, Nuclear Engineering.
Aya, Kobayashi (b0010) 1983; 20
Meshkov (b0100) 1969; 4
Windreich, Kiryati, Lohmann (b0170) 2003; 36
Puustinen, M., Laine, J., Räsänen, A., Hujala, E., 2014. Chugging Test with DN100 Blowdown Pipe in the PPOOLEX Facility. Technical Report. Lappeenranta University of Technology, Nuclear Safety Research Unit.
.
Aust, Schultheiss, Seeliger, McCauley (b0005) 1983
Pellegrini, Araneo, Ninokata, Ricotti, Naitoh, Achilli (b0120) 2016; 53
Simpson, Chan (b0145) 1982; 104
Bestion (b0025) 2014; 279
Strutt (b0150) 1883; 14
Tanskanen, Jordan, Puustinen, Kyrki-Rajamäki (b0160) 2014; 66
Brouillette (b0035) 2002; 34
Chan, Lee (b0040) 1982; 8
Hujala, E., Tanskanen, V., Hyvärinen, J., 2017. Frequency analysis of chugging condensation in pressure suppression pool system with pattern recognition. In: The 17th International Topical Meeting on Nuclear Thermal Hydraulics (NURETH-17), Xi’an, Shaanxi, China, September 3–8.
Taylor (b0165) 1950; 201
Aust (10.1016/j.nucengdes.2018.03.032_b0005) 1983
10.1016/j.nucengdes.2018.03.032_b0135
Taylor (10.1016/j.nucengdes.2018.03.032_b0165) 1950; 201
10.1016/j.nucengdes.2018.03.032_b0130
Tanskanen (10.1016/j.nucengdes.2018.03.032_b0160) 2014; 66
10.1016/j.nucengdes.2018.03.032_b0055
10.1016/j.nucengdes.2018.03.032_b0155
Kukita (10.1016/j.nucengdes.2018.03.032_b0085) 1987; 102
Gregu (10.1016/j.nucengdes.2018.03.032_b0050) 2017; 88
Meshkov (10.1016/j.nucengdes.2018.03.032_b0100) 1969; 4
Windreich (10.1016/j.nucengdes.2018.03.032_b0170) 2003; 36
Aya (10.1016/j.nucengdes.2018.03.032_b0010) 1983; 20
Chan (10.1016/j.nucengdes.2018.03.032_b0040) 1982; 8
Motoaki Utamura (10.1016/j.nucengdes.2018.03.032_b0110) 1984; 21
Drazin (10.1016/j.nucengdes.2018.03.032_b0045) 2002
10.1016/j.nucengdes.2018.03.032_b0095
Strutt (10.1016/j.nucengdes.2018.03.032_b0150) 1883; 14
Issa (10.1016/j.nucengdes.2018.03.032_b0075) 2014; 70
Pellegrini (10.1016/j.nucengdes.2018.03.032_b0120) 2016; 53
10.1016/j.nucengdes.2018.03.032_b0125
Patel (10.1016/j.nucengdes.2018.03.032_b0115) 2017; 321
Brouillette (10.1016/j.nucengdes.2018.03.032_b0035) 2002; 34
10.1016/j.nucengdes.2018.03.032_b0065
Simpson (10.1016/j.nucengdes.2018.03.032_b0145) 1982; 104
Bestion (10.1016/j.nucengdes.2018.03.032_b0025) 2014; 279
Kukita (10.1016/j.nucengdes.2018.03.032_b0080) 1984; 77
10.1016/j.nucengdes.2018.03.032_b0105
Ishii (10.1016/j.nucengdes.2018.03.032_b0070) 2011
Aya (10.1016/j.nucengdes.2018.03.032_b0015) 1987; 99
Aya (10.1016/j.nucengdes.2018.03.032_b0020) 1980; 17
Richtmyer (10.1016/j.nucengdes.2018.03.032_b0140) 1960
10.1016/j.nucengdes.2018.03.032_b0060
Brennen (10.1016/j.nucengdes.2018.03.032_b0030) 2014
Lahey (10.1016/j.nucengdes.2018.03.032_b0090) 1993
References_xml – volume: 34
  start-page: 445
  year: 2002
  end-page: 468
  ident: b0035
  article-title: The Richtmyer-Meshkov instability
  publication-title: Annu. Rev. Fluid Mech.
– volume: 70
  start-page: 918
  year: 2014
  end-page: 929
  ident: b0075
  article-title: Experimental investigation of steam bubble condensation in vertical large diameter geometry under atmospheric pressure and different flow conditions
  publication-title: Int. J. Heat Mass Transf.
– reference: MATLAB, 2017. version 9.2.0 (R2017a). The MathWorks Inc., Natick, Massachusetts, USA.
– year: 2002
  ident: b0045
  article-title: Introduction to Hydrodynamic Stability. Cambridge Texts in Applied Mathematics
– reference: Mimouni, S., Mechitoua, N., Foissac, A., Hassanaly, M., Ouraou, M., 2011. CFD modeling of wall steam condensation: Two-phase flow approach versus homogeneous flow approach. Science and Technology of Nuclear Installations 2011.
– volume: 8
  start-page: 11
  year: 1982
  end-page: 20
  ident: b0040
  article-title: A regime map for direct contact condensation
  publication-title: Int. J. Multiph. Flow
– volume: 36
  start-page: 2531
  year: 2003
  end-page: 2541
  ident: b0170
  article-title: Voxel-based surface area estimation: from theory to practice
  publication-title: Pattern Recogn.
– volume: 88
  start-page: 87
  year: 2017
  end-page: 98
  ident: b0050
  article-title: Experimental study on steam chugging phenomenon in a vertical sparger
  publication-title: Int. J. Multiph. Flow
– volume: 66
  start-page: 133
  year: 2014
  end-page: 143
  ident: b0160
  article-title: CFD simulation and pattern recognition analysis of the chugging condensation regime
  publication-title: Ann. Nucl. Energy
– volume: 14
  start-page: 170
  year: 1883
  end-page: 177
  ident: b0150
  article-title: Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density
  publication-title: Proc. London Math. Soc.
– start-page: 297
  year: 1960
  end-page: 319
  ident: b0140
  article-title: Taylor instability in shock acceleration of compressible fluids
  publication-title: Commun. Pure Appl. Math. XIII
– volume: 321
  start-page: 328
  year: 2017
  end-page: 342
  ident: b0115
  article-title: Direct contact condensation modeling in pressure suppression pool system
  publication-title: Nucl. Eng. Des.
– reference: Puustinen, M., Kyrki-Rajamäki, R., Tanskanen, V., Räsänen, A., Purhonen, H., Riikonen, V., Laine, J., Hujala, E., 2013. BWR Suppression Pool Studies with POOLEX and PPOOLEX Test Facilities at LUT. In: The 15th International Topical Meeting on Nuclear Thermal Hydraulics (NURETH-15), Pisa, Italy, 12–17 May, pp. 061.
– year: 2011
  ident: b0070
  publication-title: Thermo-Fluid Dynamics of Two-Phase Flow
– volume: 99
  start-page: 31
  year: 1987
  end-page: 40
  ident: b0015
  article-title: Boundaries between regimes of pressure oscillation induced by steam condensation in pressure suppression containment
  publication-title: Nucl. Eng. Des.
– reference: Hujala, E., Tanskanen, V., Hyvärinen, J., 2017. Frequency analysis of chugging condensation in pressure suppression pool system with pattern recognition. In: The 17th International Topical Meeting on Nuclear Thermal Hydraulics (NURETH-17), Xi’an, Shaanxi, China, September 3–8.
– volume: 17
  start-page: 499
  year: 1980
  end-page: 515
  ident: b0020
  article-title: Pressure and fluid oscillations in vent system due to steam condensation, (I) experimental results and analysis model for chugging
  publication-title: J. Nucl. Sci. Technol.
– year: 2014
  ident: b0030
  publication-title: Cavitation and Bubble Dynamics
– reference: Puustinen, M., Laine, J., Räsänen, A., Hujala, E., 2014. Chugging Test with DN100 Blowdown Pipe in the PPOOLEX Facility. Technical Report. Lappeenranta University of Technology, Nuclear Safety Research Unit.
– volume: 104
  start-page: 271
  year: 1982
  end-page: 278
  ident: b0145
  article-title: Hydrodynamics of a subsonic vapor jet in subcooled liquid
  publication-title: J. Heat Transfer
– volume: 20
  start-page: 213
  year: 1983
  end-page: 227
  ident: b0010
  article-title: Pressure and fluid oscillations in vent system due to steam condensation, (II) high-frequency component of pressure oscillations in vent tubes under at chugging and condensation oscillation
  publication-title: J. Nucl. Sci. Technol.
– volume: 201
  start-page: 192
  year: 1950
  end-page: 196
  ident: b0165
  article-title: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Part I
  publication-title: Proc. R. Soc. London, Ser. A
– volume: 102
  start-page: 225
  year: 1987
  end-page: 228
  ident: b0085
  article-title: LOCA steam condensation loads in BWR Mark II pressure suppression containment system
  publication-title: Nucl. Eng. Des.
– start-page: 43
  year: 1983
  end-page: 50
  ident: b0005
  article-title: Experimental results about dynamic load mitigation for BWR-pressure suppression containments under LOCA-conditions
  publication-title: J. Loading Conditions Struct. Anal. Reactor Containment IASMiRT
– volume: 279
  start-page: 116
  year: 2014
  end-page: 125
  ident: b0025
  article-title: The difficult challenge of a two-phase CFD modelling for all flow regimes
  publication-title: Nucl. Eng. Des.
– volume: 21
  start-page: 279
  year: 1984
  end-page: 287
  ident: b0110
  article-title: Numerical analysis on pressure propagation in pressure suppression system due to steam bubble collapse
  publication-title: J. Nucl. Sci. Technol.
– reference: .
– year: 1993
  ident: b0090
  article-title: The Thermal-Hydraulics of a Boiling Water Reactor
– reference: Hujala, E., Tanskanen, V., Puustinen, M., 2013. Progress in the development of pattern recognition algorithm for the PPOOLEX video data. Technical Report. Lappeenranta University of Technology, School of Technology, Laboratory of Nuclear Engineering.
– volume: 77
  start-page: 117
  year: 1984
  end-page: 129
  ident: b0080
  article-title: The LOCA air-injection loads in BWR Mark II pressure suppression containment systems
  publication-title: Nucl. Eng. Des.
– reference: Tanskanen, V., Hujala, E., Puustinen, M., 2014a. Numerical simulation and analysis of PPOOLEX DCC-05 chugging test. Technical Report. Lappeenranta University of Technology, School of Energy Systems, Nuclear Engineering.
– reference: Hujala, E., 2013. Evaluation of Bubble Formation and Break Up in Suppression Pools by Using Pattern Recognition Methods (Master thesis). Lappeenranta University of Technology. LUT Energy, Lappeenranta, Finland. Available online: 
– volume: 53
  start-page: 614
  year: 2016
  end-page: 629
  ident: b0120
  article-title: Suppression pool testing at the SIET laboratory: experimental investigation of critical phenomena expected in the Fukushima Daiichi suppression chamber
  publication-title: J. Nucl. Sci. Technol.
– volume: 4
  start-page: 101
  year: 1969
  end-page: 104
  ident: b0100
  article-title: Instability of the interface of two gases accelerated by a shock wave
  publication-title: Sov. Fluid Dyn.
– reference: Pellegrini, M., Naitoh, M., Josey, C., Baglietto, E., 2015. Modeling of Rayleigh-Taylor instability for steam direct contact condensation. In: The 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16), Chicago, IL, August 30-September 4, pp. 15.
– volume: 66
  start-page: 133
  year: 2014
  ident: 10.1016/j.nucengdes.2018.03.032_b0160
  article-title: CFD simulation and pattern recognition analysis of the chugging condensation regime
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2013.12.007
– volume: 104
  start-page: 271
  year: 1982
  ident: 10.1016/j.nucengdes.2018.03.032_b0145
  article-title: Hydrodynamics of a subsonic vapor jet in subcooled liquid
  publication-title: J. Heat Transfer
  doi: 10.1115/1.3245083
– start-page: 43
  year: 1983
  ident: 10.1016/j.nucengdes.2018.03.032_b0005
  article-title: Experimental results about dynamic load mitigation for BWR-pressure suppression containments under LOCA-conditions
  publication-title: J. Loading Conditions Struct. Anal. Reactor Containment IASMiRT
– ident: 10.1016/j.nucengdes.2018.03.032_b0095
– volume: 88
  start-page: 87
  year: 2017
  ident: 10.1016/j.nucengdes.2018.03.032_b0050
  article-title: Experimental study on steam chugging phenomenon in a vertical sparger
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2016.09.020
– ident: 10.1016/j.nucengdes.2018.03.032_b0060
– year: 1993
  ident: 10.1016/j.nucengdes.2018.03.032_b0090
– ident: 10.1016/j.nucengdes.2018.03.032_b0135
– volume: 34
  start-page: 445
  year: 2002
  ident: 10.1016/j.nucengdes.2018.03.032_b0035
  article-title: The Richtmyer-Meshkov instability
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.34.090101.162238
– volume: 21
  start-page: 279
  year: 1984
  ident: 10.1016/j.nucengdes.2018.03.032_b0110
  article-title: Numerical analysis on pressure propagation in pressure suppression system due to steam bubble collapse
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/18811248.1984.9731045
– year: 2002
  ident: 10.1016/j.nucengdes.2018.03.032_b0045
– year: 2011
  ident: 10.1016/j.nucengdes.2018.03.032_b0070
– ident: 10.1016/j.nucengdes.2018.03.032_b0055
– volume: 53
  start-page: 614
  year: 2016
  ident: 10.1016/j.nucengdes.2018.03.032_b0120
  article-title: Suppression pool testing at the SIET laboratory: experimental investigation of critical phenomena expected in the Fukushima Daiichi suppression chamber
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/00223131.2015.1134359
– volume: 36
  start-page: 2531
  year: 2003
  ident: 10.1016/j.nucengdes.2018.03.032_b0170
  article-title: Voxel-based surface area estimation: from theory to practice
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(03)00173-0
– volume: 17
  start-page: 499
  year: 1980
  ident: 10.1016/j.nucengdes.2018.03.032_b0020
  article-title: Pressure and fluid oscillations in vent system due to steam condensation, (I) experimental results and analysis model for chugging
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/18811248.1980.9732617
– volume: 321
  start-page: 328
  year: 2017
  ident: 10.1016/j.nucengdes.2018.03.032_b0115
  article-title: Direct contact condensation modeling in pressure suppression pool system
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2016.08.026
– start-page: 297
  year: 1960
  ident: 10.1016/j.nucengdes.2018.03.032_b0140
  article-title: Taylor instability in shock acceleration of compressible fluids
  publication-title: Commun. Pure Appl. Math. XIII
  doi: 10.1002/cpa.3160130207
– volume: 201
  start-page: 192
  year: 1950
  ident: 10.1016/j.nucengdes.2018.03.032_b0165
  article-title: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Part I
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1950.0052
– ident: 10.1016/j.nucengdes.2018.03.032_b0065
– volume: 279
  start-page: 116
  year: 2014
  ident: 10.1016/j.nucengdes.2018.03.032_b0025
  article-title: The difficult challenge of a two-phase CFD modelling for all flow regimes
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2014.04.006
– volume: 77
  start-page: 117
  year: 1984
  ident: 10.1016/j.nucengdes.2018.03.032_b0080
  article-title: The LOCA air-injection loads in BWR Mark II pressure suppression containment systems
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/0029-5493(84)90172-9
– volume: 20
  start-page: 213
  year: 1983
  ident: 10.1016/j.nucengdes.2018.03.032_b0010
  article-title: Pressure and fluid oscillations in vent system due to steam condensation, (II) high-frequency component of pressure oscillations in vent tubes under at chugging and condensation oscillation
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/18811248.1983.9733383
– volume: 14
  start-page: 170
  year: 1883
  ident: 10.1016/j.nucengdes.2018.03.032_b0150
  article-title: Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density
  publication-title: Proc. London Math. Soc.
– volume: 70
  start-page: 918
  year: 2014
  ident: 10.1016/j.nucengdes.2018.03.032_b0075
  article-title: Experimental investigation of steam bubble condensation in vertical large diameter geometry under atmospheric pressure and different flow conditions
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.11.049
– volume: 99
  start-page: 31
  year: 1987
  ident: 10.1016/j.nucengdes.2018.03.032_b0015
  article-title: Boundaries between regimes of pressure oscillation induced by steam condensation in pressure suppression containment
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/0029-5493(87)90105-1
– ident: 10.1016/j.nucengdes.2018.03.032_b0130
– ident: 10.1016/j.nucengdes.2018.03.032_b0155
– volume: 4
  start-page: 101
  year: 1969
  ident: 10.1016/j.nucengdes.2018.03.032_b0100
  article-title: Instability of the interface of two gases accelerated by a shock wave
  publication-title: Sov. Fluid Dyn.
  doi: 10.1007/BF01015969
– volume: 102
  start-page: 225
  year: 1987
  ident: 10.1016/j.nucengdes.2018.03.032_b0085
  article-title: LOCA steam condensation loads in BWR Mark II pressure suppression containment system
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/0029-5493(87)90256-1
– volume: 8
  start-page: 11
  year: 1982
  ident: 10.1016/j.nucengdes.2018.03.032_b0040
  article-title: A regime map for direct contact condensation
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/0301-9322(82)90003-9
– ident: 10.1016/j.nucengdes.2018.03.032_b0105
  doi: 10.1155/2011/941239
– year: 2014
  ident: 10.1016/j.nucengdes.2018.03.032_b0030
– ident: 10.1016/j.nucengdes.2018.03.032_b0125
SSID ssj0000092
Score 2.324691
Snippet •Pattern recognition applied to rapidly condensing large bubbles.•Bubble volume and surface area were estimated from pattern recognition data.•Surface velocity...
Direct contact condensation of steam bubbles in a boiling water reactor suppression pool has long been studied utilizing video recording of experiments. The...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 202
SubjectTerms Algorithms
Boiling water reactors
Bubbles
Cameras
Collapse
Computational fluid dynamics
Computer applications
Condensates
Condensation
Data analysis
Data processing
Experiments
Finite element method
Fluid dynamics
High speed cameras
Hydrodynamics
Interface stability
Mathematical models
Pattern analysis
Pattern recognition
Surface area
Surface stability
Taylor instability
Ultrasonic testing
Title Pattern recognition algorithm for analysis of chugging direct contact condensation
URI https://dx.doi.org/10.1016/j.nucengdes.2018.03.032
https://www.proquest.com/docview/2068486192
Volume 332
WOSCitedRecordID wos000430395700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-759X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000092
  issn: 0029-5493
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELailAMcqvISfYB84IYW7a69u3ZvFWoVEKoqFKrcVrteOw-CU-WlcuSfM37sIxRUEEKKNtEmdhLP5_HM-JsxQq-TktOMVDRQlQQHpeQ8gE8a2l9VhSrJisKGsq8_ZpeXbDTiV73e9zoXZjvPtGa3t_zmv4oa7oGwTersX4i76RRuwGsQOlxB7HD9I8Ff2YqZJkvFU4MM33g-Xiyn68lXT5psC5GIyWZszylya5ulrhfuGTTSqpXbrM7TFeagiTeyrWNo9x-qHSbIYDMr5oWnjelG8w9hXfxSaKfpruWqeWPwbWt37KnJRfTZIpNCT7sxiYi13CkXKLuTLOMTB3gA7qjTZ9LpW5aBgZ_Y03QbhUx8xNOr1DDurM6xI13fUfwuBjF7q2FC6DH8Z8PaY7Z-re9tt6q22aQ2O5xGpYWEmDIFezH8ENZHe2fvz0cfOj4Uj2uekGmwQxL85df9zsT5abG3FszwAO171wOfOcg8Rj2pn6BHnYKUT9EnDx7cAQ9uwIMBPLgGD14oXIMHO_BgDx7cBc8z9PnifPhuEPhTNwIBtvI64CGRKUzXquQKlL9ISShKCV5noqKIRFVSgA9MVUxkrGgqlUhjAY48LxklBa0UeY76eqHlC4Q5-MsldKfMqUIJpzyiYF5KlshYgGPOD1FaD1QufEl6czLKPK-5h7O8GeHcjHAeEnjEhyhsGt64qiz3NzmtJZF749KNTQ4Qur_xSS273E91837KKDMBiKN_6fsYPWyn0Anqr5cb-RI9ENv1dLV85dH4A5o_r3Y
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pattern+recognition+algorithm+for+analysis+of+chugging+direct+contact+condensation&rft.jtitle=Nuclear+engineering+and+design&rft.au=Hujala%2C+Elina&rft.au=Tanskanen%2C+Vesa&rft.au=Hyv%C3%A4rinen%2C+Juhani&rft.date=2018-06-01&rft.pub=Elsevier+B.V&rft.issn=0029-5493&rft.eissn=1872-759X&rft.volume=332&rft.spage=202&rft.epage=212&rft_id=info:doi/10.1016%2Fj.nucengdes.2018.03.032&rft.externalDocID=S0029549318303315
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5493&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5493&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5493&client=summon