Evolutionary Divide-and-Conquer Algorithm for Virus Spreading Control Over Networks

The control of virus spreading over complex networks with a limited budget has attracted much attention but remains challenging. This article aims at addressing the combinatorial, discrete resource allocation problems (RAPs) in virus spreading control. To meet the challenges of increasing network sc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on cybernetics Ročník 51; číslo 7; s. 3752 - 3766
Hlavní autori: Zhao, Tian-Fang, Chen, Wei-Neng, Kwong, Sam, Gu, Tian-Long, Yuan, Hua-Qiang, Zhang, Jie, Zhang, Jun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The control of virus spreading over complex networks with a limited budget has attracted much attention but remains challenging. This article aims at addressing the combinatorial, discrete resource allocation problems (RAPs) in virus spreading control. To meet the challenges of increasing network scales and improve the solving efficiency, an evolutionary divide-and-conquer algorithm is proposed, namely, a coevolutionary algorithm with network-community-based decomposition (NCD-CEA). It is characterized by the community-based dividing technique and cooperative coevolution conquering thought. First, to reduce the time complexity, NCD-CEA divides a network into multiple communities by a modified community detection method such that the most relevant variables in the solution space are clustered together. The problem and the global swarm are subsequently decomposed into subproblems and subswarms with low-dimensional embeddings. Second, to obtain high-quality solutions, an alternative evolutionary approach is designed by promoting the evolution of subswarms and the global swarm, in turn, with subsolutions evaluated by local fitness functions and global solutions evaluated by a global fitness function. Extensive experiments on different networks show that NCD-CEA has a competitive performance in solving RAPs. This article advances toward controlling virus spreading over large-scale networks.
AbstractList The control of virus spreading over complex networks with a limited budget has attracted much attention but remains challenging. This article aims at addressing the combinatorial, discrete resource allocation problems (RAPs) in virus spreading control. To meet the challenges of increasing network scales and improve the solving efficiency, an evolutionary divide-and-conquer algorithm is proposed, namely, a coevolutionary algorithm with network-community-based decomposition (NCD-CEA). It is characterized by the community-based dividing technique and cooperative coevolution conquering thought. First, to reduce the time complexity, NCD-CEA divides a network into multiple communities by a modified community detection method such that the most relevant variables in the solution space are clustered together. The problem and the global swarm are subsequently decomposed into subproblems and subswarms with low-dimensional embeddings. Second, to obtain high-quality solutions, an alternative evolutionary approach is designed by promoting the evolution of subswarms and the global swarm, in turn, with subsolutions evaluated by local fitness functions and global solutions evaluated by a global fitness function. Extensive experiments on different networks show that NCD-CEA has a competitive performance in solving RAPs. This article advances toward controlling virus spreading over large-scale networks.
The control of virus spreading over complex networks with a limited budget has attracted much attention but remains challenging. This article aims at addressing the combinatorial, discrete resource allocation problems (RAPs) in virus spreading control. To meet the challenges of increasing network scales and improve the solving efficiency, an evolutionary divide-and-conquer algorithm is proposed, namely, a coevolutionary algorithm with network-community-based decomposition (NCD-CEA). It is characterized by the community-based dividing technique and cooperative coevolution conquering thought. First, to reduce the time complexity, NCD-CEA divides a network into multiple communities by a modified community detection method such that the most relevant variables in the solution space are clustered together. The problem and the global swarm are subsequently decomposed into subproblems and subswarms with low-dimensional embeddings. Second, to obtain high-quality solutions, an alternative evolutionary approach is designed by promoting the evolution of subswarms and the global swarm, in turn, with subsolutions evaluated by local fitness functions and global solutions evaluated by a global fitness function. Extensive experiments on different networks show that NCD-CEA has a competitive performance in solving RAPs. This article advances toward controlling virus spreading over large-scale networks.The control of virus spreading over complex networks with a limited budget has attracted much attention but remains challenging. This article aims at addressing the combinatorial, discrete resource allocation problems (RAPs) in virus spreading control. To meet the challenges of increasing network scales and improve the solving efficiency, an evolutionary divide-and-conquer algorithm is proposed, namely, a coevolutionary algorithm with network-community-based decomposition (NCD-CEA). It is characterized by the community-based dividing technique and cooperative coevolution conquering thought. First, to reduce the time complexity, NCD-CEA divides a network into multiple communities by a modified community detection method such that the most relevant variables in the solution space are clustered together. The problem and the global swarm are subsequently decomposed into subproblems and subswarms with low-dimensional embeddings. Second, to obtain high-quality solutions, an alternative evolutionary approach is designed by promoting the evolution of subswarms and the global swarm, in turn, with subsolutions evaluated by local fitness functions and global solutions evaluated by a global fitness function. Extensive experiments on different networks show that NCD-CEA has a competitive performance in solving RAPs. This article advances toward controlling virus spreading over large-scale networks.
Author Chen, Wei-Neng
Gu, Tian-Long
Zhang, Jie
Zhao, Tian-Fang
Kwong, Sam
Yuan, Hua-Qiang
Zhang, Jun
Author_xml – sequence: 1
  givenname: Tian-Fang
  orcidid: 0000-0002-3520-2951
  surname: Zhao
  fullname: Zhao, Tian-Fang
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: Wei-Neng
  orcidid: 0000-0003-0843-5802
  surname: Chen
  fullname: Chen, Wei-Neng
  email: cwnraul634@aliyun.com
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 3
  givenname: Sam
  orcidid: 0000-0001-7484-7261
  surname: Kwong
  fullname: Kwong, Sam
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
– sequence: 4
  givenname: Tian-Long
  surname: Gu
  fullname: Gu, Tian-Long
  organization: School of Computer Science and Engineering, Guilin University of Electronic Technology, Guilin, China
– sequence: 5
  givenname: Hua-Qiang
  surname: Yuan
  fullname: Yuan, Hua-Qiang
  organization: School of Computer Science and Network Security, Dongguan University of Technology, Dongguan, China
– sequence: 6
  givenname: Jie
  surname: Zhang
  fullname: Zhang, Jie
  organization: Computer Science Department, Beijing University of Chemical Technology, Beijing, China
– sequence: 7
  givenname: Jun
  orcidid: 0000-0001-7835-9871
  surname: Zhang
  fullname: Zhang, Jun
  organization: Hanyang University, Seoul, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32175884$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v2yAYxtHUqf_WDzBVqiz10oszeDEGH9ss-yNV6yFppZ4Qxq9bWsekYGfatx9Rshx6GBcQ-j3w6veckIPe90jIZ0YnjNHqy2L6eDMBCnQClRSC0w_kGFipcgApDvbnUh6RsxhfaFoqXVXqkBxxYFIoVRyT-Wztu3FwvjfhT_bVrV2DuembfOr7txFDdt09-eCG52XW-pA9uDDGbL4KaBrXP2WJGoLvsrt1Qn_h8NuH1_iJfGxNF_Fst5-S-2-zxfRHfnv3_ef0-ja3vIIhl4raGspaVVZQZk0B1gpDgdVKGeQlbduqbIoCBbfIDZoaWqV43cgWOBjBT8nV9t1V8GnWOOilixa7zvTox6iBS1mqUrAioZfv0Bc_hj5Np0EURTKoFCTqYkeN9RIbvQpumbTof7oSwLaADT7GgO0eYVRvWtGbVvSmFb1rJWXku4x1g9kYH4Jx3X-T59ukQ8T9TxVNagTjfwGhmZjN
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_energy_2024_130880
crossref_primary_10_1016_j_ipm_2022_103221
crossref_primary_10_1109_TCYB_2022_3219452
crossref_primary_10_3390_su14148434
crossref_primary_10_1016_j_ins_2022_11_117
crossref_primary_10_1016_j_asoc_2024_112232
crossref_primary_10_1016_j_chaos_2023_113293
crossref_primary_10_1088_1674_1056_acb9f4
crossref_primary_10_1109_TCYB_2021_3051606
crossref_primary_10_1109_TNSE_2025_3544429
crossref_primary_10_1109_TCYB_2020_3005938
crossref_primary_10_1007_s00500_024_09810_z
crossref_primary_10_1109_TCYB_2020_3034427
crossref_primary_10_1016_j_bspc_2022_103739
crossref_primary_10_1109_TEVC_2024_3361000
crossref_primary_10_1109_TSMC_2024_3389751
crossref_primary_10_3390_s22186958
crossref_primary_10_1109_ACCESS_2021_3098727
crossref_primary_10_1007_s11633_021_1302_3
Cites_doi 10.1186/s12879-014-0695-9
10.1103/PhysRevE.84.061911
10.1109/TEVC.2018.2868770
10.1109/ICSMC.1997.637339
10.1103/PhysRevLett.86.3200
10.1002/rsa.20315
10.1109/TCSI.2011.2169853
10.1109/TSMC.2019.2945055
10.1016/j.jtbi.2010.11.033
10.1109/TPDS.2015.2446459
10.1145/1281192.1281280
10.1109/TEVC.2017.2743016
10.1109/TCYB.2014.2306781
10.1007/3-540-58484-6_269
10.1109/TAC.2012.2209949
10.1016/j.nonrwa.2010.05.009
10.1109/TSMCB.2003.811126
10.1002/9780470479216.corpsy0491
10.1145/1052812.1052825
10.2105/AJPH.86.5.726
10.1109/TNSE.2017.2766665
10.1109/TNSE.2016.2614751
10.1038/nature03607
10.1109/SMC.2015.344
10.1109/TCNS.2015.2482221
10.1103/PhysRevE.69.026113
10.1038/30918
10.1103/PhysRevE.81.056102
10.1088/1742-5468/2008/10/P10008
10.1109/TNN.2005.853425
10.1109/TEVC.2019.2893447
10.1109/TNSE.2015.2393291
10.1109/TIFS.2017.2661723
10.1109/TCYB.2014.2322602
10.1109/TNSE.2015.2500158
10.1109/MCI.2006.329691
10.1109/TEVC.2004.826069
10.1088/1367-2630/11/3/033015
10.1109/TCNS.2014.2310911
10.1109/TCYB.2017.2759141
10.1109/MNET.2009.5274918
10.1109/TEVC.2013.2281543
10.1109/TPDS.2010.197
10.1109/TIFS.2018.2824250
10.1109/TEVC.2011.2112662
10.1109/TAC.2016.2593895
10.1109/TNSE.2016.2600029
10.1109/TCYB.2014.2375185
10.1103/PhysRevLett.91.247901
10.1109/TCYB.2015.2489702
10.1109/TEVC.2009.2030331
10.1109/TCYB.2019.2922266
10.1073/pnas.0601602103
10.1145/2897845.2897856
10.1109/TNSE.2019.2932781
10.1109/TSMCB.2005.854498
10.1109/TCYB.2016.2616170
10.1109/18.53763
10.1016/j.physa.2011.12.004
10.1109/TCYB.2014.2377154
10.1109/TEVC.2005.857610
10.1109/TCBB.2015.2462349
10.1038/nature15535
10.1109/TNSE.2016.2586751
10.1109/TCNS.2014.2309751
10.1109/4235.585892
10.1109/JSAC.2013.130602
10.1103/PhysRevE.76.036106
10.1109/TCYB.2018.2853611
10.1016/j.mbs.2004.07.006
10.1109/TCYB.2018.2861568
10.1016/j.asoc.2010.09.005
10.1007/978-1-4419-9863-7_1185
10.23919/TMA.2018.8506545
10.1109/TCYB.2017.2743003
10.1109/TCNS.2015.2426755
10.1073/pnas.0610537104
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2020.2975530
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Aerospace Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Computer Science
EISSN 2168-2275
EndPage 3766
ExternalDocumentID 32175884
10_1109_TCYB_2020_2975530
9036051
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61976093; 61876111
  funderid: 10.13039/501100001809
– fundername: Science and Technology Plan Project of Guangdong Province
  grantid: 2018B050502006
  funderid: 10.13039/501100012245
– fundername: Guangdong–Hong Kong Joint Innovation Platform of Big Data and Computational Intelligence
  grantid: 2018B050502006
– fundername: Guangdong Natural Science Foundation Research Team
  grantid: 2018B030312003
  funderid: 10.13039/501100003453
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c392t-780cb26b89c501ca42cc5a021b88ae360ff96d44e53ce3aeab2f883bd7f232a53
IEDL.DBID RIE
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000665001500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sun Sep 28 09:09:55 EDT 2025
Sun Jun 29 16:42:47 EDT 2025
Thu Jan 02 22:58:26 EST 2025
Tue Nov 18 21:38:29 EST 2025
Sat Nov 29 02:02:29 EST 2025
Wed Aug 27 02:26:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-780cb26b89c501ca42cc5a021b88ae360ff96d44e53ce3aeab2f883bd7f232a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7835-9871
0000-0002-3520-2951
0000-0001-7484-7261
0000-0003-0843-5802
OpenAccessLink https://ieeexplore.ieee.org/document/9036051
PMID 32175884
PQID 2544297882
PQPubID 85422
PageCount 15
ParticipantIDs pubmed_primary_32175884
proquest_journals_2544297882
crossref_citationtrail_10_1109_TCYB_2020_2975530
crossref_primary_10_1109_TCYB_2020_2975530
ieee_primary_9036051
proquest_miscellaneous_2377686514
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
palla (ref45) 2005; 435
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref48
ref47
ref41
ref44
ref43
yang (ref71) 2008
ref49
ref8
ref7
yang (ref42) 2016
ref9
ref4
ref3
ref6
ref5
ref40
ref80
ref79
ref35
ref78
ref34
ref37
ref36
ref75
ref31
ref74
ref30
ref77
ref33
ref76
ref32
ref2
ref1
ref39
ref70
ref73
ref72
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref66
ref22
ref65
ref21
ref28
watts (ref63) 1998; 393
ref27
ref29
li (ref38) 2012; 16
ref60
clerc (ref61) 2010
ref62
References_xml – ident: ref64
  doi: 10.1186/s12879-014-0695-9
– ident: ref5
  doi: 10.1103/PhysRevE.84.061911
– ident: ref36
  doi: 10.1109/TEVC.2018.2868770
– ident: ref80
  doi: 10.1109/ICSMC.1997.637339
– ident: ref62
  doi: 10.1103/PhysRevLett.86.3200
– ident: ref15
  doi: 10.1002/rsa.20315
– ident: ref3
  doi: 10.1109/TCSI.2011.2169853
– ident: ref79
  doi: 10.1109/TSMC.2019.2945055
– ident: ref65
  doi: 10.1016/j.jtbi.2010.11.033
– ident: ref29
  doi: 10.1109/TPDS.2015.2446459
– ident: ref50
  doi: 10.1145/1281192.1281280
– ident: ref32
  doi: 10.1109/TEVC.2017.2743016
– ident: ref14
  doi: 10.1109/TCYB.2014.2306781
– ident: ref35
  doi: 10.1007/3-540-58484-6_269
– ident: ref13
  doi: 10.1109/TAC.2012.2209949
– ident: ref54
  doi: 10.1016/j.nonrwa.2010.05.009
– ident: ref68
  doi: 10.1109/TSMCB.2003.811126
– ident: ref74
  doi: 10.1002/9780470479216.corpsy0491
– ident: ref66
  doi: 10.1145/1052812.1052825
– start-page: 1110
  year: 2008
  ident: ref71
  article-title: Self-adaptive differential evolution with neighborhood search
  publication-title: Proc IEEE CEC
– ident: ref76
  doi: 10.2105/AJPH.86.5.726
– ident: ref11
  doi: 10.1109/TNSE.2017.2766665
– ident: ref12
  doi: 10.1109/TNSE.2016.2614751
– volume: 435
  start-page: 814
  year: 2005
  ident: ref45
  article-title: Uncovering the overlapping community structure of complex networks in nature and society
  publication-title: Nature
  doi: 10.1038/nature03607
– ident: ref67
  doi: 10.1109/SMC.2015.344
– ident: ref22
  doi: 10.1109/TCNS.2015.2482221
– ident: ref47
  doi: 10.1103/PhysRevE.69.026113
– volume: 393
  start-page: 440
  year: 1998
  ident: ref63
  article-title: Collective dynamics of small-world networks
  publication-title: Nature
  doi: 10.1038/30918
– ident: ref60
  doi: 10.1103/PhysRevE.81.056102
– ident: ref34
  doi: 10.1088/1742-5468/2008/10/P10008
– ident: ref4
  doi: 10.1109/TNN.2005.853425
– ident: ref39
  doi: 10.1109/TEVC.2019.2893447
– ident: ref7
  doi: 10.1109/TNSE.2015.2393291
– ident: ref21
  doi: 10.1109/TIFS.2017.2661723
– ident: ref72
  doi: 10.1109/TCYB.2014.2322602
– ident: ref24
  doi: 10.1109/TNSE.2015.2500158
– ident: ref78
  doi: 10.1109/MCI.2006.329691
– ident: ref37
  doi: 10.1109/TEVC.2004.826069
– ident: ref48
  doi: 10.1088/1367-2630/11/3/033015
– ident: ref25
  doi: 10.1109/TCNS.2014.2310911
– ident: ref26
  doi: 10.1109/TCYB.2017.2759141
– ident: ref57
  doi: 10.1109/MNET.2009.5274918
– ident: ref40
  doi: 10.1109/TEVC.2013.2281543
– ident: ref58
  doi: 10.1109/TPDS.2010.197
– ident: ref19
  doi: 10.1109/TIFS.2018.2824250
– volume: 16
  start-page: 210
  year: 2012
  ident: ref38
  article-title: Cooperatively coevolving particle swarms for large scale optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2011.2112662
– ident: ref1
  doi: 10.1109/TAC.2016.2593895
– ident: ref16
  doi: 10.1109/TNSE.2016.2600029
– ident: ref52
  doi: 10.1109/TCYB.2014.2375185
– ident: ref6
  doi: 10.1103/PhysRevLett.91.247901
– ident: ref51
  doi: 10.1109/TCYB.2015.2489702
– ident: ref28
  doi: 10.1109/TEVC.2009.2030331
– ident: ref10
  doi: 10.1109/TCYB.2019.2922266
– ident: ref44
  doi: 10.1073/pnas.0601602103
– ident: ref20
  doi: 10.1145/2897845.2897856
– ident: ref31
  doi: 10.1109/TNSE.2019.2932781
– ident: ref59
  doi: 10.1109/TSMCB.2005.854498
– ident: ref33
  doi: 10.1109/TCYB.2016.2616170
– ident: ref27
  doi: 10.1109/18.53763
– ident: ref69
  doi: 10.1016/j.physa.2011.12.004
– ident: ref41
  doi: 10.1109/TCYB.2014.2377154
– ident: ref73
  doi: 10.1109/TEVC.2005.857610
– ident: ref70
  doi: 10.1109/TCBB.2015.2462349
– ident: ref2
  doi: 10.1038/nature15535
– ident: ref8
  doi: 10.1109/TNSE.2016.2586751
– ident: ref23
  doi: 10.1109/TCNS.2014.2309751
– ident: ref77
  doi: 10.1109/4235.585892
– ident: ref43
  doi: 10.1109/JSAC.2013.130602
– year: 2010
  ident: ref61
  publication-title: Simplified Particle Swarm Optimiser for Binary Problems
– ident: ref49
  doi: 10.1103/PhysRevE.76.036106
– ident: ref9
  doi: 10.1109/TCYB.2018.2853611
– ident: ref56
  doi: 10.1016/j.mbs.2004.07.006
– ident: ref53
  doi: 10.1109/TCYB.2018.2861568
– ident: ref18
  doi: 10.1016/j.asoc.2010.09.005
– ident: ref75
  doi: 10.1007/978-1-4419-9863-7_1185
– ident: ref17
  doi: 10.23919/TMA.2018.8506545
– start-page: 2252
  year: 2016
  ident: ref42
  article-title: Modularity based community detection with deep learning
  publication-title: Proc Int Joint Conf Artif Intell
– ident: ref30
  doi: 10.1109/TCYB.2017.2743003
– ident: ref55
  doi: 10.1109/TCNS.2015.2426755
– ident: ref46
  doi: 10.1073/pnas.0610537104
SSID ssj0000816898
Score 2.4122286
Snippet The control of virus spreading over complex networks with a limited budget has attracted much attention but remains challenging. This article aims at...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3752
SubjectTerms Algorithms
Combinatorial analysis
Complex networks
Complexity
Computer science
Cooperative coevolution (CC)
Decomposition
evolutionary algorithm (EA)
Evolutionary algorithms
Fitness
Genetic algorithms
networked system
Networks
Optimization
Resource allocation
Resource management
Solution space
spreading control
Viruses
Viruses (medical)
Title Evolutionary Divide-and-Conquer Algorithm for Virus Spreading Control Over Networks
URI https://ieeexplore.ieee.org/document/9036051
https://www.ncbi.nlm.nih.gov/pubmed/32175884
https://www.proquest.com/docview/2544297882
https://www.proquest.com/docview/2377686514
Volume 51
WOSCitedRecordID wos000665001500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VigMXSlsegVIZiQMg3Caxs3aOZWnFaUFqQcspsp0JrFSSKtmtxL9n7HgjIQESN0uxncfMxN_YM_MBvMSsdo2zltwSlFwKmXJNXgfXhSS4XosiQxvIJtRioZfL8tMOvJ1yYRAxBJ_hiW-Gs_y6cxu_VXZa0u829fnSd5Sajbla035KIJAI1Lc5NTihChUPMbO0PL2af31HzmCenvhM0kJ4AjhBaNynaf62IgWKlb-jzbDqXOz93_M-gPsRXbKzUR32YQfbA9jbMjewaMgHsB9bA3sV606_PoTL89uoh6b_yd77PC3kpq35vGvpKXt2dv2t61fr7z8YIV32ZdVvBnZ5049h-Gw-Br2zj2QcbDFGlw8P4fPF-dX8A4-cC9wRUlpzpVNn85nVpSvSzBmZO1cYAgJWa4P0Ok1TzmopsRAOhUFj80ZrYWvVEDYzhXgEu23X4hNgNLxG8h61rP00qiwblRuZeafUWIUJpNvvXrlYkNzzYlxXwTFJy8pLrfJSq6LUEngzDbkZq3H8q_OhF8nUMUojgaOtcKtor0PlC7XRMHI3EngxXSZL88cnpsVuQ30EaZ2eEcJM4PGoFNPcW116-ud7PoN7uY-FCWG-R7C77jf4HO662_Vq6I9JnZf6OKjzL5xS7Vo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBQkulLY8AgWMxAEQbpPY2TjHsrQqoixIXVB7imxnAiuVpEp2K_HvGTveSEiAxM1SbOcxM_E39sx8AC8wqWxtjSG3BCWXQsZckdfBVSYJrlciS9B4sol8NlPn58XnDXgz5sIgog8-w33X9Gf5VWtXbqvsoKDfbezypW845qyQrTXuqHgKCU9-m1KDE67IwzFmEhcH8-nFW3IH03jf5ZJmwlHACcLjLlHztzXJk6z8HW_6ded46_-e-C7cCfiSHQ4KsQ0b2OzA1pq7gQVT3oHt0OrZy1B5-tUunB1dB03U3U_2zmVqIddNxadtQ0_ZscPLb223WH7_wQjrsq-LbtWzs6tuCMRn0yHsnX0i82CzIb68vwdfjo_m0xMeWBe4Jay05LmKrUknRhU2ixOrZWptpgkKGKU00uvUdTGppMRMWBQatUlrpYSp8prQmc7Efdhs2gYfAqPhFZL_qGTlpsmLos5TLRPnlmqTYwTx-ruXNpQkd8wYl6V3TeKidFIrndTKILUIXo9DroZ6HP_qvOtEMnYM0ohgby3cMlhsX7pSbTSMHI4Ino-XydbcAYpusF1RH5GTdzYhjBnBg0EpxrnXuvToz_d8BrdO5h9Py9P3sw-P4XbqImN80O8ebC67FT6Bm_Z6uei7p16pfwGIOu-7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+Divide-and-Conquer+Algorithm+for+Virus+Spreading+Control+Over+Networks&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Zhao%2C+Tian-Fang&rft.au=Chen%2C+Wei-Neng&rft.au=Kwong%2C+Sam&rft.au=Gu%2C+Tian-Long&rft.date=2021-07-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=51&rft.issue=7&rft.spage=3752&rft_id=info:doi/10.1109%2FTCYB.2020.2975530&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon