Evolutionary Divide-and-Conquer Algorithm for Virus Spreading Control Over Networks
The control of virus spreading over complex networks with a limited budget has attracted much attention but remains challenging. This article aims at addressing the combinatorial, discrete resource allocation problems (RAPs) in virus spreading control. To meet the challenges of increasing network sc...
Uložené v:
| Vydané v: | IEEE transactions on cybernetics Ročník 51; číslo 7; s. 3752 - 3766 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The control of virus spreading over complex networks with a limited budget has attracted much attention but remains challenging. This article aims at addressing the combinatorial, discrete resource allocation problems (RAPs) in virus spreading control. To meet the challenges of increasing network scales and improve the solving efficiency, an evolutionary divide-and-conquer algorithm is proposed, namely, a coevolutionary algorithm with network-community-based decomposition (NCD-CEA). It is characterized by the community-based dividing technique and cooperative coevolution conquering thought. First, to reduce the time complexity, NCD-CEA divides a network into multiple communities by a modified community detection method such that the most relevant variables in the solution space are clustered together. The problem and the global swarm are subsequently decomposed into subproblems and subswarms with low-dimensional embeddings. Second, to obtain high-quality solutions, an alternative evolutionary approach is designed by promoting the evolution of subswarms and the global swarm, in turn, with subsolutions evaluated by local fitness functions and global solutions evaluated by a global fitness function. Extensive experiments on different networks show that NCD-CEA has a competitive performance in solving RAPs. This article advances toward controlling virus spreading over large-scale networks. |
|---|---|
| AbstractList | The control of virus spreading over complex networks with a limited budget has attracted much attention but remains challenging. This article aims at addressing the combinatorial, discrete resource allocation problems (RAPs) in virus spreading control. To meet the challenges of increasing network scales and improve the solving efficiency, an evolutionary divide-and-conquer algorithm is proposed, namely, a coevolutionary algorithm with network-community-based decomposition (NCD-CEA). It is characterized by the community-based dividing technique and cooperative coevolution conquering thought. First, to reduce the time complexity, NCD-CEA divides a network into multiple communities by a modified community detection method such that the most relevant variables in the solution space are clustered together. The problem and the global swarm are subsequently decomposed into subproblems and subswarms with low-dimensional embeddings. Second, to obtain high-quality solutions, an alternative evolutionary approach is designed by promoting the evolution of subswarms and the global swarm, in turn, with subsolutions evaluated by local fitness functions and global solutions evaluated by a global fitness function. Extensive experiments on different networks show that NCD-CEA has a competitive performance in solving RAPs. This article advances toward controlling virus spreading over large-scale networks. The control of virus spreading over complex networks with a limited budget has attracted much attention but remains challenging. This article aims at addressing the combinatorial, discrete resource allocation problems (RAPs) in virus spreading control. To meet the challenges of increasing network scales and improve the solving efficiency, an evolutionary divide-and-conquer algorithm is proposed, namely, a coevolutionary algorithm with network-community-based decomposition (NCD-CEA). It is characterized by the community-based dividing technique and cooperative coevolution conquering thought. First, to reduce the time complexity, NCD-CEA divides a network into multiple communities by a modified community detection method such that the most relevant variables in the solution space are clustered together. The problem and the global swarm are subsequently decomposed into subproblems and subswarms with low-dimensional embeddings. Second, to obtain high-quality solutions, an alternative evolutionary approach is designed by promoting the evolution of subswarms and the global swarm, in turn, with subsolutions evaluated by local fitness functions and global solutions evaluated by a global fitness function. Extensive experiments on different networks show that NCD-CEA has a competitive performance in solving RAPs. This article advances toward controlling virus spreading over large-scale networks.The control of virus spreading over complex networks with a limited budget has attracted much attention but remains challenging. This article aims at addressing the combinatorial, discrete resource allocation problems (RAPs) in virus spreading control. To meet the challenges of increasing network scales and improve the solving efficiency, an evolutionary divide-and-conquer algorithm is proposed, namely, a coevolutionary algorithm with network-community-based decomposition (NCD-CEA). It is characterized by the community-based dividing technique and cooperative coevolution conquering thought. First, to reduce the time complexity, NCD-CEA divides a network into multiple communities by a modified community detection method such that the most relevant variables in the solution space are clustered together. The problem and the global swarm are subsequently decomposed into subproblems and subswarms with low-dimensional embeddings. Second, to obtain high-quality solutions, an alternative evolutionary approach is designed by promoting the evolution of subswarms and the global swarm, in turn, with subsolutions evaluated by local fitness functions and global solutions evaluated by a global fitness function. Extensive experiments on different networks show that NCD-CEA has a competitive performance in solving RAPs. This article advances toward controlling virus spreading over large-scale networks. |
| Author | Chen, Wei-Neng Gu, Tian-Long Zhang, Jie Zhao, Tian-Fang Kwong, Sam Yuan, Hua-Qiang Zhang, Jun |
| Author_xml | – sequence: 1 givenname: Tian-Fang orcidid: 0000-0002-3520-2951 surname: Zhao fullname: Zhao, Tian-Fang organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: Wei-Neng orcidid: 0000-0003-0843-5802 surname: Chen fullname: Chen, Wei-Neng email: cwnraul634@aliyun.com organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 3 givenname: Sam orcidid: 0000-0001-7484-7261 surname: Kwong fullname: Kwong, Sam organization: Department of Computer Science, City University of Hong Kong, Hong Kong – sequence: 4 givenname: Tian-Long surname: Gu fullname: Gu, Tian-Long organization: School of Computer Science and Engineering, Guilin University of Electronic Technology, Guilin, China – sequence: 5 givenname: Hua-Qiang surname: Yuan fullname: Yuan, Hua-Qiang organization: School of Computer Science and Network Security, Dongguan University of Technology, Dongguan, China – sequence: 6 givenname: Jie surname: Zhang fullname: Zhang, Jie organization: Computer Science Department, Beijing University of Chemical Technology, Beijing, China – sequence: 7 givenname: Jun orcidid: 0000-0001-7835-9871 surname: Zhang fullname: Zhang, Jun organization: Hanyang University, Seoul, South Korea |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32175884$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9v2yAYxtHUqf_WDzBVqiz10oszeDEGH9ss-yNV6yFppZ4Qxq9bWsekYGfatx9Rshx6GBcQ-j3w6veckIPe90jIZ0YnjNHqy2L6eDMBCnQClRSC0w_kGFipcgApDvbnUh6RsxhfaFoqXVXqkBxxYFIoVRyT-Wztu3FwvjfhT_bVrV2DuembfOr7txFDdt09-eCG52XW-pA9uDDGbL4KaBrXP2WJGoLvsrt1Qn_h8NuH1_iJfGxNF_Fst5-S-2-zxfRHfnv3_ef0-ja3vIIhl4raGspaVVZQZk0B1gpDgdVKGeQlbduqbIoCBbfIDZoaWqV43cgWOBjBT8nV9t1V8GnWOOilixa7zvTox6iBS1mqUrAioZfv0Bc_hj5Np0EURTKoFCTqYkeN9RIbvQpumbTof7oSwLaADT7GgO0eYVRvWtGbVvSmFb1rJWXku4x1g9kYH4Jx3X-T59ukQ8T9TxVNagTjfwGhmZjN |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1016_j_energy_2024_130880 crossref_primary_10_1016_j_ipm_2022_103221 crossref_primary_10_1109_TCYB_2022_3219452 crossref_primary_10_3390_su14148434 crossref_primary_10_1016_j_ins_2022_11_117 crossref_primary_10_1016_j_asoc_2024_112232 crossref_primary_10_1016_j_chaos_2023_113293 crossref_primary_10_1088_1674_1056_acb9f4 crossref_primary_10_1109_TCYB_2021_3051606 crossref_primary_10_1109_TNSE_2025_3544429 crossref_primary_10_1109_TCYB_2020_3005938 crossref_primary_10_1007_s00500_024_09810_z crossref_primary_10_1109_TCYB_2020_3034427 crossref_primary_10_1016_j_bspc_2022_103739 crossref_primary_10_1109_TEVC_2024_3361000 crossref_primary_10_1109_TSMC_2024_3389751 crossref_primary_10_3390_s22186958 crossref_primary_10_1109_ACCESS_2021_3098727 crossref_primary_10_1007_s11633_021_1302_3 |
| Cites_doi | 10.1186/s12879-014-0695-9 10.1103/PhysRevE.84.061911 10.1109/TEVC.2018.2868770 10.1109/ICSMC.1997.637339 10.1103/PhysRevLett.86.3200 10.1002/rsa.20315 10.1109/TCSI.2011.2169853 10.1109/TSMC.2019.2945055 10.1016/j.jtbi.2010.11.033 10.1109/TPDS.2015.2446459 10.1145/1281192.1281280 10.1109/TEVC.2017.2743016 10.1109/TCYB.2014.2306781 10.1007/3-540-58484-6_269 10.1109/TAC.2012.2209949 10.1016/j.nonrwa.2010.05.009 10.1109/TSMCB.2003.811126 10.1002/9780470479216.corpsy0491 10.1145/1052812.1052825 10.2105/AJPH.86.5.726 10.1109/TNSE.2017.2766665 10.1109/TNSE.2016.2614751 10.1038/nature03607 10.1109/SMC.2015.344 10.1109/TCNS.2015.2482221 10.1103/PhysRevE.69.026113 10.1038/30918 10.1103/PhysRevE.81.056102 10.1088/1742-5468/2008/10/P10008 10.1109/TNN.2005.853425 10.1109/TEVC.2019.2893447 10.1109/TNSE.2015.2393291 10.1109/TIFS.2017.2661723 10.1109/TCYB.2014.2322602 10.1109/TNSE.2015.2500158 10.1109/MCI.2006.329691 10.1109/TEVC.2004.826069 10.1088/1367-2630/11/3/033015 10.1109/TCNS.2014.2310911 10.1109/TCYB.2017.2759141 10.1109/MNET.2009.5274918 10.1109/TEVC.2013.2281543 10.1109/TPDS.2010.197 10.1109/TIFS.2018.2824250 10.1109/TEVC.2011.2112662 10.1109/TAC.2016.2593895 10.1109/TNSE.2016.2600029 10.1109/TCYB.2014.2375185 10.1103/PhysRevLett.91.247901 10.1109/TCYB.2015.2489702 10.1109/TEVC.2009.2030331 10.1109/TCYB.2019.2922266 10.1073/pnas.0601602103 10.1145/2897845.2897856 10.1109/TNSE.2019.2932781 10.1109/TSMCB.2005.854498 10.1109/TCYB.2016.2616170 10.1109/18.53763 10.1016/j.physa.2011.12.004 10.1109/TCYB.2014.2377154 10.1109/TEVC.2005.857610 10.1109/TCBB.2015.2462349 10.1038/nature15535 10.1109/TNSE.2016.2586751 10.1109/TCNS.2014.2309751 10.1109/4235.585892 10.1109/JSAC.2013.130602 10.1103/PhysRevE.76.036106 10.1109/TCYB.2018.2853611 10.1016/j.mbs.2004.07.006 10.1109/TCYB.2018.2861568 10.1016/j.asoc.2010.09.005 10.1007/978-1-4419-9863-7_1185 10.23919/TMA.2018.8506545 10.1109/TCYB.2017.2743003 10.1109/TCNS.2015.2426755 10.1073/pnas.0610537104 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2020.2975530 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Aerospace Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Computer Science |
| EISSN | 2168-2275 |
| EndPage | 3766 |
| ExternalDocumentID | 32175884 10_1109_TCYB_2020_2975530 9036051 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61976093; 61876111 funderid: 10.13039/501100001809 – fundername: Science and Technology Plan Project of Guangdong Province grantid: 2018B050502006 funderid: 10.13039/501100012245 – fundername: Guangdong–Hong Kong Joint Innovation Platform of Big Data and Computational Intelligence grantid: 2018B050502006 – fundername: Guangdong Natural Science Foundation Research Team grantid: 2018B030312003 funderid: 10.13039/501100003453 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c392t-780cb26b89c501ca42cc5a021b88ae360ff96d44e53ce3aeab2f883bd7f232a53 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000665001500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Sun Sep 28 09:09:55 EDT 2025 Sun Jun 29 16:42:47 EDT 2025 Thu Jan 02 22:58:26 EST 2025 Tue Nov 18 21:38:29 EST 2025 Sat Nov 29 02:02:29 EST 2025 Wed Aug 27 02:26:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c392t-780cb26b89c501ca42cc5a021b88ae360ff96d44e53ce3aeab2f883bd7f232a53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7835-9871 0000-0002-3520-2951 0000-0001-7484-7261 0000-0003-0843-5802 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9036051 |
| PMID | 32175884 |
| PQID | 2544297882 |
| PQPubID | 85422 |
| PageCount | 15 |
| ParticipantIDs | pubmed_primary_32175884 proquest_journals_2544297882 crossref_citationtrail_10_1109_TCYB_2020_2975530 crossref_primary_10_1109_TCYB_2020_2975530 ieee_primary_9036051 proquest_miscellaneous_2377686514 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 palla (ref45) 2005; 435 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref48 ref47 ref41 ref44 ref43 yang (ref71) 2008 ref49 ref8 ref7 yang (ref42) 2016 ref9 ref4 ref3 ref6 ref5 ref40 ref80 ref79 ref35 ref78 ref34 ref37 ref36 ref75 ref31 ref74 ref30 ref77 ref33 ref76 ref32 ref2 ref1 ref39 ref70 ref73 ref72 ref68 ref24 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref66 ref22 ref65 ref21 ref28 watts (ref63) 1998; 393 ref27 ref29 li (ref38) 2012; 16 ref60 clerc (ref61) 2010 ref62 |
| References_xml | – ident: ref64 doi: 10.1186/s12879-014-0695-9 – ident: ref5 doi: 10.1103/PhysRevE.84.061911 – ident: ref36 doi: 10.1109/TEVC.2018.2868770 – ident: ref80 doi: 10.1109/ICSMC.1997.637339 – ident: ref62 doi: 10.1103/PhysRevLett.86.3200 – ident: ref15 doi: 10.1002/rsa.20315 – ident: ref3 doi: 10.1109/TCSI.2011.2169853 – ident: ref79 doi: 10.1109/TSMC.2019.2945055 – ident: ref65 doi: 10.1016/j.jtbi.2010.11.033 – ident: ref29 doi: 10.1109/TPDS.2015.2446459 – ident: ref50 doi: 10.1145/1281192.1281280 – ident: ref32 doi: 10.1109/TEVC.2017.2743016 – ident: ref14 doi: 10.1109/TCYB.2014.2306781 – ident: ref35 doi: 10.1007/3-540-58484-6_269 – ident: ref13 doi: 10.1109/TAC.2012.2209949 – ident: ref54 doi: 10.1016/j.nonrwa.2010.05.009 – ident: ref68 doi: 10.1109/TSMCB.2003.811126 – ident: ref74 doi: 10.1002/9780470479216.corpsy0491 – ident: ref66 doi: 10.1145/1052812.1052825 – start-page: 1110 year: 2008 ident: ref71 article-title: Self-adaptive differential evolution with neighborhood search publication-title: Proc IEEE CEC – ident: ref76 doi: 10.2105/AJPH.86.5.726 – ident: ref11 doi: 10.1109/TNSE.2017.2766665 – ident: ref12 doi: 10.1109/TNSE.2016.2614751 – volume: 435 start-page: 814 year: 2005 ident: ref45 article-title: Uncovering the overlapping community structure of complex networks in nature and society publication-title: Nature doi: 10.1038/nature03607 – ident: ref67 doi: 10.1109/SMC.2015.344 – ident: ref22 doi: 10.1109/TCNS.2015.2482221 – ident: ref47 doi: 10.1103/PhysRevE.69.026113 – volume: 393 start-page: 440 year: 1998 ident: ref63 article-title: Collective dynamics of small-world networks publication-title: Nature doi: 10.1038/30918 – ident: ref60 doi: 10.1103/PhysRevE.81.056102 – ident: ref34 doi: 10.1088/1742-5468/2008/10/P10008 – ident: ref4 doi: 10.1109/TNN.2005.853425 – ident: ref39 doi: 10.1109/TEVC.2019.2893447 – ident: ref7 doi: 10.1109/TNSE.2015.2393291 – ident: ref21 doi: 10.1109/TIFS.2017.2661723 – ident: ref72 doi: 10.1109/TCYB.2014.2322602 – ident: ref24 doi: 10.1109/TNSE.2015.2500158 – ident: ref78 doi: 10.1109/MCI.2006.329691 – ident: ref37 doi: 10.1109/TEVC.2004.826069 – ident: ref48 doi: 10.1088/1367-2630/11/3/033015 – ident: ref25 doi: 10.1109/TCNS.2014.2310911 – ident: ref26 doi: 10.1109/TCYB.2017.2759141 – ident: ref57 doi: 10.1109/MNET.2009.5274918 – ident: ref40 doi: 10.1109/TEVC.2013.2281543 – ident: ref58 doi: 10.1109/TPDS.2010.197 – ident: ref19 doi: 10.1109/TIFS.2018.2824250 – volume: 16 start-page: 210 year: 2012 ident: ref38 article-title: Cooperatively coevolving particle swarms for large scale optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2011.2112662 – ident: ref1 doi: 10.1109/TAC.2016.2593895 – ident: ref16 doi: 10.1109/TNSE.2016.2600029 – ident: ref52 doi: 10.1109/TCYB.2014.2375185 – ident: ref6 doi: 10.1103/PhysRevLett.91.247901 – ident: ref51 doi: 10.1109/TCYB.2015.2489702 – ident: ref28 doi: 10.1109/TEVC.2009.2030331 – ident: ref10 doi: 10.1109/TCYB.2019.2922266 – ident: ref44 doi: 10.1073/pnas.0601602103 – ident: ref20 doi: 10.1145/2897845.2897856 – ident: ref31 doi: 10.1109/TNSE.2019.2932781 – ident: ref59 doi: 10.1109/TSMCB.2005.854498 – ident: ref33 doi: 10.1109/TCYB.2016.2616170 – ident: ref27 doi: 10.1109/18.53763 – ident: ref69 doi: 10.1016/j.physa.2011.12.004 – ident: ref41 doi: 10.1109/TCYB.2014.2377154 – ident: ref73 doi: 10.1109/TEVC.2005.857610 – ident: ref70 doi: 10.1109/TCBB.2015.2462349 – ident: ref2 doi: 10.1038/nature15535 – ident: ref8 doi: 10.1109/TNSE.2016.2586751 – ident: ref23 doi: 10.1109/TCNS.2014.2309751 – ident: ref77 doi: 10.1109/4235.585892 – ident: ref43 doi: 10.1109/JSAC.2013.130602 – year: 2010 ident: ref61 publication-title: Simplified Particle Swarm Optimiser for Binary Problems – ident: ref49 doi: 10.1103/PhysRevE.76.036106 – ident: ref9 doi: 10.1109/TCYB.2018.2853611 – ident: ref56 doi: 10.1016/j.mbs.2004.07.006 – ident: ref53 doi: 10.1109/TCYB.2018.2861568 – ident: ref18 doi: 10.1016/j.asoc.2010.09.005 – ident: ref75 doi: 10.1007/978-1-4419-9863-7_1185 – ident: ref17 doi: 10.23919/TMA.2018.8506545 – start-page: 2252 year: 2016 ident: ref42 article-title: Modularity based community detection with deep learning publication-title: Proc Int Joint Conf Artif Intell – ident: ref30 doi: 10.1109/TCYB.2017.2743003 – ident: ref55 doi: 10.1109/TCNS.2015.2426755 – ident: ref46 doi: 10.1073/pnas.0610537104 |
| SSID | ssj0000816898 |
| Score | 2.4122286 |
| Snippet | The control of virus spreading over complex networks with a limited budget has attracted much attention but remains challenging. This article aims at... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3752 |
| SubjectTerms | Algorithms Combinatorial analysis Complex networks Complexity Computer science Cooperative coevolution (CC) Decomposition evolutionary algorithm (EA) Evolutionary algorithms Fitness Genetic algorithms networked system Networks Optimization Resource allocation Resource management Solution space spreading control Viruses Viruses (medical) |
| Title | Evolutionary Divide-and-Conquer Algorithm for Virus Spreading Control Over Networks |
| URI | https://ieeexplore.ieee.org/document/9036051 https://www.ncbi.nlm.nih.gov/pubmed/32175884 https://www.proquest.com/docview/2544297882 https://www.proquest.com/docview/2377686514 |
| Volume | 51 |
| WOSCitedRecordID | wos000665001500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VigMXSlsegVIZiQMg3Caxs3aOZWnFaUFqQcspsp0JrFSSKtmtxL9n7HgjIQESN0uxncfMxN_YM_MBvMSsdo2zltwSlFwKmXJNXgfXhSS4XosiQxvIJtRioZfL8tMOvJ1yYRAxBJ_hiW-Gs_y6cxu_VXZa0u829fnSd5Sajbla035KIJAI1Lc5NTihChUPMbO0PL2af31HzmCenvhM0kJ4AjhBaNynaf62IgWKlb-jzbDqXOz93_M-gPsRXbKzUR32YQfbA9jbMjewaMgHsB9bA3sV606_PoTL89uoh6b_yd77PC3kpq35vGvpKXt2dv2t61fr7z8YIV32ZdVvBnZ5049h-Gw-Br2zj2QcbDFGlw8P4fPF-dX8A4-cC9wRUlpzpVNn85nVpSvSzBmZO1cYAgJWa4P0Ok1TzmopsRAOhUFj80ZrYWvVEDYzhXgEu23X4hNgNLxG8h61rP00qiwblRuZeafUWIUJpNvvXrlYkNzzYlxXwTFJy8pLrfJSq6LUEngzDbkZq3H8q_OhF8nUMUojgaOtcKtor0PlC7XRMHI3EngxXSZL88cnpsVuQ30EaZ2eEcJM4PGoFNPcW116-ud7PoN7uY-FCWG-R7C77jf4HO662_Vq6I9JnZf6OKjzL5xS7Vo |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBQkulLY8AgWMxAEQbpPY2TjHsrQqoixIXVB7imxnAiuVpEp2K_HvGTveSEiAxM1SbOcxM_E39sx8AC8wqWxtjSG3BCWXQsZckdfBVSYJrlciS9B4sol8NlPn58XnDXgz5sIgog8-w33X9Gf5VWtXbqvsoKDfbezypW845qyQrTXuqHgKCU9-m1KDE67IwzFmEhcH8-nFW3IH03jf5ZJmwlHACcLjLlHztzXJk6z8HW_6ded46_-e-C7cCfiSHQ4KsQ0b2OzA1pq7gQVT3oHt0OrZy1B5-tUunB1dB03U3U_2zmVqIddNxadtQ0_ZscPLb223WH7_wQjrsq-LbtWzs6tuCMRn0yHsnX0i82CzIb68vwdfjo_m0xMeWBe4Jay05LmKrUknRhU2ixOrZWptpgkKGKU00uvUdTGppMRMWBQatUlrpYSp8prQmc7Efdhs2gYfAqPhFZL_qGTlpsmLos5TLRPnlmqTYwTx-ruXNpQkd8wYl6V3TeKidFIrndTKILUIXo9DroZ6HP_qvOtEMnYM0ohgby3cMlhsX7pSbTSMHI4Ino-XydbcAYpusF1RH5GTdzYhjBnBg0EpxrnXuvToz_d8BrdO5h9Py9P3sw-P4XbqImN80O8ebC67FT6Bm_Z6uei7p16pfwGIOu-7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+Divide-and-Conquer+Algorithm+for+Virus+Spreading+Control+Over+Networks&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Zhao%2C+Tian-Fang&rft.au=Chen%2C+Wei-Neng&rft.au=Kwong%2C+Sam&rft.au=Gu%2C+Tian-Long&rft.date=2021-07-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=51&rft.issue=7&rft.spage=3752&rft_id=info:doi/10.1109%2FTCYB.2020.2975530&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |