Mass Spectrometric and Bio-Computational Binding Strength Analysis of Multiply Charged RNAse S Gas-Phase Complexes Obtained by Electrospray Ionization from Varying In-Solution Equilibrium Conditions
We investigated the influence of a solvent’s composition on the stability of desorbed and multiply charged RNAse S ions by analyzing the non-covalent complex’s gas-phase dissociation processes. RNAse S was dissolved in electrospray ionization-compatible buffers with either increasing organic co-solv...
Uložené v:
| Vydané v: | International journal of molecular sciences Ročník 22; číslo 19; s. 10183 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.10.2021
MDPI |
| Predmet: | |
| ISSN: | 1422-0067, 1661-6596, 1422-0067 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We investigated the influence of a solvent’s composition on the stability of desorbed and multiply charged RNAse S ions by analyzing the non-covalent complex’s gas-phase dissociation processes. RNAse S was dissolved in electrospray ionization-compatible buffers with either increasing organic co-solvent content or different pHs. The direct transition of all the ions and the evaporation of the solvent from all the in-solution components of RNAse S under the respective in-solution conditions by electrospray ionization was followed by a collision-induced dissociation of the surviving non-covalent RNAse S complex ions. Both types of changes of solvent conditions yielded in mass spectrometrically observable differences of the in-solution complexation equilibria. Through quantitative analysis of the dissociation products, i.e., from normalized ion abundances of RNAse S, S-protein, and S-peptide, the apparent kinetic and apparent thermodynamic gas-phase complex properties were deduced. From the experimental data, it is concluded that the stability of RNAse S in the gas phase is independent of its in-solution equilibrium but is sensitive to the complexes’ gas-phase charge states. Bio-computational in-silico studies showed that after desolvation and ionization by electrospray, the remaining binding forces kept the S-peptide and S-protein together in the gas phase predominantly by polar interactions, which indirectly stabilized the in-bulk solution predominating non-polar intermolecular interactions. As polar interactions are sensitive to in-solution protonation, bio-computational results provide an explanation of quantitative experimental data with single amino acid residue resolution. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1422-0067 1661-6596 1422-0067 |
| DOI: | 10.3390/ijms221910183 |