Functional Nonlinear Model Predictive Control Based on Adaptive Dynamic Programming

This paper presents a functional model predictive control (MPC) approach based on an adaptive dynamic programming (ADP) algorithm with the abilities of handling control constraints and disturbances for the optimal control of nonlinear discrete-time systems. In the proposed ADP-based nonlinear MPC (N...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on cybernetics Ročník 49; číslo 12; s. 4206 - 4218
Hlavní autoři: Dong, Lu, Yan, Jun, Yuan, Xin, He, Haibo, Sun, Changyin
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper presents a functional model predictive control (MPC) approach based on an adaptive dynamic programming (ADP) algorithm with the abilities of handling control constraints and disturbances for the optimal control of nonlinear discrete-time systems. In the proposed ADP-based nonlinear MPC (NMPC) structure, a neural-network-based identification is established first to reconstruct the unknown system dynamics. Then, the actor-critic scheme is adopted with a critic network to estimate the index performance function and an action network to approximate the optimal control input. Meanwhile, as the MPC strategy can effectively determine the current control by solving a finite horizon open-loop optimal control problem, in the proposed algorithm, the infinite horizon is decomposed into a series of finite horizons to obtain the optimal control. In each finite horizon, the finite ADP algorithm solves the optimal control problem subject to the terminal constraint, the control constraint, and the disturbance. The uniform ultimate boundedness of the closed-loop system is verified by the Lyapunov approach. Finally, the ADP-based NMPC is conducted on two different cases and the simulation results demonstrate the quick response and strong robustness of the proposed method.
AbstractList This paper presents a functional model predictive control (MPC) approach based on an adaptive dynamic programming (ADP) algorithm with the abilities of handling control constraints and disturbances for the optimal control of nonlinear discrete-time systems. In the proposed ADP-based nonlinear MPC (NMPC) structure, a neural-network-based identification is established first to reconstruct the unknown system dynamics. Then, the actor-critic scheme is adopted with a critic network to estimate the index performance function and an action network to approximate the optimal control input. Meanwhile, as the MPC strategy can effectively determine the current control by solving a finite horizon open-loop optimal control problem, in the proposed algorithm, the infinite horizon is decomposed into a series of finite horizons to obtain the optimal control. In each finite horizon, the finite ADP algorithm solves the optimal control problem subject to the terminal constraint, the control constraint, and the disturbance. The uniform ultimate boundedness of the closed-loop system is verified by the Lyapunov approach. Finally, the ADP-based NMPC is conducted on two different cases and the simulation results demonstrate the quick response and strong robustness of the proposed method.This paper presents a functional model predictive control (MPC) approach based on an adaptive dynamic programming (ADP) algorithm with the abilities of handling control constraints and disturbances for the optimal control of nonlinear discrete-time systems. In the proposed ADP-based nonlinear MPC (NMPC) structure, a neural-network-based identification is established first to reconstruct the unknown system dynamics. Then, the actor-critic scheme is adopted with a critic network to estimate the index performance function and an action network to approximate the optimal control input. Meanwhile, as the MPC strategy can effectively determine the current control by solving a finite horizon open-loop optimal control problem, in the proposed algorithm, the infinite horizon is decomposed into a series of finite horizons to obtain the optimal control. In each finite horizon, the finite ADP algorithm solves the optimal control problem subject to the terminal constraint, the control constraint, and the disturbance. The uniform ultimate boundedness of the closed-loop system is verified by the Lyapunov approach. Finally, the ADP-based NMPC is conducted on two different cases and the simulation results demonstrate the quick response and strong robustness of the proposed method.
This paper presents a functional model predictive control (MPC) approach based on an adaptive dynamic programming (ADP) algorithm with the abilities of handling control constraints and disturbances for the optimal control of nonlinear discrete-time systems. In the proposed ADP-based nonlinear MPC (NMPC) structure, a neural-network-based identification is established first to reconstruct the unknown system dynamics. Then, the actor-critic scheme is adopted with a critic network to estimate the index performance function and an action network to approximate the optimal control input. Meanwhile, as the MPC strategy can effectively determine the current control by solving a finite horizon open-loop optimal control problem, in the proposed algorithm, the infinite horizon is decomposed into a series of finite horizons to obtain the optimal control. In each finite horizon, the finite ADP algorithm solves the optimal control problem subject to the terminal constraint, the control constraint, and the disturbance. The uniform ultimate boundedness of the closed-loop system is verified by the Lyapunov approach. Finally, the ADP-based NMPC is conducted on two different cases and the simulation results demonstrate the quick response and strong robustness of the proposed method.
Author Sun, Changyin
Yuan, Xin
Dong, Lu
He, Haibo
Yan, Jun
Author_xml – sequence: 1
  givenname: Lu
  surname: Dong
  fullname: Dong, Lu
  email: ldong90@seu.edu.cn
  organization: School of Automation, Southeast University, Nanjing, China
– sequence: 2
  givenname: Jun
  orcidid: 0000-0002-5148-1399
  surname: Yan
  fullname: Yan, Jun
  email: jun.yan@concordia.ca
  organization: Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, USA
– sequence: 3
  givenname: Xin
  orcidid: 0000-0002-7472-340X
  surname: Yuan
  fullname: Yuan, Xin
  email: xinyuan@seu.edu.cn
  organization: School of Automation, Southeast University, Nanjing, China
– sequence: 4
  givenname: Haibo
  orcidid: 0000-0002-5247-9370
  surname: He
  fullname: He, Haibo
  email: haibohe@uri.edu
  organization: Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, USA
– sequence: 5
  givenname: Changyin
  orcidid: 0000-0001-9269-334X
  surname: Sun
  fullname: Sun, Changyin
  email: cysun@seu.edu.cn
  organization: School of Automation, Southeast University, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30130246$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLxDAUhYMovn-ACFJw42bGvJqkSx2f4AvUhauQaW4l0iZj0gr-ezPO6MKF2STkfOfCPWcLrfrgAaE9gseE4Or4afJyOqaYqDFVZaUwWUGblAg1olSWq79vITfQbkpvOB-Vvyq1jjYYJgxTLjbR48Xg694Fb9riLvjWeTCxuA0W2uIhgnVZ_IBiEnwfQ1ucmgS2CL44sWb2rZx9etO5OsPhNZquc_51B601pk2wu7y30fPF-dPkanRzf3k9ObkZ1ayi_Uhy3FijxFQSqKYGJCeUG865gobXQlrJGBeitkTyhgnJiG2mBmdBibIsLdtGR4u5sxjeB0i97lyqoW2NhzAkTXFFVE6AVxk9_IO-hSHmpTNFleRScqUydbCkhmkHVs-i60z81D9xZUAugDqGlCI0una9mcfXR-NaTbCed6Pn3eh5N3rZTXaSP86f4f959hceBwC_vOKswqRkXzwDl5g
CODEN ITCEB8
CitedBy_id crossref_primary_10_1002_acs_3327
crossref_primary_10_1109_TIV_2022_3167271
crossref_primary_10_1002_rnc_6825
crossref_primary_10_1016_j_oceaneng_2024_116756
crossref_primary_10_1016_j_isatra_2025_08_041
crossref_primary_10_1109_ACCESS_2019_2893243
crossref_primary_10_3390_electronics10091123
crossref_primary_10_1109_TNNLS_2021_3071548
crossref_primary_10_1016_j_isatra_2020_10_009
crossref_primary_10_1109_TSMC_2023_3306338
crossref_primary_10_1109_TSMC_2022_3165586
crossref_primary_10_1109_TASE_2022_3152166
crossref_primary_10_1016_j_jfranklin_2024_107124
crossref_primary_10_1109_TCYB_2019_2926631
crossref_primary_10_1109_TSMC_2023_3254911
crossref_primary_10_1109_TCYB_2022_3233593
crossref_primary_10_1016_j_isatra_2024_02_009
crossref_primary_10_1109_TASE_2020_3019567
crossref_primary_10_1109_TASE_2025_3571535
crossref_primary_10_1109_TCYB_2020_3044595
crossref_primary_10_1002_oca_3287
crossref_primary_10_1109_LCSYS_2024_3408711
crossref_primary_10_1109_TSMC_2024_3486364
crossref_primary_10_1007_s10846_022_01742_w
crossref_primary_10_1109_TAES_2022_3197097
crossref_primary_10_1109_TCYB_2020_3021978
crossref_primary_10_1002_oca_2832
crossref_primary_10_1016_j_jclepro_2020_124124
crossref_primary_10_1109_ACCESS_2020_2984311
crossref_primary_10_1109_TSMC_2024_3431453
crossref_primary_10_2514_1_G006915
crossref_primary_10_1109_TNNLS_2022_3172126
crossref_primary_10_1109_TCYB_2019_2906694
crossref_primary_10_1016_j_cja_2024_08_001
crossref_primary_10_1109_TNNLS_2020_3008249
crossref_primary_10_1002_rnc_7114
crossref_primary_10_1109_ACCESS_2021_3051984
crossref_primary_10_1016_j_automatica_2023_111128
crossref_primary_10_1016_j_jfranklin_2021_11_009
crossref_primary_10_1016_j_robot_2025_105128
crossref_primary_10_1016_j_jfranklin_2024_106899
crossref_primary_10_1109_ACCESS_2023_3329685
crossref_primary_10_1002_asjc_2587
crossref_primary_10_1007_s11432_019_2663_y
crossref_primary_10_1109_LRA_2025_3530115
crossref_primary_10_1109_TSMC_2023_3331231
crossref_primary_10_3390_s23218995
crossref_primary_10_1109_TSMC_2024_3368026
crossref_primary_10_1002_cta_3370
crossref_primary_10_1109_TSMC_2021_3103013
crossref_primary_10_1109_TSMC_2022_3146284
crossref_primary_10_1016_j_neucom_2021_05_046
crossref_primary_10_1016_j_cose_2024_104186
crossref_primary_10_1109_TIE_2021_3127016
crossref_primary_10_1109_TCYB_2024_3488371
crossref_primary_10_1109_TASE_2022_3217539
crossref_primary_10_1007_s11768_023_00174_7
crossref_primary_10_1109_TNNLS_2021_3138924
crossref_primary_10_1109_TCYB_2023_3262632
crossref_primary_10_1109_TCYB_2021_3121078
crossref_primary_10_1016_j_neunet_2024_106364
crossref_primary_10_1109_TCYB_2021_3064071
Cites_doi 10.1007/s00521-007-0150-6
10.1109/TSMCB.2012.2203336
10.1109/TAC.2017.2707520
10.1109/72.623201
10.1109/TSMCB.2009.2021950
10.3166/ejc.11.310-334
10.1109/TNN.2007.900227
10.1109/TPWRS.2016.2537984
10.1007/978-3-0348-8407-5_21
10.1016/j.automatica.2010.02.018
10.1109/TNNLS.2012.2227339
10.1109/TCYB.2014.2381604
10.1109/TCYB.2015.2478857
10.1109/TNNLS.2016.2585520
10.1109/TCYB.2015.2445744
10.1016/j.neucom.2011.05.031
10.1109/TSMCB.2008.926614
10.1109/TIE.2016.2542134
10.1109/TNNLS.2012.2196708
10.1109/TNN.2003.813839
10.1109/TCYB.2014.2314612
10.1002/etep.653
10.1109/TNNLS.2013.2281663
10.1109/TSMC.2018.2810117
10.1109/TNNLS.2016.2586303
10.1109/TNNLS.2015.2399020
10.1109/TCYB.2016.2616100
10.1109/TCST.2013.2246866
10.1109/TAC.2010.2049688
10.1109/TSMCB.2012.2216523
10.1109/TNNLS.2016.2541020
10.1109/72.914523
10.1109/TNNLS.2014.2315646
10.1109/TAC.2011.2170109
10.1109/TAC.2004.825980
10.1016/j.neucom.2016.11.041
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2018.2859801
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 4218
ExternalDocumentID 30130246
10_1109_TCYB_2018_2859801
8439015
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61520106009
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation
  grantid: CMMI 1526835
– fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: RGPIN-2018-06724
  funderid: 10.13039/501100000038
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c392t-740fda86b71e9bae74124a4448ef4c67d733466cd174f36731dfba067d86555d3
IEDL.DBID RIE
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000485687200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sun Sep 28 07:49:00 EDT 2025
Sun Nov 30 03:56:32 EST 2025
Mon Jul 21 06:00:04 EDT 2025
Sat Nov 29 02:02:25 EST 2025
Tue Nov 18 19:50:36 EST 2025
Wed Aug 27 08:36:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-740fda86b71e9bae74124a4448ef4c67d733466cd174f36731dfba067d86555d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7472-340X
0000-0001-9269-334X
0000-0002-5148-1399
0000-0002-5247-9370
OpenAccessLink https://digitalcommons.uri.edu/ele_facpubs/327
PMID 30130246
PQID 2287477488
PQPubID 85422
PageCount 13
ParticipantIDs ieee_primary_8439015
crossref_citationtrail_10_1109_TCYB_2018_2859801
pubmed_primary_30130246
proquest_miscellaneous_2091822649
proquest_journals_2287477488
crossref_primary_10_1109_TCYB_2018_2859801
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
findeisen (ref10) 2002
ref39
ref17
ref38
ref18
qin (ref2) 1997; 93
liu (ref16) 2013; 43
wang (ref1) 2009
rawlings (ref5) 2009
chen (ref9) 2013
liu (ref22) 2014; 25
ref24
ref23
ref26
ref25
ref41
ref44
ref21
ref43
ref28
ref27
loop (ref42) 2005
bellman (ref19) 1957
ref29
ref8
ref7
werbos (ref20) 1977; 22
ref4
ref3
ref6
ref40
References_xml – ident: ref44
  doi: 10.1007/s00521-007-0150-6
– ident: ref27
  doi: 10.1109/TSMCB.2012.2203336
– ident: ref35
  doi: 10.1109/TAC.2017.2707520
– ident: ref15
  doi: 10.1109/72.623201
– ident: ref25
  doi: 10.1109/TSMCB.2009.2021950
– ident: ref13
  doi: 10.3166/ejc.11.310-334
– volume: 22
  start-page: 25
  year: 1977
  ident: ref20
  article-title: Advanced forecasting methods for global crisis warning and models of intelligence
  publication-title: Gen Syst Yearbook
– ident: ref41
  doi: 10.1109/TNN.2007.900227
– ident: ref36
  doi: 10.1109/TPWRS.2016.2537984
– ident: ref3
  doi: 10.1007/978-3-0348-8407-5_21
– ident: ref38
  doi: 10.1016/j.automatica.2010.02.018
– ident: ref37
  doi: 10.1109/TNNLS.2012.2227339
– ident: ref12
  doi: 10.1109/TCYB.2014.2381604
– ident: ref14
  doi: 10.1109/TCYB.2015.2478857
– ident: ref29
  doi: 10.1109/TNNLS.2016.2585520
– ident: ref11
  doi: 10.1109/TCYB.2015.2445744
– year: 2009
  ident: ref5
  publication-title: Model Predictive Control Theory and Design
– ident: ref31
  doi: 10.1016/j.neucom.2011.05.031
– year: 2013
  ident: ref9
  publication-title: Model Predictive Control
– ident: ref23
  doi: 10.1109/TSMCB.2008.926614
– ident: ref17
  doi: 10.1109/TIE.2016.2542134
– ident: ref39
  doi: 10.1109/TNNLS.2012.2196708
– ident: ref26
  doi: 10.1109/TNN.2003.813839
– ident: ref24
  doi: 10.1109/TCYB.2014.2314612
– ident: ref8
  doi: 10.1002/etep.653
– volume: 25
  start-page: 621
  year: 2014
  ident: ref22
  article-title: Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2281663
– ident: ref32
  doi: 10.1109/TSMC.2018.2810117
– volume: 93
  start-page: 232
  year: 1997
  ident: ref2
  article-title: An overview of industrial model predictive control technology
  publication-title: Control Eng Pract
– ident: ref34
  doi: 10.1109/TNNLS.2016.2586303
– ident: ref28
  doi: 10.1109/TNNLS.2015.2399020
– ident: ref4
  doi: 10.1109/TCYB.2016.2616100
– year: 2009
  ident: ref1
  publication-title: Model Predictive Control System Design and Implementation Using MATLAB
– ident: ref30
  doi: 10.1109/TCST.2013.2246866
– year: 1957
  ident: ref19
  publication-title: Dynamic Programming
– ident: ref43
  doi: 10.1109/TAC.2010.2049688
– volume: 43
  start-page: 779
  year: 2013
  ident: ref16
  article-title: Finite-approximation-error-based optimal control approach for discrete-time nonlinear systems
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TSMCB.2012.2216523
– ident: ref18
  doi: 10.1109/TNNLS.2016.2541020
– ident: ref21
  doi: 10.1109/72.914523
– start-page: 1
  year: 2002
  ident: ref10
  article-title: An introduction to nonlinear model predictive control
  publication-title: Proc 21st Benelux Meeting Syst Control
– ident: ref40
  doi: 10.1109/TNNLS.2014.2315646
– year: 2005
  ident: ref42
  article-title: Estimating regions of asymptotic stability of nonlinear systems with applications to power electronics systems
– ident: ref7
  doi: 10.1109/TAC.2011.2170109
– ident: ref6
  doi: 10.1109/TAC.2004.825980
– ident: ref33
  doi: 10.1016/j.neucom.2016.11.041
SSID ssj0000816898
Score 2.49387
Snippet This paper presents a functional model predictive control (MPC) approach based on an adaptive dynamic programming (ADP) algorithm with the abilities of...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4206
SubjectTerms Adaptive algorithms
Adaptive control
Adaptive dynamic programming (ADP)
Algorithms
Artificial neural networks
Computer simulation
Discrete time systems
Dynamic programming
Economic models
Feedback control
Heuristic algorithms
Horizon
Mathematical model
Neural networks
neural networks (NNs)
Nonlinear control
nonlinear model predictive control (NMPC)
Nonlinear systems
Optimal control
Predictive control
System dynamics
Terminal constraints
Title Functional Nonlinear Model Predictive Control Based on Adaptive Dynamic Programming
URI https://ieeexplore.ieee.org/document/8439015
https://www.ncbi.nlm.nih.gov/pubmed/30130246
https://www.proquest.com/docview/2287477488
https://www.proquest.com/docview/2091822649
Volume 49
WOSCitedRecordID wos000485687200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5URLz4ftQXETyo2LWP2KRHXV08LYIK66k0TQqCdmUf_n5nkmzxoIK3QtI2ZCaZL5nHB3CSIKYWiZIhNzkP0QSoMC-lCmOuMlMjAqlrZckmRL8vB4P8YQ4u2lwYY4wNPjMderS-fD2spnRVdim5PaHPw7wQwuVqtfcplkDCUt8m-BAiqhDeiRlH-eVT9-WG4rhkhwq24a68DEupddoR8v1mkSzFyu9o01qd3ur_xrsGKx5dsmunDuswZ5oNWPfrd8xOfZHps0147KFBc_eArO_KZZQjRsxob-xhRN4b2gdZ10Wysxs0dpoNG3atyw_bcuuo7LGzDfB6RxO4Bc-9u6fufegJFsIKYdEkFDyqdSkzJWKTq9IIoqIuOZ7YTM2rTGiRpjzLKo3HljrNRBrrWpVo3zSls17pdBsWmmFjdoHxRFNp0jpWRvHECBlHlZKJQXiQVij0AKLZJBeVrz5OJBhvhT2FRHlBIipIRIUXUQDn7SsfrvTGX503af7bjn7qAziYSbLwi3NcJFTjH2GvlAEct824rMhXUjZmOMU-iKMkJRnnAew4DWi_PVOcvZ__uQ_LOLLcxbwcwMJkNDWHsFh9Tl7HoyPU3YE8srr7BZuw5hk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BrYBLy6OloTyMxKFUzZKHiZ0jLKxA0BVSFwlOURw7EtKSRfvo72fG9kY9UCRukTxJLI_t-cYzng_gMEFMLRIlQ25yHqIJUGFeShXGXGWmRgRS18qSTYh-X97f57cL8Ku9C2OMsclnpkOPNpavR9WMjsqOJbce-iJ8OOE8id1trfZExVJIWPLbBB9CxBXChzHjKD8edB_OKJNLdqhkG-7Lq7Cc2rAdYd9_bJIlWfk_3rR2p_f5fT1eg08eX7JTNyHWYcE0G7DuV_CE_fBlpo824U8PTZo7CWR9VzCjHDPiRhuy2zHFb2gnZF2Xy87O0NxpNmrYqS6fbcu5I7NHYZvi9YRG8Avc9S4G3cvQUyyEFQKjaSh4VOtSZkrEJlelEURGXXL02UzNq0xokaY8yyqNjkudZiKNda1KtHCaLrSe6PQrLDWjxnwDxhNNxUnrWBnFEyNkHFVKJgYBQlqh2gOI5oNcVL7-ONFgDAvrh0R5QSoqSEWFV1EAP9tXnl3xjbeEN2n8W0E_9AHszDVZ-OU5KRKq8o_AV8oADtpmXFgULSkbM5qhDCIpSdeM8wC23Axovz2fONuv_3MfVi4Hv2-Km6v-9XdYxV7mLgNmB5am45nZhY_V3-njZLxnZ_ALT2joeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+Nonlinear+Model+Predictive+Control+Based+on+Adaptive+Dynamic+Programming&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Dong%2C+Lu&rft.au=Yan%2C+Jun&rft.au=Yuan%2C+Xin&rft.au=He%2C+Haibo&rft.date=2019-12-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=49&rft.issue=12&rft.spage=4206&rft.epage=4218&rft_id=info:doi/10.1109%2FTCYB.2018.2859801&rft_id=info%3Apmid%2F30130246&rft.externalDocID=8439015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon