Constrained Subproblems in a Decomposition-Based Multiobjective Evolutionary Algorithm

A decomposition approach decomposes a multiobjective optimization problem into a number of scalar objective optimization subproblems. It plays a key role in decomposition-based multiobjective evolutionary algorithms. However, many widely used decomposition approaches, originally proposed for mathema...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on evolutionary computation Ročník 20; číslo 3; s. 475 - 480
Hlavní autoři: Wang, Luping, Zhang, Qingfu, Zhou, Aimin, Gong, Maoguo, Jiao, Licheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.06.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1089-778X, 1941-0026
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A decomposition approach decomposes a multiobjective optimization problem into a number of scalar objective optimization subproblems. It plays a key role in decomposition-based multiobjective evolutionary algorithms. However, many widely used decomposition approaches, originally proposed for mathematical programming algorithms, may not be very suitable for evolutionary algorithms. To help decomposition-based multiobjective evolutionary algorithms balance the population diversity and convergence in an appropriate manner, this letter proposes to impose some constraints on the subproblems. Experiments have been conducted to demonstrate that our proposed constrained decomposition approach works well on most test instances. We further propose a strategy for adaptively adjusting constraints by using information collected from the search. Experimental results show that it can significantly improve the algorithm performance.
AbstractList A decomposition approach decomposes a multiobjective optimization problem into a number of scalar objective optimization subproblems. It plays a key role in decomposition-based multiobjective evolutionary algorithms. However, many widely used decomposition approaches, originally proposed for mathematical programming algorithms, may not be very suitable for evolutionary algorithms. To help decomposition-based multiobjective evolutionary algorithms balance the population diversity and convergence in an appropriate manner, this letter proposes to impose some constraints on the subproblems. Experiments have been conducted to demonstrate that our proposed constrained decomposition approach works well on most test instances. We further propose a strategy for adaptively adjusting constraints by using information collected from the search. Experimental results show that it can significantly improve the algorithm performance.
Author Maoguo Gong
Aimin Zhou
Licheng Jiao
Luping Wang
Qingfu Zhang
Author_xml – sequence: 1
  givenname: Luping
  surname: Wang
  fullname: Wang, Luping
– sequence: 2
  givenname: Qingfu
  surname: Zhang
  fullname: Zhang, Qingfu
– sequence: 3
  givenname: Aimin
  surname: Zhou
  fullname: Zhou, Aimin
– sequence: 4
  givenname: Maoguo
  surname: Gong
  fullname: Gong, Maoguo
– sequence: 5
  givenname: Licheng
  surname: Jiao
  fullname: Jiao, Licheng
BookMark eNp9kD1PwzAQhi1UJCjwAxBLJBaWFJ_z4XgsoXxIRQx8iM1ynAu4SuISJ5X49zhqxdCByWfd857unimZtLZFQs6BzgCouH5dvOczRiGZsTjhKaQH5BhEDCGlLJ34mmYi5Dz7OCJT51aUQpyAOCbvuW1d3ynTYhm8DMW6s0WNjQtMG6jgFrVt1taZ3tg2vFHOQ09D7X_FCnVvNhgsNrYexrbqfoJ5_Wk70381p-SwUrXDs917Qt7uFq_5Q7h8vn_M58tQR4L1YYq6Sosiy1AojAF4CVoxQFFqFHGWJJTqNFUcyoohLWnJI-VZ364SjKokOiFX27l-7-8BXS8b4zTWtWrRDk5CxpJYUK_Eo5d76MoOXeu3k8AF44JnFDzFt5TurHMdVlKbXo33jZJqCVSOvuXoW46-5c63T8Ject2Zxlv5N3OxzRhE_OM5pJQzHv0Cq9yPBg
CODEN ITEVF5
CitedBy_id crossref_primary_10_1007_s10586_019_03022_z
crossref_primary_10_1109_TCYB_2020_3008697
crossref_primary_10_1155_2018_1753071
crossref_primary_10_1016_j_asoc_2018_10_028
crossref_primary_10_1007_s00500_021_06264_5
crossref_primary_10_1109_TEVC_2016_2598858
crossref_primary_10_1016_j_swevo_2021_100940
crossref_primary_10_1016_j_asoc_2023_110796
crossref_primary_10_1016_j_asoc_2024_111807
crossref_primary_10_3389_fenrg_2022_928744
crossref_primary_10_1109_TEVC_2016_2608507
crossref_primary_10_1016_j_ins_2021_05_080
crossref_primary_10_1109_ACCESS_2018_2873401
crossref_primary_10_1016_j_asoc_2024_111881
crossref_primary_10_1016_j_trit_2016_11_002
crossref_primary_10_3390_s20082230
crossref_primary_10_3390_e27050524
crossref_primary_10_1016_j_swevo_2024_101503
crossref_primary_10_1109_ACCESS_2020_2973670
crossref_primary_10_1016_j_neucom_2020_01_114
crossref_primary_10_1061_JAEEEZ_ASENG_5155
crossref_primary_10_1016_j_asoc_2022_108938
crossref_primary_10_3390_a10030086
crossref_primary_10_1016_j_asoc_2018_06_023
crossref_primary_10_1016_j_swevo_2019_02_003
crossref_primary_10_3390_en13051231
crossref_primary_10_1109_TEVC_2016_2519378
crossref_primary_10_1109_TEVC_2017_2707980
crossref_primary_10_1007_s10489_020_01969_w
crossref_primary_10_1016_j_asoc_2024_112434
crossref_primary_10_1016_j_swevo_2021_100886
crossref_primary_10_1016_j_ins_2022_10_136
crossref_primary_10_1016_j_engappai_2022_105249
crossref_primary_10_1109_TEVC_2016_2611642
crossref_primary_10_1016_j_engappai_2023_107564
crossref_primary_10_1109_TEVC_2017_2690446
crossref_primary_10_1016_j_ins_2020_03_093
crossref_primary_10_1007_s00521_018_3563_5
crossref_primary_10_3390_sym13010136
crossref_primary_10_1162_evco_a_00269
crossref_primary_10_1109_TEVC_2016_2521868
crossref_primary_10_1007_s00500_016_2076_3
crossref_primary_10_1109_TSMC_2023_3324797
crossref_primary_10_1016_j_swevo_2019_02_010
crossref_primary_10_1109_TSMC_2019_2931636
crossref_primary_10_1016_j_eswa_2022_118915
crossref_primary_10_1080_21681015_2020_1735544
crossref_primary_10_1016_j_asoc_2020_107002
crossref_primary_10_1016_j_ins_2019_06_001
crossref_primary_10_1016_j_neucom_2019_02_002
crossref_primary_10_1109_TCYB_2017_2762701
crossref_primary_10_1016_j_ins_2022_07_180
crossref_primary_10_1016_j_future_2018_07_047
crossref_primary_10_1109_ACCESS_2021_3086559
crossref_primary_10_1109_TPWRS_2022_3155750
crossref_primary_10_20965_jaciii_2016_p0497
crossref_primary_10_1016_j_asoc_2020_106382
crossref_primary_10_1016_j_swevo_2019_100605
crossref_primary_10_1007_s10586_024_04773_0
crossref_primary_10_1016_j_swevo_2017_05_005
crossref_primary_10_1016_j_swevo_2019_05_007
crossref_primary_10_1016_j_swevo_2019_100568
crossref_primary_10_1007_s10489_023_04717_y
crossref_primary_10_1016_j_asoc_2017_03_041
crossref_primary_10_1016_j_knosys_2021_107731
crossref_primary_10_1007_s13042_018_00919_w
crossref_primary_10_1007_s00500_016_2196_9
crossref_primary_10_1109_ACCESS_2019_2917899
crossref_primary_10_1016_j_asoc_2023_110095
crossref_primary_10_1109_TEVC_2017_2744674
crossref_primary_10_1016_j_engappai_2023_105889
crossref_primary_10_1109_TNNLS_2018_2806481
crossref_primary_10_1007_s00500_019_04565_4
crossref_primary_10_1016_j_applthermaleng_2025_126108
crossref_primary_10_1109_ACCESS_2020_2974324
crossref_primary_10_1016_j_asoc_2017_11_029
crossref_primary_10_1007_s00500_022_07492_z
crossref_primary_10_1016_j_asoc_2023_110525
crossref_primary_10_1007_s11704_016_5552_0
crossref_primary_10_1109_TSMC_2018_2876335
crossref_primary_10_1109_TCYB_2018_2834363
crossref_primary_10_1109_TCYB_2022_3165557
crossref_primary_10_1109_TCYB_2017_2739185
crossref_primary_10_1016_j_trb_2025_103238
crossref_primary_10_1109_TEVC_2017_2671462
crossref_primary_10_1016_j_swevo_2021_100847
crossref_primary_10_1016_j_ins_2020_03_104
crossref_primary_10_1007_s40815_021_01220_9
crossref_primary_10_1109_JIOT_2020_3010834
crossref_primary_10_1109_ACCESS_2018_2832181
crossref_primary_10_1109_TSMC_2019_2898456
crossref_primary_10_1007_s42835_020_00386_w
crossref_primary_10_1016_j_ins_2019_05_083
crossref_primary_10_1109_TEVC_2016_2592479
crossref_primary_10_1016_j_asoc_2019_02_026
crossref_primary_10_1016_j_swevo_2020_100794
crossref_primary_10_1080_09544828_2024_2355762
crossref_primary_10_1109_ACCESS_2020_3047699
crossref_primary_10_1016_j_swevo_2020_100790
crossref_primary_10_1155_2019_3251349
crossref_primary_10_1007_s10489_018_1183_5
crossref_primary_10_1016_j_swevo_2018_12_007
crossref_primary_10_1016_j_swevo_2023_101462
crossref_primary_10_1007_s10586_017_0895_3
crossref_primary_10_1109_TCYB_2016_2638902
Cites_doi 10.1145/1527125.1527138
10.1109/CEC.2003.1299427
10.1109/TEVC.2013.2281533
10.1145/1830483.1830577
10.1109/TEVC.2007.892759
10.1007/978-3-642-44973-4_8
10.1016/j.ejor.2006.08.008
10.1109/TEVC.2014.2339823
10.1109/CEC.2010.5586185
10.1109/TEVC.2009.2033671
10.1007/978-3-642-01020-0_35
10.1007/978-3-642-19893-9_6
10.1109/4235.996017
10.1109/SMC.2013.110
10.1016/j.swevo.2011.03.001
10.1023/A:1008202821328
10.1162/EVCO_a_00109
10.1109/TEVC.2008.925798
10.1162/106365600568202
10.1162/106365602760234108
10.1007/978-3-642-37140-0_33
10.1007/3-540-44719-9_6
10.1109/TEVC.2013.2293776
10.1109/CIS.2010.37
10.1109/TEVC.2013.2258025
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TEVC.2015.2457616
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplorer
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 480
ExternalDocumentID 4073927951
10_1109_TEVC_2015_2457616
7160727
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61473241; 61273313; 61175063
  funderid: 10.13039/501100001809
– fundername: Cheung Kong Scholars Programme of China
  grantid: K5051302050
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c392t-6ecf6bb88e9ae4117d1ca21e9dce9485500c66a71df2e0d0d73a8e99dcf5e3f53
IEDL.DBID RIE
ISICitedReferencesCount 120
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377620600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Sep 28 06:47:05 EDT 2025
Sun Sep 07 03:38:39 EDT 2025
Sat Nov 29 03:13:47 EST 2025
Tue Nov 18 22:22:13 EST 2025
Tue Aug 26 16:42:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Constraint
evolutionary multiobjective optimization
decomposition approach
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-6ecf6bb88e9ae4117d1ca21e9dce9485500c66a71df2e0d0d73a8e99dcf5e3f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1792797801
PQPubID 85418
PageCount 6
ParticipantIDs ieee_primary_7160727
proquest_journals_1792797801
proquest_miscellaneous_1825490457
crossref_citationtrail_10_1109_TEVC_2015_2457616
crossref_primary_10_1109_TEVC_2015_2457616
PublicationCentury 2000
PublicationDate 2016-June
2016-6-00
20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-June
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
zitzler (ref4) 2001
li (ref22) 2014; 18
ref30
ref11
ref10
ref2
ref17
ref16
ref19
knowles (ref32) 2006; 214
deb (ref31) 2001; 16
ref24
zitzler (ref5) 2004
ref26
ref25
ref20
ref21
jiang (ref18) 2011; 3
miettinen (ref1) 1999; 12
ref28
ref27
ref29
ref8
ref7
ref9
ref3
ref6
giagkiozis (ref23) 2012
References_xml – ident: ref19
  doi: 10.1145/1527125.1527138
– ident: ref9
  doi: 10.1109/CEC.2003.1299427
– year: 2001
  ident: ref4
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
– ident: ref21
  doi: 10.1109/TEVC.2013.2281533
– ident: ref14
  doi: 10.1145/1830483.1830577
– ident: ref8
  doi: 10.1109/TEVC.2007.892759
– ident: ref15
  doi: 10.1007/978-3-642-44973-4_8
– volume: 16
  year: 2001
  ident: ref31
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
– ident: ref6
  doi: 10.1016/j.ejor.2006.08.008
– ident: ref20
  doi: 10.1109/TEVC.2014.2339823
– ident: ref25
  doi: 10.1109/CEC.2010.5586185
– ident: ref24
  doi: 10.1109/TEVC.2009.2033671
– ident: ref13
  doi: 10.1007/978-3-642-01020-0_35
– ident: ref27
  doi: 10.1007/978-3-642-19893-9_6
– ident: ref3
  doi: 10.1109/4235.996017
– ident: ref12
  doi: 10.1109/SMC.2013.110
– ident: ref2
  doi: 10.1016/j.swevo.2011.03.001
– volume: 3
  start-page: 1260
  year: 2011
  ident: ref18
  article-title: Multiobjective optimization by decomposition with Pareto-adaptive weight vectors
  publication-title: Proc 7th IEEE Int Conf Nat Comput (ICNC)
– volume: 12
  year: 1999
  ident: ref1
  publication-title: Nonlinear Multiobjective Optimization
– ident: ref30
  doi: 10.1023/A:1008202821328
– volume: 214
  start-page: 327
  year: 2006
  ident: ref32
  article-title: A tutorial on the performance assessment of stochastic multiobjective optimizers
  publication-title: TIK Report
– ident: ref16
  doi: 10.1162/EVCO_a_00109
– ident: ref10
  doi: 10.1109/TEVC.2008.925798
– ident: ref29
  doi: 10.1162/106365600568202
– ident: ref26
  doi: 10.1162/106365602760234108
– ident: ref11
  doi: 10.1007/978-3-642-37140-0_33
– start-page: 832
  year: 2004
  ident: ref5
  article-title: Indicator-based selection in multiobjective search
  publication-title: Parallel Problem Solving from Nature-PPSN VII
– year: 2012
  ident: ref23
  article-title: Generalized decomposition and cross entropy methods for many-objective optimization
– ident: ref7
  doi: 10.1007/3-540-44719-9_6
– volume: 18
  start-page: 909
  year: 2014
  ident: ref22
  article-title: Stable matching-based selection in evolutionary multiobjective optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2013.2293776
– ident: ref17
  doi: 10.1109/CIS.2010.37
– ident: ref28
  doi: 10.1109/TEVC.2013.2258025
SSID ssj0014519
Score 2.5196688
Snippet A decomposition approach decomposes a multiobjective optimization problem into a number of scalar objective optimization subproblems. It plays a key role in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 475
SubjectTerms Algorithms
constraint
Constraints
Convergence
De-composition approach
Decomposition
Evolutionary algorithms
Evolutionary computation
Evolutionary multiobjective optimization
Linear programming
Measurement
Optimization
Scalars
Sociology
Statistics
Strategy
Title Constrained Subproblems in a Decomposition-Based Multiobjective Evolutionary Algorithm
URI https://ieeexplore.ieee.org/document/7160727
https://www.proquest.com/docview/1792797801
https://www.proquest.com/docview/1825490457
Volume 20
WOSCitedRecordID wos000377620600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplorer
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBx6q4vojgSaz2laY5-ljxJB5U9lbSZOoDbWXdFfz3ZtJsERTBWyHp80tmJp3J9wEcyAo117wKjMp4kBoRB6rkOrC-BTEVaa4i5cQmxPV1PhzKmxk46vbCIKIrPsNjOnS5fNPoCf0qOxHEhhaLWZgVImv3anUZA6JJaYvppY0Y86HPYEahPLkd3J9TERc_jlMbXpO0-Tcf5ERVflhi514ul__3YCuw5MNIdtrivgozWPdgeSrRwPyM7cHiN77BHixQaNkyM6_BPWl1OoUINMzaDy8t886eaqbYBVKxua_oCs6srzPMbdZtyufWRrLBhx-2avTJTl8emtHT-PF1He4uB7fnV4FXWQi0jY3GQYa6ysoyz1EqTKNImEirOEJpNDrqmDDUWaZEZKoYQxMakSjb1zZXHJOKJxswVzc1bgJLdEUrakexY69USh6XRAlYJopXWiZ9CKffvdCegpze86VwS5FQFgRVQVAVHqo-HHanvLX8G391XiNsuo4elj7sTMEt_Ax9L6whigXRL0V92O-a7dyihImqsZnYPm75bINesfX7lbdhwd4_a0vHdmBuPJrgLszrD4vlaM8N0C-gquR6
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB3RbaXCobRLEUtpcaWeqmbJl-P4CHQRqHTVwxbtLXLsSQFBgvYDiX-Px_FGSEWVeotkx0ry7JlxZvwewBdZoeaaV4FRGQ9SI-JAlVwH1rcgpiLNVaSc2IQYj_PpVP5ag2_dWRhEdMVnOKRLl8s3jV7Sr7IDQWxosXgBL3maxmF7WqvLGRBRSltOL23MmE99DjMK5cFkdHFMZVx8GKc2wCZx8ydeyMmq_GWLnYM52fy_R3sLb3wgyQ5b5N_BGtZ92FyJNDC_Zvuw8YRxsA_rFFy23MxbcEFqnU4jAg2zFsSLy8zZVc0U-45Ubu5ruoIj6-0Mc8d1m_K6tZJsdO8nrpo9sMObP83sanF5-x5-n4wmx6eB11kItI2OFkGGusrKMs9RKkyjSJhIqzhCaTQ68pgw1FmmRGSqGEMTGpEo29c2VxyTiifb0KubGneAJbqiPbUj2bEjlZLHJZEClonilZbJAMLVdy-0JyGn97wp3GYklAVBVRBUhYdqAF-7W-5aBo5_dd4ibLqOHpYB7K3ALfwanRfWFMWCCJiiAXzumu3qopSJqrFZ2j5uA23DXrH7_Mj78Pp08vO8OD8b__gA6_ZZsraQbA96i9kSP8IrfW9xnX1yk_URps3nwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+Subproblems+in+a+Decomposition-Based+Multiobjective+Evolutionary+Algorithm&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Wang%2C+Luping&rft.au=Zhang%2C+Qingfu&rft.au=Zhou%2C+Aimin&rft.au=Gong%2C+Maoguo&rft.date=2016-06-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=20&rft.issue=3&rft.spage=475&rft.epage=480&rft_id=info:doi/10.1109%2FTEVC.2015.2457616&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2015_2457616
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon