Constrained Subproblems in a Decomposition-Based Multiobjective Evolutionary Algorithm

A decomposition approach decomposes a multiobjective optimization problem into a number of scalar objective optimization subproblems. It plays a key role in decomposition-based multiobjective evolutionary algorithms. However, many widely used decomposition approaches, originally proposed for mathema...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on evolutionary computation Ročník 20; číslo 3; s. 475 - 480
Hlavní autoři: Wang, Luping, Zhang, Qingfu, Zhou, Aimin, Gong, Maoguo, Jiao, Licheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.06.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1089-778X, 1941-0026
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A decomposition approach decomposes a multiobjective optimization problem into a number of scalar objective optimization subproblems. It plays a key role in decomposition-based multiobjective evolutionary algorithms. However, many widely used decomposition approaches, originally proposed for mathematical programming algorithms, may not be very suitable for evolutionary algorithms. To help decomposition-based multiobjective evolutionary algorithms balance the population diversity and convergence in an appropriate manner, this letter proposes to impose some constraints on the subproblems. Experiments have been conducted to demonstrate that our proposed constrained decomposition approach works well on most test instances. We further propose a strategy for adaptively adjusting constraints by using information collected from the search. Experimental results show that it can significantly improve the algorithm performance.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1089-778X
1941-0026
DOI:10.1109/TEVC.2015.2457616