Convergence Rate of the Augmented Lagrangian SQP Method

In this paper, the augmented Lagrangian SQP method is considered for the numerical solution of optimization problems with equality constraints. The problem is formulated in a Hilbert space setting. Since the augmented Lagrangian SQP method is a type of Newton method for the nonlinear system of neces...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 95; číslo 1; s. 49 - 74
Hlavní autoři: Kleis, D., Sachs, E. W.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Springer 01.10.1997
Springer Nature B.V
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, the augmented Lagrangian SQP method is considered for the numerical solution of optimization problems with equality constraints. The problem is formulated in a Hilbert space setting. Since the augmented Lagrangian SQP method is a type of Newton method for the nonlinear system of necessary optimality conditions, it is conceivable that q-quadratic convergence can be shown to hold locally in the pair (x, λ). Our interest lies in the convergence of the variable x alone. We improve convergence estimates for the Newton multiplier update which does not satisfy the same convergence properties in x as for example the least-square multiplier update. We discuss these updates in the context of parameter identification problems. Furthermore, we extend the convergence results to inexact augmented Lagrangian methods. Numerical results for a control problem are also presented.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0022-3239
1573-2878
DOI:10.1023/A:1022631327800