A new unified arc-length method for damage mechanics problems

The numerical solution of continuum damage mechanics (CDM) problems suffers from convergence-related challenges during the material softening stage, and consequently existing iterative solvers are subject to a trade-off between computational expense and solution accuracy. In this work, we present a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational mechanics Ročník 74; číslo 6; s. 1197 - 1228
Hlavní autoři: Saji, Roshan Philip, Pantidis, Panos, Mobasher, Mostafa E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024
Springer
Springer Nature B.V
Témata:
ISSN:0178-7675, 1432-0924
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The numerical solution of continuum damage mechanics (CDM) problems suffers from convergence-related challenges during the material softening stage, and consequently existing iterative solvers are subject to a trade-off between computational expense and solution accuracy. In this work, we present a novel unified arc-length (UAL) method, and we derive the formulation of the analytical tangent matrix and governing system of equations for both local and non-local gradient damage problems. Unlike existing versions of arc-length solvers that monolithically scale the external force vector, the proposed method treats the latter as an independent variable and determines the position of the system on the equilibrium path based on all the nodal variations of the external force vector. This approach renders the proposed solver substantially more efficient and robust than existing solvers used in CDM problems. We demonstrate the considerable advantages of the proposed algorithm through several benchmark 1D problems with sharp snap-backs and 2D examples under various boundary conditions and loading scenarios. The proposed UAL approach exhibits a superior ability of overcoming critical increments along the equilibrium path. Moreover, in the presented examples, the proposed UAL method is 1–2 orders of magnitude faster than force-controlled arc-length and monolithic Newton–Raphson solvers.
AbstractList The numerical solution of continuum damage mechanics (CDM) problems suffers from convergence-related challenges during the material softening stage, and consequently existing iterative solvers are subject to a trade-off between computational expense and solution accuracy. In this work, we present a novel unified arc-length (UAL) method, and we derive the formulation of the analytical tangent matrix and governing system of equations for both local and non-local gradient damage problems. Unlike existing versions of arc-length solvers that monolithically scale the external force vector, the proposed method treats the latter as an independent variable and determines the position of the system on the equilibrium path based on all the nodal variations of the external force vector. This approach renders the proposed solver substantially more efficient and robust than existing solvers used in CDM problems. We demonstrate the considerable advantages of the proposed algorithm through several benchmark 1D problems with sharp snap-backs and 2D examples under various boundary conditions and loading scenarios. The proposed UAL approach exhibits a superior ability of overcoming critical increments along the equilibrium path. Moreover, in the presented examples, the proposed UAL method is 1-2 orders of magnitude faster than force-controlled arc-length and monolithic Newton-Raphson solvers.
Audience Academic
Author Mobasher, Mostafa E.
Saji, Roshan Philip
Pantidis, Panos
Author_xml – sequence: 1
  givenname: Roshan Philip
  surname: Saji
  fullname: Saji, Roshan Philip
  organization: Mechanical Engineering Department, Tandon School of Engineering, New York University, Mechanical Engineering Department, New York University Abu Dhabi
– sequence: 2
  givenname: Panos
  surname: Pantidis
  fullname: Pantidis, Panos
  organization: Civil and Urban Engineering Department, New York University Abu Dhabi
– sequence: 3
  givenname: Mostafa E.
  orcidid: 0000-0002-5108-4713
  surname: Mobasher
  fullname: Mobasher, Mostafa E.
  email: mostafa.mobasher@nyu.edu
  organization: Mechanical Engineering Department, Tandon School of Engineering, New York University, Civil and Urban Engineering Department, New York University Abu Dhabi
BookMark eNp9kUtLxTAQhYMoeH38AVcFVy6qkzaPduHiIr5AEHysQ5pHb6RNNclF_fdGK4guJAyB4XxzmDk7aNNP3iB0gOEYA_CTCEAYK6Ein8Xrkm6gBSZ1VUJbkU20AMybkjNOt9FOjE8AmDY1XaDTZeHNa7H2zjqjCxlUORjfp1UxmrSadGGnUGg5yt7kjlpJ71QsnsPUDWaMe2jLyiGa_e9_Fz1enD-cXZU3t5fXZ8ubUtVtlUrGJDTQYSBYVlh2HTQNA91SDIoR0jVMa05bS7vWdloxVUtFgKu2rawiWta76HCem41f1iYm8TStg8-WosYVJ5gAY1l1PKt6ORjhvJ1SkCo_bUan8sGsy_1lk1enwL-Ao19A1iTzlnq5jlFc39_91lazVoUpxmCseA5ulOFdYBCfGYg5A5HvL74yEDRDzR9IuSSTyz5BuuF_tJ7RmH18b8LPyv9QH6s4msE
CitedBy_id crossref_primary_10_1016_j_compstruc_2025_107948
crossref_primary_10_21105_joss_07610
crossref_primary_10_1007_s00366_025_02152_w
Cites_doi 10.1137/0724077
10.1016/j.engfracmech.2009.05.018
10.1016/0045-7949(94)90297-6
10.1016/j.cma.2021.114154
10.1016/0045-7949(78)90183-9
10.1016/j.euromechsol.2021.104343
10.1016/j.cma.2021.114286
10.1016/0045-7949(83)90101-3
10.1007/BF01456931
10.1007/978-94-017-1957-5
10.1177/1056789521998728
10.1016/0013-7944(86)90036-6
10.1016/0045-7949(87)90078-2
10.1016/j.actamat.2008.05.029
10.1002/nme.1620230504
10.1016/j.cma.2017.09.019
10.1016/j.advengsoft.2018.03.012
10.1137/1.9780898719154
10.1016/j.cma.2017.06.016
10.1016/0020-7683(79)90081-7
10.1016/0022-5096(89)90014-8
10.11648/j.ml.20190504.11
10.1016/S0045-7825(99)00042-0
10.1007/s10107-012-0522-2
10.1016/j.proeng.2010.03.143
10.1002/nme.1620190902
10.1016/j.engfracmech.2020.107233
10.1016/j.mechmat.2016.04.002
10.1007/978-94-007-2666-6
10.1108/eb023599
10.1016/j.cma.2022.114927
10.1016/j.jmps.2017.02.011
10.1016/S0924-0136(03)00607-1
10.2514/3.10529
10.1002/9781118375938
10.1016/S0045-7949(97)00077-1
10.1016/j.compstruc.2021.106674
10.1016/S0020-7683(97)00139-X
10.1016/0045-7949(83)90030-5
10.4028/www.scientific.net/KEM.794.253
10.1061/JMCEA3.0002111
10.1016/j.cma.2010.04.011
10.1016/0020-7683(71)90038-2
10.1115/1.3422829
10.1016/0045-7825(79)90002-1
10.1002/nme.1620211108
10.1115/1.1495522
10.1145/357456.357460
10.1016/B978-0-08-027299-3.50009-1
10.1631/jzus.2004.0618
10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
10.1016/j.cma.2019.112704
10.1007/s10704-012-9753-8
10.1615/IntJMultCompEng.v6.i3.50
10.9790/3021-04410107
10.1002/nme.1620320604
10.1002/nme.1620180906
10.1061/(ASCE)0733-9399(1987)113:11(1739)
10.1061/(ASCE)0733-9399(1995)121:4(513)
10.1002/nme.1620090207
10.1007/s00466-004-0630-9
10.1016/S0928-4931(98)00033-2
10.1007/3-540-70734-4_44
10.1137/0111030
10.1016/j.tafmec.2019.102446
10.1002/nme.5364
10.1016/S0893-9659(03)90119-4
10.1016/0045-7825(86)90001-0
10.1016/S0045-7949(00)00200-5
10.1016/j.finel.2015.12.005
10.1145/2701.2705
10.1002/nme.4984
10.1145/368518.368542
10.1016/j.cma.2022.115766
10.1016/S0020-7683(00)00034-2
10.1007/s10853-006-0210-9
10.1108/EC-02-2015-0044
10.1093/imamat/8.1.99
10.1002/nag.367
10.1061/(ASCE)0733-9399(1987)113:10(1512)
10.1002/nme.2861
10.1016/j.cma.2021.114091
10.1016/j.cma.2011.01.008
10.1016/0045-7949(94)00501-S
10.1016/0045-7949(87)90240-9
10.1007/978-94-007-5986-2
10.1016/0168-874X(96)00046-7
10.1007/978-0-387-40065-5_3
10.1002/nme.1620040411
10.1002/nme.1262
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2024 Springer
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2024 Springer
DBID AAYXX
CITATION
ISR
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00466-024-02473-5
DatabaseName CrossRef
Gale In Context: Science
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1432-0924
EndPage 1228
ExternalDocumentID A815850766
10_1007_s00466_024_02473_5
GrantInformation_xml – fundername: Research Institute Centers, New York University Abu Dhabi
  grantid: SHORES
  funderid: http://dx.doi.org/10.13039/100020770
GroupedDBID -Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFSI
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
E.L
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WIP
WK8
XH6
YLTOR
Z45
ZMTXR
~8M
~EX
AAYXX
AFFHD
CITATION
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c392t-66a080b1041a21abb08860d9510c644b86dd759f5b9fbdc6c3ac407c992fc4da3
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001214847200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-7675
IngestDate Tue Dec 02 10:03:36 EST 2025
Tue Dec 02 03:51:46 EST 2025
Tue Dec 02 03:30:42 EST 2025
Tue Nov 18 20:59:39 EST 2025
Sat Nov 29 06:01:24 EST 2025
Mon Jul 21 06:09:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Arc-length
Damage
Material non-linearity
Efficiency
Snap-back
Newton–Raphson
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-66a080b1041a21abb08860d9510c644b86dd759f5b9fbdc6c3ac407c992fc4da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5108-4713
PQID 3127414066
PQPubID 2043755
PageCount 32
ParticipantIDs proquest_journals_3127414066
gale_infotracacademiconefile_A815850766
gale_incontextgauss_ISR_A815850766
crossref_primary_10_1007_s00466_024_02473_5
crossref_citationtrail_10_1007_s00466_024_02473_5
springer_journals_10_1007_s00466_024_02473_5
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Solids, Materials, Complex Fluids, Fluid-Structure-Interaction, Biological Systems, Micromechanics, Multiscale Mechanics, Additive Manufacturing
PublicationTitle Computational mechanics
PublicationTitleAbbrev Comput Mech
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References HofackerMMieheCContinuum phase field modeling of dynamic fracture: variational principles and staggered FE implementationInt J Fract201217811312910.1007/s10704-012-9753-8
Pijaudier-CabotGBažantZPNonlocal damage theoryJ Eng Mech1987113101512153310.1061/(ASCE)0733-9399(1987)113:10(1512)
DaiY-HA perfect example for the BFGS methodMath Program2013138501530303481510.1007/s10107-012-0522-2
WempnerGADiscrete approximations related to nonlinear theories of solidsInt J Solids Struct19717111581159910.1016/0020-7683(71)90038-2
CrisfieldMAn arc-length method including line searches and accelerationsInt J Numer Methods Eng198319912691289191303210.1002/nme.1620190902
MobasherMEWaismanHAdaptive modeling of damage growth using a coupled FEM/BEM approachInt J Numer Methods Eng20161058599619345560910.1002/nme.4984
LondonoJGBerger-VergiatLWaismanHA prony-series type viscoelastic solid coupled with a continuum damage law for polar ice modelingMech Mater201698819710.1016/j.mechmat.2016.04.002
WolfePThe secant method for simultaneous nonlinear equationsCommun ACM1959212121310.1145/368518.368542
PengFHuangWZhangZ-QGuoTFMaYEPhase field simulation for fracture behavior of hyperelastic material at large deformation based on edge-based smoothed finite element methodEng Fract Mech202023810.1016/j.engfracmech.2020.107233
EhiwarioJAghamieSComparative study of bisection, Newton–Raphson and secant methods of root-finding problemsIOSR J Eng201444010710.9790/3021-04410107
RosamJJimackPKMullisAAn adaptive, fully implicit multigrid phase-field model for the quantitative simulation of non-isothermal binary alloy solidificationActa Mater200856174559456910.1016/j.actamat.2008.05.029
ZiouposPRecent developments in the study of failure of solid biomaterials and bone:‘fracture’ and ‘pre-fracture’ toughnessMater Sci Eng C199861334010.1016/S0928-4931(98)00033-2
ZienkiewiczOCTaylorRLThe finite element method for solid and structural mechanics2005AmsterdamElsevier
MarquardtDWAn algorithm for least-squares estimation of nonlinear parametersJ Soc Ind Appl Math196311243144115307110.1137/0111030
VoyiadjisGZPalazottoAGaoXModeling of metallic materials at high strain rates with continuum damage mechanicsAppl Mech Rev200255548149310.1115/1.1495522
KrishnamoorthyCRameshGDineshKPost-buckling analysis of structures by three-parameter constrained solution techniquesFinite Elem Anal Des1996222109142139277810.1016/0168-874X(96)00046-7
MaySVignolletJde BorstRA new arc-length control method based on the rates of the internal and the dissipated energyEng Comput201633110011510.1108/EC-02-2015-0044
de BorstRNautaPNon-orthogonal cracks in a smeared finite element modelEng Comput198521354610.1108/eb023599
MathWorks, mldivide (2023). https://www.mathworks.com/help/matlab/ref/mldivide.html
FordeBWStiemerSFImproved arc length orthogonality methods for nonlinear finite element analysisComput Struct198727562563010.1016/0045-7949(87)90078-2
KristensenPKMartínez-PañedaEPhase field fracture modelling using quasi-Newton methods and a new adaptive step schemeTheoret Appl Fract Mech202010710.1016/j.tafmec.2019.102446
Nocedal J, Wright SJ (2006) Line search methods. Numer Optim 30–65
BatheK-JRammEWilsonELFinite element formulations for large deformation dynamic analysisInt J Numer Methods Eng19759235338610.1002/nme.1620090207
JenningsAAccelerating the convergence of matrix iterative processesIMA J Appl Math1971819911029225110.1093/imamat/8.1.99
NayakGZienkiewiczONote on the ‘alpha’-constant stiffness method for the analysis of non-linear problemsInt J Numer Methods Eng19724457958210.1002/nme.1620040411
Taylor RL (2014) FEAP-A finite element analysis program (2014)
AllgowerELGeorgKNumerical continuation methods: an introduction2012BerlinSpringer
De BorstRCrisfieldMARemmersJJVerhooselCVNonlinear finite element analysis of solids and structures2012HobokenWiley10.1002/9781118375938
BelytschkoTLiuWKMoranBElkhodaryKNonlinear finite elements for continua and structures2014HobokenWiley
Pebrel J, Rey C, Gosselet P (2008) A nonlinear dual-domain decomposition method: Application to structural problems with damage. Int J Multiscale Comput Eng 6(3)
HellwegH-BCrisfieldMA new arc-length method for handling sharp snap-backsComput Struct199866570470910.1016/S0045-7949(97)00077-1
AzureIAloligaGDoabilLComparative study of numerical methods for solving non-linear equations using manual computationMath Lett201954414610.11648/j.ml.20190504.11
Lloberas-VallsORixenDSimoneASluysLDomain decomposition techniques for the efficient modeling of brittle heterogeneous materialsComput Methods Appl Mech Eng201120013–1615771590277476710.1016/j.cma.2011.01.008
MobasherMEWaismanHDual length scale non-local model to represent damage and transport in porous mediaComput Methods Appl Mech Eng2021387431287610.1016/j.cma.2021.114154
DemirATrisection method by k-Lucas numbersAppl Math Comput200819813393452403955
CarreraEA study on arc-length-type methods and their operation failures illustrated by a simple modelComput Struct1994502217229127032210.1016/0045-7949(94)90297-6
PantidisPMobasherMEIntegrated finite element neural network (I-FENN) for non-local continuum damage mechanicsComput Methods Appl Mech Eng2023404451635210.1016/j.cma.2022.115766
Crisfield MA (1981) A fast incremental/iterative solution procedure that handles “snap-through”. In: Computational methods in nonlinear structural and solid mechanics. Elsevier, pp 55–62
PrettiGCoombsWMAugardeCEA displacement-controlled arc-length solution schemeComput Struct202225810.1016/j.compstruc.2021.106674
Corporation I (2022) Export compliance metrics for intel®microprocessors (2022). https://www.intel.com/content/www/us/en/support/articles/000005755/processors.html
LampronOTherriaultDLevesqueMAn efficient and robust monolithic approach to phase-field quasi-static brittle fracture using a modified Newton methodComput Methods Appl Mech Eng2021386430420010.1016/j.cma.2021.114091
KhalilZElghazouliAYMartinez-PanedaEA generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solverComput Methods Appl Mech Eng2022388433892810.1016/j.cma.2021.114286
HughesTJPisterKSConsistent linearization in mechanics of solids and structuresComput Struct197883–439139750265210.1016/0045-7949(78)90183-9
FarhatCRouxF-XA method of finite element tearing and interconnecting and its parallel solution algorithmInt J Numer Methods Eng199132612051227361855010.1002/nme.1620320604
SchweizerhofKWriggersPConsistent linearization for path following methods in nonlinear FE analysisComput Methods Appl Mech Eng198659326127910.1016/0045-7825(86)90001-0
Shaidurov VV (2013) Multigrid methods for finite elements, vol 318. Springer, Berlin
RotsJGDe BorstRAnalysis of mixed-mode fracture in concreteJ Eng Mech1987113111739175810.1061/(ASCE)0733-9399(1987)113:11(1739)
Bjørstad PE, Koster J, Krzyżanowski P (2001) Domain decomposition solvers for large scale industrial finite element problems. In: Applied parallel computing. New paradigms for HPC in industry and academia: 5th International Workshop, PARA 2000 Bergen, Norway, June 18–20, 2000 Proceedings 5, Springer, pp 373–383
KachanovLIntroduction to continuum damage mechanics1986BerlinSpringer
WilliamsKVVaziriRApplication of a damage mechanics model for predicting the impact response of composite materialsComput Struct20017910997101110.1016/S0045-7949(00)00200-5
BrouwerLEJÜber abbildung von mannigfaltigkeitenMath Ann191171197115151164410.1007/BF01456931
EigerASikorskiKStengerFA bisection method for systems of nonlinear equationsACM Trans Math Softw (TOMS)198410436737779200110.1145/2701.2705
BelliniPChulyaAAn improved automatic incremental algorithm for the efficient solution of nonlinear finite element equationsComput Struct1987261–29911010.1016/0045-7949(87)90240-9
CrisfieldMA faster modified Newton-Raphson iterationComput Methods Appl Mech Eng197920326727859703710.1016/0045-7825(79)90002-1
ChavesEWNotes on continuum mechanics2013BerlinSpringer201310.1007/978-94-007-5986-2
TreifiMOyadijiSOTsangDKComputations of the stress intensity factors of double-edge and centre V-notched plates under tension and anti-plane shear by the fractal-like finite element methodEng Fract Mech200976132091210810.1016/j.engfracmech.2009.05.018
Mazars J (1984) Application de la mécanique de l’endommagement au comportement non linéaire et à la rupture du béton de structure. These de Docteur es Sciences Presentee a L’universite Pierre et Marie Curie-Paris 6 (1984)
ZhouSRabczukTZhuangXPhase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studiesAdv Eng Softw2018122314910.1016/j.advengsoft.2018.03.012
BharaliRGoswamiSAnitescuCRabczukTA robust monolithic solver for phase-field fracture integrated with fracture energy based arc-length method and under-relaxationComput Methods Appl Mech Eng2022394440834110.1016/j.cma.2022.114927
LemaitreJA course on damage mechanics2012BerlinSpringer
AllgowerELGeorgKIntroduction to numerical continuation methods2003PhiladelphiaSIAM10.1137/1.9780898719154
AhmedBVoyiadjisGZParkTLocal and non-local damage model with extended stress decomposition for concreteInt J Damage Mech20213081149119110.1177/1056789521998728
NordmannJNaumenkoKAltenbachHA damage mechanics based cohesive zone model with damage gradient extension for creep-fatigue-interactionKey Eng Mater201979425325910.4028/www.scientific.net/KEM.794.253
PohLHSunGLocalizing gradient damage model with decreasing interactionsInt J Numer Methods Eng20171106503522363995410.1002/nme.5364
ByrdRHNocedalJYuanY-XGlobal convergence of a class of quasi-Newton methods on convex problemsSIAM J Numer Anal19872451171119090907210.1137/0724077
ParkKA family of solution algorithms for nonlinear structural analysis based on relaxation equationsInt J Numer Methods Eng19821891337134710.1002/nme.1620180906
RiksEAn incremental approach to the solution of snapping and buckling problemsInt J Solids Struct197915752955153764610.1016/0020-7683(79)90081-7
ChenLde BorstRPhase-field modelling of cohesive fractureEur J Mech A
A Cocks (2473_CR15) 1989; 37
A Eiger (2473_CR16) 1984; 10
G Pretti (2473_CR48) 2022; 258
LEJ Brouwer (2473_CR18) 1911; 71
M Jirásek (2473_CR71) 2005; 63
S Zhou (2473_CR104) 2018; 122
TJ Hughes (2473_CR74) 2012
K Schweizerhof (2473_CR84) 1986; 59
F Peng (2473_CR102) 2020; 238
P Zioupos (2473_CR9) 1998; 6
C Krishnamoorthy (2473_CR86) 1996; 22
J-Y Wu (2473_CR98) 2020; 360
R Talreja (2473_CR7) 2006; 41
2473_CR14
RH Byrd (2473_CR49) 1987; 24
E Riks (2473_CR32) 1972; 39
C Miehe (2473_CR60) 2010; 83
2473_CR106
J De Vree (2473_CR107) 1995; 55
KV Williams (2473_CR8) 2001; 79
J Simo (2473_CR40) 1986; 23
M Crisfield (2473_CR62) 1983; 19
Y-B Yang (2473_CR79) 1990; 28
O Lampron (2473_CR99) 2021; 386
M Crisfield (2473_CR64) 1982; 73
2473_CR93
J Mazars (2473_CR105) 1986; 25
2473_CR10
R de Borst (2473_CR96) 1985; 2
TJ Hughes (2473_CR25) 1978; 8
P Bellini (2473_CR37) 1987; 26
PK Kristensen (2473_CR53) 2020; 107
C Findeisen (2473_CR78) 2017; 102
2473_CR88
G Nayak (2473_CR29) 1972; 4
F Li (2473_CR2) 2001; 38
JT Oden (2473_CR12) 2006
R De Borst (2473_CR43) 2012
2473_CR83
OC Zienkiewicz (2473_CR87) 2005
J Rosam (2473_CR59) 2008; 56
GA Wempner (2473_CR34) 1971; 7
2473_CR77
E Riks (2473_CR33) 1979; 15
L Chen (2473_CR90) 2021; 90
C Miehe (2473_CR95) 2010; 199
T Belytschko (2473_CR81) 2014
ME Mobasher (2473_CR3) 2017; 324
K-J Bathe (2473_CR24) 1975; 9
2473_CR75
C Farhat (2473_CR54) 1991; 32
LH Poh (2473_CR92) 2017; 110
ME Mobasher (2473_CR4) 2021; 387
TH Nguyen (2473_CR91) 2018; 328
M Hofacker (2473_CR61) 2012; 178
M Treifi (2473_CR103) 2009; 76
P Díez (2473_CR76) 2003; 16
P Pantidis (2473_CR101) 2023; 404
Z Khalil (2473_CR100) 2022; 388
A Demir (2473_CR17) 2008; 198
J Ehiwario (2473_CR27) 2014; 4
LT Watson (2473_CR85) 1983; 17
L Kachanov (2473_CR67) 1986
N Bonora (2473_CR5) 1998; 35
J Nordmann (2473_CR31) 2019; 794
P Wolfe (2473_CR30) 1959; 2
B-A Memon (2473_CR47) 2004; 5
2473_CR58
K-J Bathe (2473_CR73) 2006
2473_CR56
ME Mobasher (2473_CR55) 2016; 105
K-J Bathe (2473_CR36) 1983; 17
B Ahmed (2473_CR69) 2021; 30
K Levenberg (2473_CR51) 1944; 16
GZ Voyiadjis (2473_CR6) 2002; 55
Y-H Dai (2473_CR50) 2013; 138
G Pijaudier-Cabot (2473_CR68) 1987; 113
Neto E de Souza (2473_CR38) 1999; 179
R Iankov (2473_CR11) 2003; 142
EL Allgower (2473_CR21) 2003
R Bharali (2473_CR46) 2022; 394
G Pijaudier-Cabot (2473_CR70) 2004; 28
BW Forde (2473_CR42) 1987; 27
H-B Hellweg (2473_CR63) 1998; 66
ZP Bažant (2473_CR94) 1976; 102
JG Rots (2473_CR97) 1987; 113
A Jennings (2473_CR28) 1971; 8
F Ghrib (2473_CR13) 1995; 121
I Azure (2473_CR19) 2019; 5
J Lemaitre (2473_CR1) 2012
EW Chaves (2473_CR72) 2013
O Lloberas-Valls (2473_CR57) 2011; 200
RH Peerlings (2473_CR65) 1996; 39
K Park (2473_CR39) 1982; 18
EL Allgower (2473_CR22) 2012
WC Rheinboldt (2473_CR23) 1983; 9
2473_CR41
2473_CR35
JG Londono (2473_CR89) 2016; 98
N Singh (2473_CR45) 2016; 113
M Crisfield (2473_CR82) 1979; 20
E Carrera (2473_CR80) 1994; 50
I Zeid (2473_CR20) 1985; 21
S Hartmann (2473_CR26) 2005; 36
S May (2473_CR44) 2016; 33
DW Marquardt (2473_CR52) 1963; 11
S Murakami (2473_CR66) 2012
References_xml – reference: MazarsJA description of micro-and macroscale damage of concrete structuresEng Fract Mech1986255–672973710.1016/0013-7944(86)90036-6
– reference: Giancane S, Nobile R, Panella F, Dattoma V (2010) Fatigue life prediction of notched components based on a new nonlinear continuum damage mechanics model. Proc Eng 2(1):1317–1325
– reference: NayakGZienkiewiczONote on the ‘alpha’-constant stiffness method for the analysis of non-linear problemsInt J Numer Methods Eng19724457958210.1002/nme.1620040411
– reference: IankovRFinite element simulation of profile rolling of wireJ Mater Process Technol2003142235536110.1016/S0924-0136(03)00607-1
– reference: EigerASikorskiKStengerFA bisection method for systems of nonlinear equationsACM Trans Math Softw (TOMS)198410436737779200110.1145/2701.2705
– reference: ZiouposPRecent developments in the study of failure of solid biomaterials and bone:‘fracture’ and ‘pre-fracture’ toughnessMater Sci Eng C199861334010.1016/S0928-4931(98)00033-2
– reference: OdenJTFinite elements of nonlinear continua2006North ChelmsfordCourier Corporation
– reference: WilliamsKVVaziriRApplication of a damage mechanics model for predicting the impact response of composite materialsComput Struct20017910997101110.1016/S0045-7949(00)00200-5
– reference: Shaidurov VV (2013) Multigrid methods for finite elements, vol 318. Springer, Berlin
– reference: YangY-BShiehM-SSolution method for nonlinear problems with multiple critical pointsAIAA J199028122110211610.2514/3.10529
– reference: TalrejaRMulti-scale modeling in damage mechanics of composite materialsJ Mater Sci2006416800681210.1007/s10853-006-0210-9
– reference: HellwegH-BCrisfieldMA new arc-length method for handling sharp snap-backsComput Struct199866570470910.1016/S0045-7949(97)00077-1
– reference: KachanovLIntroduction to continuum damage mechanics1986BerlinSpringer
– reference: AllgowerELGeorgKNumerical continuation methods: an introduction2012BerlinSpringer
– reference: SchweizerhofKWriggersPConsistent linearization for path following methods in nonlinear FE analysisComput Methods Appl Mech Eng198659326127910.1016/0045-7825(86)90001-0
– reference: BelytschkoTLiuWKMoranBElkhodaryKNonlinear finite elements for continua and structures2014HobokenWiley
– reference: De VreeJBrekelmansWvan GilsMComparison of nonlocal approaches in continuum damage mechanicsComput Struct199555458158810.1016/0045-7949(94)00501-S
– reference: PrettiGCoombsWMAugardeCEA displacement-controlled arc-length solution schemeComput Struct202225810.1016/j.compstruc.2021.106674
– reference: RiksEThe application of Newton’s method to the problem of elastic stabilityJ Appl Mech19723941060106510.1115/1.3422829
– reference: PantidisPMobasherMEIntegrated finite element neural network (I-FENN) for non-local continuum damage mechanicsComput Methods Appl Mech Eng2023404451635210.1016/j.cma.2022.115766
– reference: HughesTJThe finite element method: linear static and dynamic finite element analysis2012North ChelmsfordCourier Corporation
– reference: KhalilZElghazouliAYMartinez-PanedaEA generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solverComput Methods Appl Mech Eng2022388433892810.1016/j.cma.2021.114286
– reference: BažantZPInstability, ductility, and size effect in strain-softening concreteJ Eng Mech Div1976102233134410.1061/JMCEA3.0002111
– reference: MurakamiSContinuum damage mechanics: a continuum mechanics approach to the analysis of damage and fracture2012BerlinSpringer
– reference: ByrdRHNocedalJYuanY-XGlobal convergence of a class of quasi-Newton methods on convex problemsSIAM J Numer Anal19872451171119090907210.1137/0724077
– reference: BatheK-JFinite element procedures2006BerlinKlaus-Jurgen Bathe
– reference: DemirATrisection method by k-Lucas numbersAppl Math Comput200819813393452403955
– reference: Nocedal J, Wright SJ (2006) Line search methods. Numer Optim 30–65
– reference: AllgowerELGeorgKIntroduction to numerical continuation methods2003PhiladelphiaSIAM10.1137/1.9780898719154
– reference: ChavesEWNotes on continuum mechanics2013BerlinSpringer201310.1007/978-94-007-5986-2
– reference: LiFLiZContinuum damage mechanics based modeling of fiber reinforced concrete in tensionInt J Solids Struct200138577779310.1016/S0020-7683(00)00034-2
– reference: MobasherMEBerger-VergiatLWaismanHNon-local formulation for transport and damage in porous mediaComput Methods Appl Mech Eng2017324654688368277410.1016/j.cma.2017.06.016
– reference: RotsJGDe BorstRAnalysis of mixed-mode fracture in concreteJ Eng Mech1987113111739175810.1061/(ASCE)0733-9399(1987)113:11(1739)
– reference: De BorstRCrisfieldMARemmersJJVerhooselCVNonlinear finite element analysis of solids and structures2012HobokenWiley10.1002/9781118375938
– reference: LondonoJGBerger-VergiatLWaismanHA prony-series type viscoelastic solid coupled with a continuum damage law for polar ice modelingMech Mater201698819710.1016/j.mechmat.2016.04.002
– reference: BatheK-JRammEWilsonELFinite element formulations for large deformation dynamic analysisInt J Numer Methods Eng19759235338610.1002/nme.1620090207
– reference: SimoJWriggersPSchweizerhofKTaylorRFinite deformation post-buckling analysis involving inelasticity and contact constraintsInt J Numer Methods Eng198623577980010.1002/nme.1620230504
– reference: HofackerMMieheCContinuum phase field modeling of dynamic fracture: variational principles and staggered FE implementationInt J Fract201217811312910.1007/s10704-012-9753-8
– reference: MarquardtDWAn algorithm for least-squares estimation of nonlinear parametersJ Soc Ind Appl Math196311243144115307110.1137/0111030
– reference: VoyiadjisGZPalazottoAGaoXModeling of metallic materials at high strain rates with continuum damage mechanicsAppl Mech Rev200255548149310.1115/1.1495522
– reference: NordmannJNaumenkoKAltenbachHA damage mechanics based cohesive zone model with damage gradient extension for creep-fatigue-interactionKey Eng Mater201979425325910.4028/www.scientific.net/KEM.794.253
– reference: KristensenPKMartínez-PañedaEPhase field fracture modelling using quasi-Newton methods and a new adaptive step schemeTheoret Appl Fract Mech202010710.1016/j.tafmec.2019.102446
– reference: Pebrel J, Rey C, Gosselet P (2008) A nonlinear dual-domain decomposition method: Application to structural problems with damage. Int J Multiscale Comput Eng 6(3)
– reference: MieheCWelschingerFHofackerMThermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementationsInt J Numer Methods Eng2010831012731311272418810.1002/nme.2861
– reference: FordeBWStiemerSFImproved arc length orthogonality methods for nonlinear finite element analysisComput Struct198727562563010.1016/0045-7949(87)90078-2
– reference: NguyenTHBuiTQHiroseSSmoothing gradient damage model with evolving anisotropic nonlocal interactions tailored to low-order finite elementsComput Methods Appl Mech Eng2018328498541372613510.1016/j.cma.2017.09.019
– reference: KrishnamoorthyCRameshGDineshKPost-buckling analysis of structures by three-parameter constrained solution techniquesFinite Elem Anal Des1996222109142139277810.1016/0168-874X(96)00046-7
– reference: DaiY-HA perfect example for the BFGS methodMath Program2013138501530303481510.1007/s10107-012-0522-2
– reference: Lloberas-VallsORixenDSimoneASluysLDomain decomposition techniques for the efficient modeling of brittle heterogeneous materialsComput Methods Appl Mech Eng201120013–1615771590277476710.1016/j.cma.2011.01.008
– reference: Padovan J (1980) Self adaptive incremental Newton–Raphson algorithms. NASA CP-2147, pp 115–121
– reference: BharaliRGoswamiSAnitescuCRabczukTA robust monolithic solver for phase-field fracture integrated with fracture energy based arc-length method and under-relaxationComput Methods Appl Mech Eng2022394440834110.1016/j.cma.2022.114927
– reference: MaySVignolletJde BorstRA new arc-length control method based on the rates of the internal and the dissipated energyEng Comput201633110011510.1108/EC-02-2015-0044
– reference: DíezPA note on the convergence of the secant method for simple and multiple rootsAppl Math Lett200316812111215201571410.1016/S0893-9659(03)90119-4
– reference: CrisfieldMLocal instabilities in the non-linear analysis of reinforced concrete beams and slabsProc Inst Civ Eng1982731135145
– reference: BelliniPChulyaAAn improved automatic incremental algorithm for the efficient solution of nonlinear finite element equationsComput Struct1987261–29911010.1016/0045-7949(87)90240-9
– reference: PeerlingsRHde BorstRBrekelmansWMde VreeJGradient enhanced damage for quasi-brittle materialsInt J Numer Methods Eng199639193391340310.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
– reference: ZhouSRabczukTZhuangXPhase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studiesAdv Eng Softw2018122314910.1016/j.advengsoft.2018.03.012
– reference: Pijaudier-CabotGBažantZPNonlocal damage theoryJ Eng Mech1987113101512153310.1061/(ASCE)0733-9399(1987)113:10(1512)
– reference: LampronOTherriaultDLevesqueMAn efficient and robust monolithic approach to phase-field quasi-static brittle fracture using a modified Newton methodComput Methods Appl Mech Eng2021386430420010.1016/j.cma.2021.114091
– reference: CrisfieldMA faster modified Newton-Raphson iterationComput Methods Appl Mech Eng197920326727859703710.1016/0045-7825(79)90002-1
– reference: Crisfield MA (1981) A fast incremental/iterative solution procedure that handles “snap-through”. In: Computational methods in nonlinear structural and solid mechanics. Elsevier, pp 55–62
– reference: MobasherMEWaismanHAdaptive modeling of damage growth using a coupled FEM/BEM approachInt J Numer Methods Eng20161058599619345560910.1002/nme.4984
– reference: BatheK-JDvorkinENOn the automatic solution of nonlinear finite element equationsComput Struct1983175–687187910.1016/0045-7949(83)90101-3
– reference: FindeisenCHoheJKadicMGumbschPCharacteristics of mechanical metamaterials based on buckling elementsJ Mech Phys Solids2017102151164364684610.1016/j.jmps.2017.02.011
– reference: LevenbergKMethod for the solution of certain problems in least squares SIAMJ Numer Anal194416588A604
– reference: Mazars J (1984) Application de la mécanique de l’endommagement au comportement non linéaire et à la rupture du béton de structure. These de Docteur es Sciences Presentee a L’universite Pierre et Marie Curie-Paris 6 (1984)
– reference: HartmannSA remark on the application of the Newton–Raphson method in non-linear finite element analysisComput Mech200536100116215478610.1007/s00466-004-0630-9
– reference: RheinboldtWCBurkardtJVA locally parameterized continuation processACM Trans Math Softw (TOMS)19839221523571530310.1145/357456.357460
– reference: CarreraEA study on arc-length-type methods and their operation failures illustrated by a simple modelComput Struct1994502217229127032210.1016/0045-7949(94)90297-6
– reference: WuJ-YHuangYNguyenVPOn the BFGS monolithic algorithm for the unified phase field damage theoryComput Methods Appl Mech Eng2020360404989710.1016/j.cma.2019.112704
– reference: PengFHuangWZhangZ-QGuoTFMaYEPhase field simulation for fracture behavior of hyperelastic material at large deformation based on edge-based smoothed finite element methodEng Fract Mech202023810.1016/j.engfracmech.2020.107233
– reference: ParkKA family of solution algorithms for nonlinear structural analysis based on relaxation equationsInt J Numer Methods Eng19821891337134710.1002/nme.1620180906
– reference: ZienkiewiczOCTaylorRLThe finite element method for solid and structural mechanics2005AmsterdamElsevier
– reference: JenningsAAccelerating the convergence of matrix iterative processesIMA J Appl Math1971819911029225110.1093/imamat/8.1.99
– reference: WempnerGADiscrete approximations related to nonlinear theories of solidsInt J Solids Struct19717111581159910.1016/0020-7683(71)90038-2
– reference: MobasherMEWaismanHDual length scale non-local model to represent damage and transport in porous mediaComput Methods Appl Mech Eng2021387431287610.1016/j.cma.2021.114154
– reference: Taylor RL (2014) FEAP-A finite element analysis program (2014)
– reference: TreifiMOyadijiSOTsangDKComputations of the stress intensity factors of double-edge and centre V-notched plates under tension and anti-plane shear by the fractal-like finite element methodEng Fract Mech200976132091210810.1016/j.engfracmech.2009.05.018
– reference: RiksEAn incremental approach to the solution of snapping and buckling problemsInt J Solids Struct197915752955153764610.1016/0020-7683(79)90081-7
– reference: FarhatCRouxF-XA method of finite element tearing and interconnecting and its parallel solution algorithmInt J Numer Methods Eng199132612051227361855010.1002/nme.1620320604
– reference: BonoraNNewazGLow cycle fatigue life estimation for ductile metals using a nonlinear continuum damage mechanics modelInt J Solids Struct199835161881189410.1016/S0020-7683(97)00139-X
– reference: Skeie G, Felippa C (1990) A local hyperelliptic constraint for nonlinear analysis. In: Pande GN, Middleton J (eds) Proceedings 3rd international conference on numerical methods in engineering: theory and applications. Swansea, pp 13–27
– reference: AzureIAloligaGDoabilLComparative study of numerical methods for solving non-linear equations using manual computationMath Lett201954414610.11648/j.ml.20190504.11
– reference: MieheCHofackerMWelschingerFA phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splitsComput Methods Appl Mech Eng201019945–4827652778274075610.1016/j.cma.2010.04.011
– reference: CrisfieldMAn arc-length method including line searches and accelerationsInt J Numer Methods Eng198319912691289191303210.1002/nme.1620190902
– reference: AhmedBVoyiadjisGZParkTLocal and non-local damage model with extended stress decomposition for concreteInt J Damage Mech20213081149119110.1177/1056789521998728
– reference: WolfePThe secant method for simultaneous nonlinear equationsCommun ACM1959212121310.1145/368518.368542
– reference: MathWorks, mldivide (2023). https://www.mathworks.com/help/matlab/ref/mldivide.html
– reference: BrouwerLEJÜber abbildung von mannigfaltigkeitenMath Ann191171197115151164410.1007/BF01456931
– reference: GhribFTinawiRNonlinear behavior of concrete dams using damage mechanicsJ Eng Mech1995121451352710.1061/(ASCE)0733-9399(1995)121:4(513)
– reference: CocksAInelastic deformation of porous materialsJ Mech Phys Solids198937669371510.1016/0022-5096(89)90014-8
– reference: ChenLde BorstRPhase-field modelling of cohesive fractureEur J Mech A/Solids202190427496910.1016/j.euromechsol.2021.104343
– reference: de BorstRNautaPNon-orthogonal cracks in a smeared finite element modelEng Comput198521354610.1108/eb023599
– reference: Pijaudier-CabotGHaidarKDubéJ-FNon-local damage model with evolving internal lengthInt J Numer Anal Methods Geomech2004287–863365210.1002/nag.367
– reference: de SouzaNeto EFengYOn the determination of the path direction for arc-length methods in the presence of bifurcations ands nap-backsComput Methods Appl Mech Eng19991791–28189
– reference: JirásekMMarfiaSNon-local damage model based on displacement averagingInt J Numer Methods Eng200563177102213120210.1002/nme.1262
– reference: WatsonLTHolzerSMQuadratic convergence of Crisfield’s methodComput Struct1983171697210.1016/0045-7949(83)90030-5
– reference: Corporation I (2022) Export compliance metrics for intel®microprocessors (2022). https://www.intel.com/content/www/us/en/support/articles/000005755/processors.html
– reference: PohLHSunGLocalizing gradient damage model with decreasing interactionsInt J Numer Methods Eng20171106503522363995410.1002/nme.5364
– reference: EhiwarioJAghamieSComparative study of bisection, Newton–Raphson and secant methods of root-finding problemsIOSR J Eng201444010710.9790/3021-04410107
– reference: ZeidIFixed-point iteration to nonlinear finite element analysis. Part II: Formulation and implementationInt J Numer Methods Eng198521112049206981336310.1002/nme.1620211108
– reference: SinghNVerhooselCDe BorstRVan BrummelenEA fracture-controlled path-following technique for phase-field modeling of brittle fractureFinite Elem Anal Des20161131429346537110.1016/j.finel.2015.12.005
– reference: LemaitreJA course on damage mechanics2012BerlinSpringer
– reference: RosamJJimackPKMullisAAn adaptive, fully implicit multigrid phase-field model for the quantitative simulation of non-isothermal binary alloy solidificationActa Mater200856174559456910.1016/j.actamat.2008.05.029
– reference: HughesTJPisterKSConsistent linearization in mechanics of solids and structuresComput Struct197883–439139750265210.1016/0045-7949(78)90183-9
– reference: MemonB-ASuX-ZArc-length technique for nonlinear finite element analysisJ Zhejiang Univ Sci A2004561862810.1631/jzus.2004.0618
– reference: Bjørstad PE, Koster J, Krzyżanowski P (2001) Domain decomposition solvers for large scale industrial finite element problems. In: Applied parallel computing. New paradigms for HPC in industry and academia: 5th International Workshop, PARA 2000 Bergen, Norway, June 18–20, 2000 Proceedings 5, Springer, pp 373–383
– volume: 24
  start-page: 1171
  issue: 5
  year: 1987
  ident: 2473_CR49
  publication-title: SIAM J Numer Anal
  doi: 10.1137/0724077
– volume: 76
  start-page: 2091
  issue: 13
  year: 2009
  ident: 2473_CR103
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2009.05.018
– volume: 50
  start-page: 217
  issue: 2
  year: 1994
  ident: 2473_CR80
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(94)90297-6
– volume: 387
  year: 2021
  ident: 2473_CR4
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2021.114154
– volume: 8
  start-page: 391
  issue: 3–4
  year: 1978
  ident: 2473_CR25
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(78)90183-9
– volume: 90
  year: 2021
  ident: 2473_CR90
  publication-title: Eur J Mech A/Solids
  doi: 10.1016/j.euromechsol.2021.104343
– volume: 388
  year: 2022
  ident: 2473_CR100
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2021.114286
– volume: 17
  start-page: 871
  issue: 5–6
  year: 1983
  ident: 2473_CR36
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(83)90101-3
– volume-title: A course on damage mechanics
  year: 2012
  ident: 2473_CR1
– volume: 71
  start-page: 97
  issue: 1
  year: 1911
  ident: 2473_CR18
  publication-title: Math Ann
  doi: 10.1007/BF01456931
– volume-title: Introduction to continuum damage mechanics
  year: 1986
  ident: 2473_CR67
  doi: 10.1007/978-94-017-1957-5
– volume: 30
  start-page: 1149
  issue: 8
  year: 2021
  ident: 2473_CR69
  publication-title: Int J Damage Mech
  doi: 10.1177/1056789521998728
– volume: 25
  start-page: 729
  issue: 5–6
  year: 1986
  ident: 2473_CR105
  publication-title: Eng Fract Mech
  doi: 10.1016/0013-7944(86)90036-6
– volume: 27
  start-page: 625
  issue: 5
  year: 1987
  ident: 2473_CR42
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(87)90078-2
– volume-title: Finite elements of nonlinear continua
  year: 2006
  ident: 2473_CR12
– volume: 56
  start-page: 4559
  issue: 17
  year: 2008
  ident: 2473_CR59
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2008.05.029
– volume: 23
  start-page: 779
  issue: 5
  year: 1986
  ident: 2473_CR40
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1620230504
– volume: 328
  start-page: 498
  year: 2018
  ident: 2473_CR91
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2017.09.019
– volume: 122
  start-page: 31
  year: 2018
  ident: 2473_CR104
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2018.03.012
– volume-title: Introduction to numerical continuation methods
  year: 2003
  ident: 2473_CR21
  doi: 10.1137/1.9780898719154
– volume: 324
  start-page: 654
  year: 2017
  ident: 2473_CR3
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2017.06.016
– volume: 15
  start-page: 529
  issue: 7
  year: 1979
  ident: 2473_CR33
  publication-title: Int J Solids Struct
  doi: 10.1016/0020-7683(79)90081-7
– volume: 37
  start-page: 693
  issue: 6
  year: 1989
  ident: 2473_CR15
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(89)90014-8
– volume: 5
  start-page: 41
  issue: 4
  year: 2019
  ident: 2473_CR19
  publication-title: Math Lett
  doi: 10.11648/j.ml.20190504.11
– volume: 179
  start-page: 81
  issue: 1–2
  year: 1999
  ident: 2473_CR38
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(99)00042-0
– volume: 138
  start-page: 501
  year: 2013
  ident: 2473_CR50
  publication-title: Math Program
  doi: 10.1007/s10107-012-0522-2
– ident: 2473_CR14
  doi: 10.1016/j.proeng.2010.03.143
– volume: 19
  start-page: 1269
  issue: 9
  year: 1983
  ident: 2473_CR62
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1620190902
– volume: 238
  year: 2020
  ident: 2473_CR102
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2020.107233
– volume: 98
  start-page: 81
  year: 2016
  ident: 2473_CR89
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2016.04.002
– volume: 198
  start-page: 339
  issue: 1
  year: 2008
  ident: 2473_CR17
  publication-title: Appl Math Comput
– volume-title: Finite element procedures
  year: 2006
  ident: 2473_CR73
– volume-title: Numerical continuation methods: an introduction
  year: 2012
  ident: 2473_CR22
– volume-title: Continuum damage mechanics: a continuum mechanics approach to the analysis of damage and fracture
  year: 2012
  ident: 2473_CR66
  doi: 10.1007/978-94-007-2666-6
– volume-title: The finite element method: linear static and dynamic finite element analysis
  year: 2012
  ident: 2473_CR74
– volume: 2
  start-page: 35
  issue: 1
  year: 1985
  ident: 2473_CR96
  publication-title: Eng Comput
  doi: 10.1108/eb023599
– volume: 394
  year: 2022
  ident: 2473_CR46
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.114927
– volume: 102
  start-page: 151
  year: 2017
  ident: 2473_CR78
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2017.02.011
– volume: 142
  start-page: 355
  issue: 2
  year: 2003
  ident: 2473_CR11
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(03)00607-1
– volume: 28
  start-page: 2110
  issue: 12
  year: 1990
  ident: 2473_CR79
  publication-title: AIAA J
  doi: 10.2514/3.10529
– ident: 2473_CR93
– volume-title: Nonlinear finite element analysis of solids and structures
  year: 2012
  ident: 2473_CR43
  doi: 10.1002/9781118375938
– volume: 66
  start-page: 704
  issue: 5
  year: 1998
  ident: 2473_CR63
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(97)00077-1
– volume: 258
  year: 2022
  ident: 2473_CR48
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2021.106674
– volume: 35
  start-page: 1881
  issue: 16
  year: 1998
  ident: 2473_CR5
  publication-title: Int J Solids Struct
  doi: 10.1016/S0020-7683(97)00139-X
– volume: 17
  start-page: 69
  issue: 1
  year: 1983
  ident: 2473_CR85
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(83)90030-5
– volume: 794
  start-page: 253
  year: 2019
  ident: 2473_CR31
  publication-title: Key Eng Mater
  doi: 10.4028/www.scientific.net/KEM.794.253
– volume: 102
  start-page: 331
  issue: 2
  year: 1976
  ident: 2473_CR94
  publication-title: J Eng Mech Div
  doi: 10.1061/JMCEA3.0002111
– volume: 199
  start-page: 2765
  issue: 45–48
  year: 2010
  ident: 2473_CR95
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2010.04.011
– volume: 7
  start-page: 1581
  issue: 11
  year: 1971
  ident: 2473_CR34
  publication-title: Int J Solids Struct
  doi: 10.1016/0020-7683(71)90038-2
– volume: 39
  start-page: 1060
  issue: 4
  year: 1972
  ident: 2473_CR32
  publication-title: J Appl Mech
  doi: 10.1115/1.3422829
– ident: 2473_CR106
– volume: 20
  start-page: 267
  issue: 3
  year: 1979
  ident: 2473_CR82
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(79)90002-1
– volume: 21
  start-page: 2049
  issue: 11
  year: 1985
  ident: 2473_CR20
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1620211108
– volume: 55
  start-page: 481
  issue: 5
  year: 2002
  ident: 2473_CR6
  publication-title: Appl Mech Rev
  doi: 10.1115/1.1495522
– volume: 9
  start-page: 215
  issue: 2
  year: 1983
  ident: 2473_CR23
  publication-title: ACM Trans Math Softw (TOMS)
  doi: 10.1145/357456.357460
– ident: 2473_CR35
  doi: 10.1016/B978-0-08-027299-3.50009-1
– volume: 5
  start-page: 618
  year: 2004
  ident: 2473_CR47
  publication-title: J Zhejiang Univ Sci A
  doi: 10.1631/jzus.2004.0618
– volume: 39
  start-page: 3391
  issue: 19
  year: 1996
  ident: 2473_CR65
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
– volume: 360
  year: 2020
  ident: 2473_CR98
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.112704
– ident: 2473_CR58
– volume: 178
  start-page: 113
  year: 2012
  ident: 2473_CR61
  publication-title: Int J Fract
  doi: 10.1007/s10704-012-9753-8
– ident: 2473_CR56
  doi: 10.1615/IntJMultCompEng.v6.i3.50
– volume: 4
  start-page: 01
  issue: 4
  year: 2014
  ident: 2473_CR27
  publication-title: IOSR J Eng
  doi: 10.9790/3021-04410107
– volume-title: Nonlinear finite elements for continua and structures
  year: 2014
  ident: 2473_CR81
– volume: 32
  start-page: 1205
  issue: 6
  year: 1991
  ident: 2473_CR54
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1620320604
– volume: 18
  start-page: 1337
  issue: 9
  year: 1982
  ident: 2473_CR39
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1620180906
– volume: 113
  start-page: 1739
  issue: 11
  year: 1987
  ident: 2473_CR97
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)0733-9399(1987)113:11(1739)
– volume: 121
  start-page: 513
  issue: 4
  year: 1995
  ident: 2473_CR13
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)0733-9399(1995)121:4(513)
– volume: 9
  start-page: 353
  issue: 2
  year: 1975
  ident: 2473_CR24
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1620090207
– volume: 36
  start-page: 100
  year: 2005
  ident: 2473_CR26
  publication-title: Comput Mech
  doi: 10.1007/s00466-004-0630-9
– volume: 16
  start-page: 588
  year: 1944
  ident: 2473_CR51
  publication-title: J Numer Anal
– volume: 6
  start-page: 33
  issue: 1
  year: 1998
  ident: 2473_CR9
  publication-title: Mater Sci Eng C
  doi: 10.1016/S0928-4931(98)00033-2
– ident: 2473_CR10
  doi: 10.1007/3-540-70734-4_44
– volume: 11
  start-page: 431
  issue: 2
  year: 1963
  ident: 2473_CR52
  publication-title: J Soc Ind Appl Math
  doi: 10.1137/0111030
– volume: 107
  year: 2020
  ident: 2473_CR53
  publication-title: Theoret Appl Fract Mech
  doi: 10.1016/j.tafmec.2019.102446
– volume: 110
  start-page: 503
  issue: 6
  year: 2017
  ident: 2473_CR92
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.5364
– volume: 16
  start-page: 1211
  issue: 8
  year: 2003
  ident: 2473_CR76
  publication-title: Appl Math Lett
  doi: 10.1016/S0893-9659(03)90119-4
– volume: 59
  start-page: 261
  issue: 3
  year: 1986
  ident: 2473_CR84
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(86)90001-0
– volume: 79
  start-page: 997
  issue: 10
  year: 2001
  ident: 2473_CR8
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(00)00200-5
– volume: 113
  start-page: 14
  year: 2016
  ident: 2473_CR45
  publication-title: Finite Elem Anal Des
  doi: 10.1016/j.finel.2015.12.005
– ident: 2473_CR88
– volume: 10
  start-page: 367
  issue: 4
  year: 1984
  ident: 2473_CR16
  publication-title: ACM Trans Math Softw (TOMS)
  doi: 10.1145/2701.2705
– volume: 105
  start-page: 599
  issue: 8
  year: 2016
  ident: 2473_CR55
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.4984
– volume: 2
  start-page: 12
  issue: 12
  year: 1959
  ident: 2473_CR30
  publication-title: Commun ACM
  doi: 10.1145/368518.368542
– volume: 404
  year: 2023
  ident: 2473_CR101
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.115766
– volume: 38
  start-page: 777
  issue: 5
  year: 2001
  ident: 2473_CR2
  publication-title: Int J Solids Struct
  doi: 10.1016/S0020-7683(00)00034-2
– volume: 41
  start-page: 6800
  year: 2006
  ident: 2473_CR7
  publication-title: J Mater Sci
  doi: 10.1007/s10853-006-0210-9
– ident: 2473_CR75
– volume: 33
  start-page: 100
  issue: 1
  year: 2016
  ident: 2473_CR44
  publication-title: Eng Comput
  doi: 10.1108/EC-02-2015-0044
– volume: 73
  start-page: 135
  issue: 1
  year: 1982
  ident: 2473_CR64
  publication-title: Proc Inst Civ Eng
– volume: 8
  start-page: 99
  issue: 1
  year: 1971
  ident: 2473_CR28
  publication-title: IMA J Appl Math
  doi: 10.1093/imamat/8.1.99
– volume: 28
  start-page: 633
  issue: 7–8
  year: 2004
  ident: 2473_CR70
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.367
– volume: 113
  start-page: 1512
  issue: 10
  year: 1987
  ident: 2473_CR68
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)0733-9399(1987)113:10(1512)
– volume: 83
  start-page: 1273
  issue: 10
  year: 2010
  ident: 2473_CR60
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.2861
– volume: 386
  year: 2021
  ident: 2473_CR99
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2021.114091
– volume: 200
  start-page: 1577
  issue: 13–16
  year: 2011
  ident: 2473_CR57
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2011.01.008
– volume: 55
  start-page: 581
  issue: 4
  year: 1995
  ident: 2473_CR107
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(94)00501-S
– volume: 26
  start-page: 99
  issue: 1–2
  year: 1987
  ident: 2473_CR37
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(87)90240-9
– ident: 2473_CR83
– start-page: 2013
  volume-title: Notes on continuum mechanics
  year: 2013
  ident: 2473_CR72
  doi: 10.1007/978-94-007-5986-2
– ident: 2473_CR41
– volume-title: The finite element method for solid and structural mechanics
  year: 2005
  ident: 2473_CR87
– volume: 22
  start-page: 109
  issue: 2
  year: 1996
  ident: 2473_CR86
  publication-title: Finite Elem Anal Des
  doi: 10.1016/0168-874X(96)00046-7
– ident: 2473_CR77
  doi: 10.1007/978-0-387-40065-5_3
– volume: 4
  start-page: 579
  issue: 4
  year: 1972
  ident: 2473_CR29
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1620040411
– volume: 63
  start-page: 77
  issue: 1
  year: 2005
  ident: 2473_CR71
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1262
SSID ssj0015835
Score 2.4822707
Snippet The numerical solution of continuum damage mechanics (CDM) problems suffers from convergence-related challenges during the material softening stage, and...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1197
SubjectTerms Algorithms
Boundary conditions
Classical and Continuum Physics
Computational Science and Engineering
Continuum damage mechanics
Crack initiation
Engineering
Equilibrium
Independent variables
Iterative methods
Mechanical engineering
Mechanics
Methods
Optimization techniques
Original Paper
Solvers
Theoretical and Applied Mechanics
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOtADFErFUqisCokDWJBN7CSHqlohEEgVQjwkbpY9TmClkqVkt7-_M17vUkDlwiGXxIkdz3j8jT3-BmA7P3C6i95Kb7vkoKAvpEObyoyJYKxDhTbwzP7Mz86Km5vyPC64tTGscmITg6H2A-Q18v00YaIVmn70j4ffkrNG8e5qTKExC_PMkpCE0L3L6S6CKsYJNhPylJi0JB6aCUfn2DHk8NuMrzyV6tnE9NI8v9onDdPP8fJ7G_4RliLwFL2xpqzATNWswnIEoSIO8XYVPvzDUPgJvvcE4W4xavo1F6NRITn1yvBOjFNPC8K8wtt7skp0h08R97EVMUtNuwbXx0dXhycyZlyQSDhpKLW2hCAduWgJic46RzZIH3hGYUjAyRXa-1yVtXJl7TxqTC2SR4hl2a0x8zb9DHPNoKnWQWBdZSl1cWJRZbZOrSLo5utcucpTNVUHkkl3G4x05JwV45eZEikHERkSjwkiMqoDu9N3HsZkHG-W_sZSNMxy0XAYza0dta05vbwwvYJ0g5Cw1h3YiYXqAVWPNp5KoJ9gYqxnJTcn8jVxnLfmSbgd2JtoyNPj_zdu4-2vfYHFLutmiJvZhLnh46jaggX8M-y3j1-Dlv8FY2D_5g
  priority: 102
  providerName: ProQuest
Title A new unified arc-length method for damage mechanics problems
URI https://link.springer.com/article/10.1007/s00466-024-02473-5
https://www.proquest.com/docview/3127414066
Volume 74
WOSCitedRecordID wos001214847200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1432-0924
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: M7S
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-0924
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1432-0924
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VhAM9tCVQNTREK4TEASzFsdePQw-hStVKKIoSQLmtdmftNlLrotjh9zPjrFMKBak9-OIde1-zu99oZ74BeB8PTDREqz2rh2SgoE08gzrwQiaC0QYl6ppn9ks8mSSLRTp1QWFl4-3eXEnWO_U22I1NOXaYDfmJA08-g7Zkthm20efft3cHMtmk1fTJPmKqEhcq8_A_7h1Hf27Kf92O1ofO2f7TmnsAew5kitFGK17CTlZ0YN8BTuGWc9mB3d_YCF_ByUgQxhbrYpmzGK0Aj9OsVFdik2ZaEL4VVt_QDkRvOGJ4iaVwGWnK1_DtbPz19Nxz2RU8JExUeVGkCS0aMsd8miZtDO030cAy4kICSSaJrI1lmkuT5sZihIFGsv4wTYc5hlYHh9AqbovsCATmWRhQb32NMtR5oCXBNJvH0mSWqsm64DeDrNBRj3MGjGu1JU2uR0vRSKl6tJTswsftNz82xBv_lX7Hc6eY0aJgl5lLvS5LdTGfqVFCGkGoN4q68MEJ5bdUPWoXgUCdYBKse5K9RgeUW9OlCnym-iEARMWfmjm_K_534948TvwYXgxZbWqfmR60qtU6ewvP8We1LFd9aH8eT6azPjupzvu15v8Cqxn4hQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRLlQKGAWChgIRAHGtF82EkOFVqgVVddVlUpUm_GHidlJciWZhfEn-I3MpM4Wwqitx445JI4tpM8j9_EnjcAT9NNqyJ0JnAmIgcFXRZYNHGQsBCMsSjRNDqzo3Q8zo6O8v0l-NnFwvC2ys4mNobaTZH_kb-MQxZaoelHvTr5GnDWKF5d7VJotLDYK358J5et3hq-pe_7LIp2tg_f7AY-q0CAxAVmgVKGWJIlNySk7hlraZypTcdMA4kc2Ew5l8q8lDYvrUOFsUHyejDPoxITZ2Kq9wosJ3GiZA-WX2-P9w8W6xYya1N6huSbsUyKD9NpgvXYFeUNvwkfaRzIc1PhnxPCXyuzzYS3s_q_vaqbcMNTazFox8ItWCqqNVj1NFt4I1avwfXfNBhvw9ZAkGch5tWk5GLU64CTy8w-iTa5tiBWL5z5QnaXznCc9ARr4fPw1Hfgw6U80l3oVdOquAcCy4JBoEKDMjFlbCSRU1em0haOmin6EHafV6MXXOe8H5_1Qiq6gYQmOOgGElr24cXinpNWbuTC0k8YNZp1PCreKHRs5nWth-8P9CAjLBLXV6oPz32hckrNo_FxF_QQLP11ruR6hyftLVmtz8DUh40OkWeX_925-xfX9hiu7R6-G-nRcLz3AFYiHhfNLqF16M1O58VDuIrfZpP69JEfYwI-XjZWfwGAvV5H
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RQBUcoFAQ2wK1EFIPbQTZxHkcOKyAVVHRCgGtuFn2OG5XgoBIlt_PTOJdHqWVKg65xJPYHr--kWe-AdhOd03SRasDq7tkoKDNAoM6CmImgtEGJeqGZ_Y4HQyyi4v85FEUf-PtPr6SbGMamKWprHdurNuZBL6xWcfOszE_aRTINzATkyXDTl2nZz8n9wgya1NshmQrMW2JD5t5-R9PjqbnG_QfN6XNAdRffH3T38GCB5-i186WJZgqymVY9EBU-GVeLcP8I5bC97DXE4S9xagcOhajlRFw-pX6t2jTTwvCvcLqK9qZ6A1HEg-xEj5TTbUCP_qH5_vfAp91IUDCSnWQJJpQpCEzLaTh08bQPpTsWkZiSODJZIm1qcydNLkzFhOMNJJViHnedRhbHa3CdHldFmsg0BVxRL0NNcpYu0hLgm_WpdIUlqopOhCOFa7QU5JzZoxLNSFTbrSlSFOq0ZaSHfgy-eamJeT4p_QWj6NipouSXWl-6VFVqaOzU9XLaHYQGk6SDnz2Qu6aqkftIxOoE0yO9URyfTwflF_rlYpCpgAiYETFX8fj_1D898Z9-D_xT_D25KCvjo8G3z_CXJdnUONWsw7T9e2o2IBZvKuH1e1mswTuAfeaAco
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+unified+arc-length+method+for+damage+mechanics+problems&rft.jtitle=Computational+mechanics&rft.au=Saji%2C+Roshan+Philip&rft.au=Pantidis%2C+Panos&rft.au=Mobasher%2C+Mostafa+E&rft.date=2024-12-01&rft.pub=Springer&rft.issn=0178-7675&rft.volume=74&rft.issue=6&rft.spage=1197&rft_id=info:doi/10.1007%2Fs00466-024-02473-5&rft.externalDocID=A815850766
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-7675&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-7675&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-7675&client=summon