Forecasting concentrations of air pollutants by logarithm support vector regression with immune algorithms

The need to minimize the potential impact of air pollutants on humans has made the accurate prediction of concentrations of air pollutants a crucial subject in environmental research. Support vector regression (SVR) models have been successfully employed to solve time series problems in many fields....

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation Vol. 217; no. 12; pp. 5318 - 5327
Main Authors: Lin, Kuo-Ping, Pai, Ping-Feng, Yang, Shun-Ling
Format: Journal Article
Language:English
Published: Amsterdam Elsevier Inc 15.02.2011
Elsevier
Subjects:
ISSN:0096-3003, 1873-5649
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The need to minimize the potential impact of air pollutants on humans has made the accurate prediction of concentrations of air pollutants a crucial subject in environmental research. Support vector regression (SVR) models have been successfully employed to solve time series problems in many fields. The use of SVR models for forecasting concentrations of air pollutants has not been widely investigated. Data preprocessing procedures and the parameter selection of SVR models can radically influence forecasting performance. This study proposes a support vector regression with logarithm preprocessing procedure and immune algorithms (SVRLIA) model which takes advantage of the structural risk minimization of SVR models, the data smoothing of preprocessing procedures, and the optimization of immune algorithms, in order to more accurately forecast concentrations of air pollutants. Three pollutants, namely particulate matter (PM10), nitrogen oxide, (NOx), and nitrogen dioxide (NO2), are collected and examined to determine the feasibility of the developed SVRLIA model. Experimental results reveal that the SVRLIA model can accurately forecast concentrations of air pollutants.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2010.11.055