Predicting human disease-associated circRNAs based on locality-constrained linear coding

Circular RNAs (circRNAs) are a new kind of endogenous non-coding RNAs, which have been discovered continuously. More and more studies have shown that circRNAs are related to the occurrence and development of human diseases. Identification of circRNAs associated with diseases can contribute to unders...

Full description

Saved in:
Bibliographic Details
Published in:Genomics (San Diego, Calif.) Vol. 112; no. 2; pp. 1335 - 1342
Main Authors: Ge, Erxia, Yang, Yingjuan, Gang, Mingjun, Fan, Chunlong, Zhao, Qi
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01.03.2020
Subjects:
ISSN:0888-7543, 1089-8646, 1089-8646
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Circular RNAs (circRNAs) are a new kind of endogenous non-coding RNAs, which have been discovered continuously. More and more studies have shown that circRNAs are related to the occurrence and development of human diseases. Identification of circRNAs associated with diseases can contribute to understand the pathogenesis, diagnosis and treatment of diseases. However, experimental methods of circRNA prediction remain expensive and time-consuming. Therefore, it is urgent to propose novel computational methods for the prediction of circRNA-disease associations. In this study, we develop a computational method called LLCDC that integrates the known circRNA-disease associations, circRNA semantic similarity network, disease semantic similarity network, reconstructed circRNA similarity network, and reconstructed disease similarity network to predict circRNAs related to human diseases. Specifically, the reconstructed similarity networks are obtained by using Locality-Constrained Linear Coding (LLC) on the known association matrix, cosine similarities of circRNAs and diseases. Then, the label propagation method is applied to the similarity networks, and four relevant score matrices are respectively obtained. Finally, we use 5-fold cross validation (5-fold CV) to evaluate the performance of LLCDC, and the AUC value of the method is 0.9177, indicating that our method performs better than the other three methods. In addition, case studies on gastric cancer, breast cancer and papillary thyroid carcinoma further verify the reliability of our method in predicting disease-associated circRNAs. •The computational model made use of locality-constrained linear coding and label propagation.•The AUC of 5-fold cross validation (5-fold CV) were significantly better than other previous computational methods.•Three case studies for important human diseases were implemented.•LLCDC could be a reliable method for human disease associated circRNAs prediction.
AbstractList Circular RNAs (circRNAs) are a new kind of endogenous non-coding RNAs, which have been discovered continuously. More and more studies have shown that circRNAs are related to the occurrence and development of human diseases. Identification of circRNAs associated with diseases can contribute to understand the pathogenesis, diagnosis and treatment of diseases. However, experimental methods of circRNA prediction remain expensive and time-consuming. Therefore, it is urgent to propose novel computational methods for the prediction of circRNA-disease associations. In this study, we develop a computational method called LLCDC that integrates the known circRNA-disease associations, circRNA semantic similarity network, disease semantic similarity network, reconstructed circRNA similarity network, and reconstructed disease similarity network to predict circRNAs related to human diseases. Specifically, the reconstructed similarity networks are obtained by using Locality-Constrained Linear Coding (LLC) on the known association matrix, cosine similarities of circRNAs and diseases. Then, the label propagation method is applied to the similarity networks, and four relevant score matrices are respectively obtained. Finally, we use 5-fold cross validation (5-fold CV) to evaluate the performance of LLCDC, and the AUC value of the method is 0.9177, indicating that our method performs better than the other three methods. In addition, case studies on gastric cancer, breast cancer and papillary thyroid carcinoma further verify the reliability of our method in predicting disease-associated circRNAs.
Circular RNAs (circRNAs) are a new kind of endogenous non-coding RNAs, which have been discovered continuously. More and more studies have shown that circRNAs are related to the occurrence and development of human diseases. Identification of circRNAs associated with diseases can contribute to understand the pathogenesis, diagnosis and treatment of diseases. However, experimental methods of circRNA prediction remain expensive and time-consuming. Therefore, it is urgent to propose novel computational methods for the prediction of circRNA-disease associations. In this study, we develop a computational method called LLCDC that integrates the known circRNA-disease associations, circRNA semantic similarity network, disease semantic similarity network, reconstructed circRNA similarity network, and reconstructed disease similarity network to predict circRNAs related to human diseases. Specifically, the reconstructed similarity networks are obtained by using Locality-Constrained Linear Coding (LLC) on the known association matrix, cosine similarities of circRNAs and diseases. Then, the label propagation method is applied to the similarity networks, and four relevant score matrices are respectively obtained. Finally, we use 5-fold cross validation (5-fold CV) to evaluate the performance of LLCDC, and the AUC value of the method is 0.9177, indicating that our method performs better than the other three methods. In addition, case studies on gastric cancer, breast cancer and papillary thyroid carcinoma further verify the reliability of our method in predicting disease-associated circRNAs. •The computational model made use of locality-constrained linear coding and label propagation.•The AUC of 5-fold cross validation (5-fold CV) were significantly better than other previous computational methods.•Three case studies for important human diseases were implemented.•LLCDC could be a reliable method for human disease associated circRNAs prediction.
Circular RNAs (circRNAs) are a new kind of endogenous non-coding RNAs, which have been discovered continuously. More and more studies have shown that circRNAs are related to the occurrence and development of human diseases. Identification of circRNAs associated with diseases can contribute to understand the pathogenesis, diagnosis and treatment of diseases. However, experimental methods of circRNA prediction remain expensive and time-consuming. Therefore, it is urgent to propose novel computational methods for the prediction of circRNA-disease associations. In this study, we develop a computational method called LLCDC that integrates the known circRNA-disease associations, circRNA semantic similarity network, disease semantic similarity network, reconstructed circRNA similarity network, and reconstructed disease similarity network to predict circRNAs related to human diseases. Specifically, the reconstructed similarity networks are obtained by using Locality-Constrained Linear Coding (LLC) on the known association matrix, cosine similarities of circRNAs and diseases. Then, the label propagation method is applied to the similarity networks, and four relevant score matrices are respectively obtained. Finally, we use 5-fold cross validation (5-fold CV) to evaluate the performance of LLCDC, and the AUC value of the method is 0.9177, indicating that our method performs better than the other three methods. In addition, case studies on gastric cancer, breast cancer and papillary thyroid carcinoma further verify the reliability of our method in predicting disease-associated circRNAs.Circular RNAs (circRNAs) are a new kind of endogenous non-coding RNAs, which have been discovered continuously. More and more studies have shown that circRNAs are related to the occurrence and development of human diseases. Identification of circRNAs associated with diseases can contribute to understand the pathogenesis, diagnosis and treatment of diseases. However, experimental methods of circRNA prediction remain expensive and time-consuming. Therefore, it is urgent to propose novel computational methods for the prediction of circRNA-disease associations. In this study, we develop a computational method called LLCDC that integrates the known circRNA-disease associations, circRNA semantic similarity network, disease semantic similarity network, reconstructed circRNA similarity network, and reconstructed disease similarity network to predict circRNAs related to human diseases. Specifically, the reconstructed similarity networks are obtained by using Locality-Constrained Linear Coding (LLC) on the known association matrix, cosine similarities of circRNAs and diseases. Then, the label propagation method is applied to the similarity networks, and four relevant score matrices are respectively obtained. Finally, we use 5-fold cross validation (5-fold CV) to evaluate the performance of LLCDC, and the AUC value of the method is 0.9177, indicating that our method performs better than the other three methods. In addition, case studies on gastric cancer, breast cancer and papillary thyroid carcinoma further verify the reliability of our method in predicting disease-associated circRNAs.
Author Zhao, Qi
Ge, Erxia
Gang, Mingjun
Fan, Chunlong
Yang, Yingjuan
Author_xml – sequence: 1
  givenname: Erxia
  surname: Ge
  fullname: Ge, Erxia
  organization: School of Mathematics, Liaoning University, Shenyang 110036, China
– sequence: 2
  givenname: Yingjuan
  surname: Yang
  fullname: Yang, Yingjuan
  organization: School of Mathematics, Liaoning University, Shenyang 110036, China
– sequence: 3
  givenname: Mingjun
  surname: Gang
  fullname: Gang, Mingjun
  organization: School of Mathematics, Jilin University, Changchun 130000, China
– sequence: 4
  givenname: Chunlong
  surname: Fan
  fullname: Fan, Chunlong
  organization: College of Computer Science, Shenyang Aerospace University, Shenyang 110136, China
– sequence: 5
  givenname: Qi
  surname: Zhao
  fullname: Zhao, Qi
  email: zhaoqi@lnu.edu.cn
  organization: College of Computer Science, Shenyang Aerospace University, Shenyang 110136, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31394170$$D View this record in MEDLINE/PubMed
BookMark eNqFkT1vFDEQhi0URC6BX4CEtqTZZfy19hYUURRIpAgQAonO8tpzwac9O9g-pPv3-LhAQUGasTR-3ime94ycxBSRkJcUBgp0fLMZ9ncY08CATgPoAYA-ISsKeur1KMYTsgKtda-k4KfkrJQNAExcs2fklFM-CapgRb59yuiDqyHedd93Wxs7Hwragr0tJblgK_rOhew-f7go3dw-fJdityRnl1D3vUux1GxDbPulTZs7l3y79pw8Xdul4IuH95x8fXf15fK6v_34_uby4rZ3fGK1lyMqwazgTAivtJykdlKhswymGVE5r5CzGaQXUs9KroHNTHjJGeN-tI6fk9fHu_c5_dhhqWYbisNlsRHTrhjGQdJJNyOPo0w1RXxUB_TVA7qbt-jNfQ5bm_fmj7gG8CPgciol4_ovQsEc6jEb87sec6jHgDatnpaa_km5UG0NKR4cLo9k3x6z2Gz-DJhNcQGja_VldNX4FP6b_wVbfqvh
CitedBy_id crossref_primary_10_1016_j_gene_2020_145040
crossref_primary_10_1007_s40291_020_00499_y
crossref_primary_10_1007_s00438_020_01727_0
crossref_primary_10_1186_s13018_022_03072_x
crossref_primary_10_1109_TCE_2025_3575785
crossref_primary_10_1186_s12890_023_02717_9
crossref_primary_10_3389_fgene_2020_540751
crossref_primary_10_1038_s41598_020_70484_2
crossref_primary_10_1016_j_critrevonc_2022_103662
crossref_primary_10_1093_bib_bbac388
crossref_primary_10_1186_s12859_022_04883_9
crossref_primary_10_1093_bib_bbad410
crossref_primary_10_1186_s12859_021_04231_3
crossref_primary_10_1097_MD_0000000000037549
crossref_primary_10_1093_bfgp_elad042
crossref_primary_10_1093_bib_bbab494
crossref_primary_10_3389_fcell_2021_647736
crossref_primary_10_3389_fbioe_2020_00176
crossref_primary_10_1109_TCBBIO_2025_3525780
crossref_primary_10_1093_bib_bbac613
crossref_primary_10_1007_s12539_021_00458_z
crossref_primary_10_1093_bib_bbab444
crossref_primary_10_1186_s12864_023_09273_w
crossref_primary_10_1109_TCBB_2024_3402248
crossref_primary_10_26599_BDMA_2025_9020027
crossref_primary_10_1007_s12539_021_00455_2
crossref_primary_10_1109_JBHI_2023_3344714
crossref_primary_10_1016_j_ymeth_2023_06_006
crossref_primary_10_1111_jcmm_18180
crossref_primary_10_1007_s13042_024_02375_1
crossref_primary_10_1093_bib_bbab286
crossref_primary_10_1093_bib_bbac155
crossref_primary_10_1109_TCBB_2024_3488281
crossref_primary_10_1093_bib_bbaa350
crossref_primary_10_1007_s12539_023_00590_y
crossref_primary_10_1109_TCBB_2021_3111607
crossref_primary_10_1016_j_compbiomed_2023_107414
crossref_primary_10_1016_j_ygeno_2021_02_002
crossref_primary_10_1007_s00521_022_07128_1
crossref_primary_10_1093_bib_bbad259
crossref_primary_10_1007_s12539_025_00725_3
crossref_primary_10_1016_j_jbi_2020_103624
crossref_primary_10_1016_j_knosys_2024_111622
crossref_primary_10_1109_TCYB_2021_3090756
Cites_doi 10.1093/bib/bbx130
10.1093/bioinformatics/bty503
10.1093/bioinformatics/btt426
10.1016/j.semcancer.2014.04.002
10.1093/bioinformatics/btz297
10.1039/C7MB00290D
10.1093/bib/bbv066
10.1186/s12859-018-2522-6
10.2217/epi-2017-0055
10.1093/database/bay044
10.1038/s41419-018-0503-3
10.1002/cam4.1055
10.18632/oncotarget.17307
10.1016/j.canlet.2017.03.027
10.1038/s41598-017-09076-6
10.1038/s41419-017-0003-x
10.1016/j.gpb.2017.02.002
10.7150/ijbs.28260
10.1371/journal.pcbi.1004975
10.1038/nature11993
10.3389/fgene.2018.00239
10.3892/mmr.2017.6916
10.1080/15384101.2017.1380135
10.1093/bib/bby098
10.3389/fgene.2018.00576
10.1016/j.biopha.2016.12.097
10.1371/journal.pcbi.1005912
10.1093/nar/gkj102
10.1093/bioinformatics/bty333
10.1038/cdd.2017.86
10.2174/0929866525666180905104904
10.1016/j.neucom.2014.11.053
10.1002/jcb.26201
10.1007/978-3-319-31753-3_47
10.1093/bioinformatics/btq241
10.1039/C7RA05348G
10.1016/j.cca.2017.10.011
10.1016/j.canlet.2015.06.003
10.1016/j.neucom.2017.07.065
10.3390/molecules22122056
10.1080/21541264.2015.1071301
10.1089/dna.2017.3862
10.1371/journal.pcbi.1006418
10.18632/oncotarget.15061
10.1016/j.omtn.2018.09.020
10.3390/ijms19113410
10.1038/nature11928
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.ygeno.2019.08.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
EISSN 1089-8646
EndPage 1342
ExternalDocumentID 31394170
10_1016_j_ygeno_2019_08_001
S0888754319304203
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.55
.GJ
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYOK
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABUDA
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPSJ
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BAWUL
BKOJK
BLXMC
CAG
COF
CS3
DIK
DM4
DOVZS
DU5
E3Z
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HLW
HVGLF
HZ~
IHE
IXB
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
TN5
TR2
VH1
WUQ
X7M
XPP
XSW
ZA5
ZGI
ZMT
ZU3
ZXP
~G-
~KM
9DU
AAFWJ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
7S9
L.6
ID FETCH-LOGICAL-c392t-56e742a43244d785958c57eca209bee7cd7e32b05d458b75f02b24d53223d6ac3
ISICitedReferencesCount 56
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000514071600033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0888-7543
1089-8646
IngestDate Sun Sep 28 06:35:14 EDT 2025
Thu Oct 02 11:43:58 EDT 2025
Wed Feb 19 02:29:47 EST 2025
Sat Nov 29 07:18:04 EST 2025
Tue Nov 18 22:29:49 EST 2025
Fri Feb 23 02:47:48 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Cosine similarity
LLC
circRNA
Disease
ROC
FPR
DAG
Label propagation
AUC
SVT
Locality-constrained linear coding
TPR
HPRD
Association prediction
5-fold CV
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c392t-56e742a43244d785958c57eca209bee7cd7e32b05d458b75f02b24d53223d6ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31394170
PQID 2270003674
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2305198864
proquest_miscellaneous_2270003674
pubmed_primary_31394170
crossref_primary_10_1016_j_ygeno_2019_08_001
crossref_citationtrail_10_1016_j_ygeno_2019_08_001
elsevier_sciencedirect_doi_10_1016_j_ygeno_2019_08_001
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Genomics (San Diego, Calif.)
PublicationTitleAlternate Genomics
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhao, Chen, Yin (bb0240) 2019
Memczak, Jens, Elefsinioti, Torti, Krueger, Rybak, Maier, Mackowiak, Gregersen, Munschauer (bb0005) 2013; 495
Tang, Zhao, Zou, Duan, Zhi, Yang, Yang, Wang (bb0205) 2017; 36
Milanese, Tibiche, Zaman, Zou, Han, Meng, Nantel, Droit, Wang (bb0265) 2018
Wang, Wang, Lu, Song, Cui (bb0270) 2010; 26
Gao, Zhang, Liu, Meng, Fang, Guo, Li (bb0190) 2017; 9
Yan, Wang, Wu (bb0110) 2018; 19
Xiao, Luo, Dai (bb0115) 2019
Fan, Lei, Wu (bb0105) 2018; 14
Zhao, Yang, Ren, Ge, Fan (bb0120) 2019
Wang, Zaman, McGee, Milanese, Masoudi-Nejad, O'Connor-McCourt (bb0220) 2015; 30
Chen, Yan, Zhang, Zhang, Dai, Yin, Zhang (bb0245) 2016; 17
Liao, Guan, Wu, Zhang (bb0140) 2016
He, Xie, Xu, Li, Li (bb0025) 2017; 396
Saffari, Ebrahimi-Moghadam (bb0280) 2015; 153
Hu, Zhang, Ai, Zhang, Fan, Zhao, Liu (bb0080) 2018; 15
Yu, Zhang, Chen, Cheng (bb0295) 2018; 9
Hu, Zhu, Ai, Zhang, Zhao, Zhao, Liu (bb0075) 2017; 13
You, Huang (bb0050) 2017; vol. 13
Tian, Chen, Li, Xiao (bb0150) 2017; 32
Chen, Yin, Qu, Huang (bb0235) 2018; 14
Zhao, Liang, Hu, Ren, Liu (bb0085) 2018; 25
Chen, Wang, Qu, Guan, Li (bb0060) 2018; 34
Huang, Shan (bb0010) 2015; 6
Lü, Sun, Shi, Kong, Xu, He, Zhang, Wang (bb0185) 2017; 8
Chen, Yan (bb0225) 2013; 29
McGee, Tibiche, Trifiro, Wang (bb0260) 2017; 15
Fan, Lei, Fang, Jiang, Wu (bb0035) 2018; 2018
Pan, Li, Jiang, Pan, Ding, Huang, Yu, Kong (bb0165) 2018; 119
Chen, Huang, Xie, Zhao (bb0055) 2018; 9
Zhu, Xu, Chen, Yan (bb0030) 2017; 88
Zhao, Yu, Ming, Hu, Ren, Liu (bb0090) 2018; 13
Chen, Xie, Wang, Zhao, You, Liu (bb0065) 2018; 34
Yin, Yan, Fang, Guo, Xiong, Zhang (bb0195) 2018; 487
Chen, Ren, Chen, Wang, Zhang, Yan (bb0255) 2016; 12
Kanehisa, Goto, Hattori, Aoki-Kinoshita, Itoh, Kawashima, Katayama, Araki, Hirakawa (bb0135) 2006; 34
Hansen, Jensen, Clausen, Bramsen, Finsen, Damgaard, Kjems (bb0020) 2013; 495
Zhao, Wang, Wu, Wang, Zhang, Hu, Liu, Jiang (bb0040) 2018; 9
Huang, Jie, Zou, Weng (bb0155) 2017; 16
Li, Lin, Gu (bb0130) 2017; 7
Li, Shao, Fu, Xie, Zhu, Sun, Yu, Xiao, Guo (bb0160) 2017; 96
Qu, Yang, Li, Wang, Gao, Shang, Sun, Dou, Li (bb0015) 2015; 365
Shao, Li, Lu, Li, Yang, Xiao, Guo (bb0145) 2017; 6
Chen, Guan, Sun, Li, Qu (bb0250) 2018
Wang, Yang, Kai, Lv, Huang, Gong (bb0275) 2010
Chen, Xie, Zhao, You (bb0070) 2019; 20
Chen, Huang (bb0045) 2017; 13
Chen, Yan, Zhang, You (bb0230) 2017; 18
Li, Rong, Chen, Yan, You (bb0125) 2017; 8
Zhao, Zhang, Hu, Ren, Zhang, Liu (bb0095) 2018; 9
Lai, Yang, Yan, Li, Li, Wang, Shen, Ye, Jiang, Wang (bb0175) 2017; 16
Peng, Shi, Zhang, Hu, Wang, Ye (bb0215) 2017; 12
Yang, Du, Wu, Yang, Awan, Fang, Ma, Li, Zeng, Yang (bb0210) 2017; 24
Liang, Zhang, Liu, Jia, Li (bb0200) 2017; 7
Zhang, Chen, Li (bb0285) 2017; 22
Zhao, Li, Gao, Jian, Hao, Rao, Li (bb0170) 2017; 7
Zhang, Qu, Zhang, Wang (bb0290) 2018; 273
Lei, Fang, Chen, Wu (bb0100) 2018; 19
Dang, Ouyang, Zhang, Wang, Lin, Sun, Wang, Wang, Huang (bb0180) 2017; 7
Pan (10.1016/j.ygeno.2019.08.001_bb0165) 2018; 119
Chen (10.1016/j.ygeno.2019.08.001_bb0235) 2018; 14
Hu (10.1016/j.ygeno.2019.08.001_bb0080) 2018; 15
Huang (10.1016/j.ygeno.2019.08.001_bb0155) 2017; 16
Zhao (10.1016/j.ygeno.2019.08.001_bb0085) 2018; 25
Peng (10.1016/j.ygeno.2019.08.001_bb0215) 2017; 12
Zhang (10.1016/j.ygeno.2019.08.001_bb0285) 2017; 22
Chen (10.1016/j.ygeno.2019.08.001_bb0070) 2019; 20
Xiao (10.1016/j.ygeno.2019.08.001_bb0115) 2019
Chen (10.1016/j.ygeno.2019.08.001_bb0060) 2018; 34
Zhao (10.1016/j.ygeno.2019.08.001_bb0170) 2017; 7
Fan (10.1016/j.ygeno.2019.08.001_bb0035) 2018; 2018
Yin (10.1016/j.ygeno.2019.08.001_bb0195) 2018; 487
Zhao (10.1016/j.ygeno.2019.08.001_bb0095) 2018; 9
Li (10.1016/j.ygeno.2019.08.001_bb0130) 2017; 7
Zhao (10.1016/j.ygeno.2019.08.001_bb0240) 2019
Milanese (10.1016/j.ygeno.2019.08.001_bb0265) 2018
Tang (10.1016/j.ygeno.2019.08.001_bb0205) 2017; 36
Wang (10.1016/j.ygeno.2019.08.001_bb0270) 2010; 26
Li (10.1016/j.ygeno.2019.08.001_bb0125) 2017; 8
Yu (10.1016/j.ygeno.2019.08.001_bb0295) 2018; 9
Dang (10.1016/j.ygeno.2019.08.001_bb0180) 2017; 7
Gao (10.1016/j.ygeno.2019.08.001_bb0190) 2017; 9
Zhao (10.1016/j.ygeno.2019.08.001_bb0040) 2018; 9
Qu (10.1016/j.ygeno.2019.08.001_bb0015) 2015; 365
Zhu (10.1016/j.ygeno.2019.08.001_bb0030) 2017; 88
Chen (10.1016/j.ygeno.2019.08.001_bb0255) 2016; 12
Chen (10.1016/j.ygeno.2019.08.001_bb0245) 2016; 17
He (10.1016/j.ygeno.2019.08.001_bb0025) 2017; 396
Chen (10.1016/j.ygeno.2019.08.001_bb0250) 2018
Wang (10.1016/j.ygeno.2019.08.001_bb0220) 2015; 30
Hansen (10.1016/j.ygeno.2019.08.001_bb0020) 2013; 495
Shao (10.1016/j.ygeno.2019.08.001_bb0145) 2017; 6
Yang (10.1016/j.ygeno.2019.08.001_bb0210) 2017; 24
Zhang (10.1016/j.ygeno.2019.08.001_bb0290) 2018; 273
Chen (10.1016/j.ygeno.2019.08.001_bb0045) 2017; 13
Chen (10.1016/j.ygeno.2019.08.001_bb0230) 2017; 18
Liang (10.1016/j.ygeno.2019.08.001_bb0200) 2017; 7
Chen (10.1016/j.ygeno.2019.08.001_bb0225) 2013; 29
You (10.1016/j.ygeno.2019.08.001_bb0050) 2017; vol. 13
Memczak (10.1016/j.ygeno.2019.08.001_bb0005) 2013; 495
McGee (10.1016/j.ygeno.2019.08.001_bb0260) 2017; 15
Saffari (10.1016/j.ygeno.2019.08.001_bb0280) 2015; 153
Lü (10.1016/j.ygeno.2019.08.001_bb0185) 2017; 8
Zhao (10.1016/j.ygeno.2019.08.001_bb0120) 2019
Chen (10.1016/j.ygeno.2019.08.001_bb0065) 2018; 34
Yan (10.1016/j.ygeno.2019.08.001_bb0110) 2018; 19
Chen (10.1016/j.ygeno.2019.08.001_bb0055) 2018; 9
Wang (10.1016/j.ygeno.2019.08.001_bb0275) 2010
Liao (10.1016/j.ygeno.2019.08.001_bb0140) 2016
Li (10.1016/j.ygeno.2019.08.001_bb0160) 2017; 96
Huang (10.1016/j.ygeno.2019.08.001_bb0010) 2015; 6
Fan (10.1016/j.ygeno.2019.08.001_bb0105) 2018; 14
Kanehisa (10.1016/j.ygeno.2019.08.001_bb0135) 2006; 34
Lai (10.1016/j.ygeno.2019.08.001_bb0175) 2017; 16
Tian (10.1016/j.ygeno.2019.08.001_bb0150) 2017; 32
Zhao (10.1016/j.ygeno.2019.08.001_bb0090) 2018; 13
Hu (10.1016/j.ygeno.2019.08.001_bb0075) 2017; 13
Lei (10.1016/j.ygeno.2019.08.001_bb0100) 2018; 19
References_xml – volume: 25
  start-page: 830
  year: 2018
  end-page: 837
  ident: bb0085
  article-title: RWLPAP: random walk for lncRNA-protein associations prediction
  publication-title: Prot. Pept. Lett.
– volume: 14
  year: 2018
  ident: bb0235
  article-title: MDHGI: matrix decomposition and heterogeneous graph inference for miRNA-disease association prediction
  publication-title: PLoS Comput. Biol.
– volume: 119
  start-page: 440
  year: 2018
  end-page: 446
  ident: bb0165
  article-title: Overexpression of circular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PI3K/AKT signaling pathway
  publication-title: J. Cell. Biochem.
– volume: 22
  start-page: 2056
  year: 2017
  ident: bb0285
  article-title: Drug-target interaction prediction through label propagation with linear neighborhood information
  publication-title: Molecules
– volume: 495
  start-page: 384
  year: 2013
  ident: bb0020
  article-title: Natural RNA circles function as efficient microRNA sponges
  publication-title: Nature
– volume: 12
  year: 2016
  ident: bb0255
  article-title: NLLSS: predicting synergistic drug combinations based on semi-supervised learning
  publication-title: PLoS Comput. Biol.
– volume: 2018
  start-page: bay044
  year: 2018
  ident: bb0035
  article-title: CircR2Disease: a manually curated database for experimentally supported circular RNAs associated with various diseases
  publication-title: Database
– volume: 273
  start-page: 526
  year: 2018
  end-page: 534
  ident: bb0290
  article-title: The linear neighborhood propagation method for predicting long non-coding RNA–protein interactions
  publication-title: Neurocomputing
– volume: 6
  start-page: 1173
  year: 2017
  end-page: 1180
  ident: bb0145
  article-title: Global circular RNA expression profile of human gastric cancer and its clinical significance
  publication-title: Cancer Med.
– volume: 7
  start-page: 1566
  year: 2017
  end-page: 1576
  ident: bb0200
  article-title: Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271
  publication-title: Am. J. Cancer Res.
– volume: 495
  start-page: 333
  year: 2013
  end-page: 338
  ident: bb0005
  article-title: Circular RNAs are a large class of animal RNAs with regulatory potency
  publication-title: Nature
– volume: 26
  start-page: 1644
  year: 2010
  end-page: 1650
  ident: bb0270
  article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases
  publication-title: Bioinformatics
– volume: 12
  year: 2017
  ident: bb0215
  article-title: Microarray profiling of circular RNAs in human papillary thyroid carcinoma
  publication-title: PLoS One
– volume: 13
  start-page: 1781
  year: 2017
  end-page: 1787
  ident: bb0075
  article-title: LPI-ETSLP: lncRNA–protein interaction prediction using eigenvalue transformation-based semi-supervised link prediction
  publication-title: Mol. BioSyst.
– volume: 14
  start-page: 1950
  year: 2018
  end-page: 1959
  ident: bb0105
  article-title: Prediction of CircRNA-disease associations using KATZ model based on heterogeneous networks
  publication-title: Int. J. Biol. Sci.
– volume: 6
  start-page: 61
  year: 2015
  end-page: 64
  ident: bb0010
  article-title: What happens at or after transcription: insights into circRNA biogenesis and function
  publication-title: Transcription
– volume: 88
  start-page: 138
  year: 2017
  end-page: 144
  ident: bb0030
  article-title: Circular BANP, an upregulated circular RNA that modulates cell proliferation in colorectal cancer
  publication-title: Biomed. Pharmacother.
– volume: 29
  start-page: 2617
  year: 2013
  end-page: 2624
  ident: bb0225
  article-title: Novel human lncRNA-disease association inference based on lncRNA expression profiles
  publication-title: Bioinformatics
– volume: 24
  start-page: 1609
  year: 2017
  ident: bb0210
  article-title: A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation
  publication-title: Cell Death Different.
– volume: 36
  start-page: 901
  year: 2017
  ident: bb0205
  article-title: Circular RNA hsa_circ_0001982 promotes breast cancer cell carcinogenesis through decreasing miR-143
  publication-title: Dna Cell Biol.
– volume: 34
  start-page: 3178
  year: 2018
  end-page: 3186
  ident: bb0065
  article-title: BNPMDA: bipartite network projection for MiRNA-disease association prediction
  publication-title: Bioinformatics
– volume: 16
  start-page: 2469
  year: 2017
  end-page: 2476
  ident: bb0155
  article-title: Expression profile of circular RNAs in human gastric cancer tissues
  publication-title: Mol. Med. Rep.
– start-page: 1
  year: 2019
  ident: bb0115
  article-title: Computational prediction of human disease-associated circRNAs based on manifold regularization learning framework
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 18
  start-page: 558
  year: 2017
  end-page: 576
  ident: bb0230
  article-title: Long non-coding RNAs and complex diseases: from experimental results to computational models
  publication-title: Brief. Bioinform.
– start-page: 591
  year: 2016
  end-page: 604
  ident: bb0140
  article-title: Predicting unknown interactions between known drugs and targets via matrix completion
  publication-title: Lect. Notes Comput. Sci
– volume: 30
  start-page: 4
  year: 2015
  end-page: 12
  ident: bb0220
  article-title: Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data
  publication-title: Semin. Cancer Biol.
– year: 2018
  ident: bb0265
  article-title: Germline genomic landscapes of breast cancer patients significantly predict clinical outcomes
  publication-title: bioRxiv
– volume: 34
  start-page: D354
  year: 2006
  end-page: D357
  ident: bb0135
  article-title: From genomics to chemical genomics: new developments in KEGG
  publication-title: Nucleic Acids Res.
– volume: 9
  start-page: 3
  year: 2018
  ident: bb0055
  article-title: EGBMMDA: extreme gradient boosting machine for MiRNA-disease association prediction
  publication-title: Cell Death Dis.
– volume: 34
  start-page: 4256
  year: 2018
  end-page: 4265
  ident: bb0060
  article-title: Predicting miRNA-disease association based on inductive matrix completion
  publication-title: Bioinformatics
– volume: 13
  start-page: 464
  year: 2018
  end-page: 471
  ident: bb0090
  article-title: The bipartite network projection-recommended algorithm for predicting long non-coding RNA-protein interactions
  publication-title: Mol. Ther. Nucl. Acids
– volume: 8
  start-page: 44096
  year: 2017
  end-page: 44107
  ident: bb0185
  article-title: Identification of circular RNAs as a promising new class of diagnostic biomarkers for human breast cancer
  publication-title: Oncotarget
– year: 2019
  ident: bb0240
  article-title: Adaptive boosting-based computational model for predicting potential miRNA-disease associations
  publication-title: Bioinformatics
– volume: 9
  start-page: 475
  year: 2018
  ident: bb0040
  article-title: circRNA disease: a manually curated database of experimentally supported circRNA-disease associations
  publication-title: Cell Death Dis.
– volume: 9
  start-page: 1175
  year: 2017
  end-page: 1188
  ident: bb0190
  article-title: Screening circular RNA related to chemotherapeutic resistance in breast cancer
  publication-title: Epigenomics
– volume: 15
  start-page: 797
  year: 2018
  end-page: 806
  ident: bb0080
  article-title: HLPI-ensemble: prediction of human lncRNA-protein interactions based on ensemble strategy
  publication-title: RNA Biol.
– volume: 15
  start-page: 121
  year: 2017
  end-page: 129
  ident: bb0260
  article-title: Network analysis reveals a signaling regulatory loop in the PIK3CA-mutated breast cancer predicting survival outcome
  publication-title: Genom. Proteom. Bioinform.
– volume: 9
  start-page: 576
  year: 2018
  ident: bb0295
  article-title: LLCMDA: a novel method for predicting miRNA gene and disease relationship based on locality-constrained linear coding
  publication-title: Front. Genet.
– volume: vol. 13
  year: 2017
  ident: bb0050
  article-title: PBMDA: A Novel and Effective Path-based Computational Model for miRNA-disease Association Prediction
– volume: 20
  start-page: 515
  year: 2019
  end-page: 539
  ident: bb0070
  article-title: MicroRNAs and complex diseases: from experimental results to computational models
  publication-title: Brief. Bioinform.
– year: 2019
  ident: bb0120
  article-title: Integrating bipartite network projection and KATZ measure to identify novel CircRNA-disease associations
  publication-title: IEEE Trans. Nanobiosci.
– volume: 17
  start-page: 696
  year: 2016
  end-page: 712
  ident: bb0245
  article-title: Drug-target interaction prediction: databases, web servers and computational models
  publication-title: Brief. Bioinform.
– volume: 19
  start-page: 520
  year: 2018
  ident: bb0110
  article-title: DWNN-RLS: regularized least squares method for predicting circRNA-disease associations
  publication-title: BMC Bioinform.
– start-page: 3360
  year: 2010
  end-page: 3367
  ident: bb0275
  article-title: Locality-constrained linear coding for image classification
  publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– volume: 396
  start-page: 138
  year: 2017
  ident: bb0025
  article-title: Circular RNAs and cancer
  publication-title: Cancer Lett.
– volume: 365
  start-page: 141
  year: 2015
  end-page: 148
  ident: bb0015
  article-title: Circular RNA: a new star of noncoding RNAs
  publication-title: Cancer Lett.
– year: 2018
  ident: bb0250
  article-title: MicroRNA-small molecule association identification: from experimental results to computational models
  publication-title: Brief. Bioinform.
– volume: 8
  start-page: 21187
  year: 2017
  end-page: 21199
  ident: bb0125
  article-title: MCMDA: matrix completion for MiRNA-disease association prediction
  publication-title: Oncotarget
– volume: 7
  start-page: 9060
  year: 2017
  ident: bb0180
  article-title: Circular RNAs expression profiles in human gastric cancer
  publication-title: Sci. Rep.
– volume: 19
  start-page: 3410
  year: 2018
  ident: bb0100
  article-title: PWCDA: path weighted method for predicting circRNA-disease associations
  publication-title: Int. J. Mol. Sci.
– volume: 32
  year: 2017
  ident: bb0150
  article-title: Reduced expression of circRNA hsa_circ_0003159 in gastric cancer and its clinical significance
  publication-title: J. Clin. Lab. Anal.
– volume: 7
  year: 2017
  ident: bb0170
  article-title: Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease
  publication-title: Sci. Rep.
– volume: 487
  start-page: 363
  year: 2018
  end-page: 368
  ident: bb0195
  article-title: Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection
  publication-title: Clin. Chim. Acta
– volume: 9
  start-page: 239
  year: 2018
  ident: bb0095
  article-title: IRWNRLPI: integrating random walk and neighborhood regularized logistic matrix factorization for lncRNA-protein interaction prediction
  publication-title: Front. Genet.
– volume: 7
  start-page: 32216
  year: 2017
  end-page: 32224
  ident: bb0130
  article-title: A network similarity integration method for predicting microRNA-disease associations
  publication-title: RSC Adv.
– volume: 16
  start-page: 2301
  year: 2017
  end-page: 2311
  ident: bb0175
  article-title: Analysis of co-expression networks for circular RNAs and mRNAs reveals that circular RNAs hsa_circ_0047905, hsa_circ_0138960 and has-circRNA7690-15 are candidate oncogenes in gastric cancer
  publication-title: Cell Cycle
– volume: 153
  start-page: 41
  year: 2015
  end-page: 53
  ident: bb0280
  article-title: Label propagation based on local information with adaptive determination of number and degree of neighbor's similarity
  publication-title: Neurocomputing
– volume: 96
  start-page: 1
  year: 2017
  end-page: 12
  ident: bb0160
  article-title: Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection
  publication-title: J. Mol. Med.
– volume: 13
  start-page: e1005912
  year: 2017
  ident: bb0045
  article-title: LRSSLMDA: laplacian regularized sparse subspace learning for MiRNA-disease association prediction
  publication-title: PLoS Comput. Biol.
– volume: vol. 13
  year: 2017
  ident: 10.1016/j.ygeno.2019.08.001_bb0050
– volume: 20
  start-page: 515
  year: 2019
  ident: 10.1016/j.ygeno.2019.08.001_bb0070
  article-title: MicroRNAs and complex diseases: from experimental results to computational models
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbx130
– year: 2018
  ident: 10.1016/j.ygeno.2019.08.001_bb0265
  article-title: Germline genomic landscapes of breast cancer patients significantly predict clinical outcomes
  publication-title: bioRxiv
– volume: 34
  start-page: 4256
  year: 2018
  ident: 10.1016/j.ygeno.2019.08.001_bb0060
  article-title: Predicting miRNA-disease association based on inductive matrix completion
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty503
– volume: 12
  year: 2017
  ident: 10.1016/j.ygeno.2019.08.001_bb0215
  article-title: Microarray profiling of circular RNAs in human papillary thyroid carcinoma
  publication-title: PLoS One
– volume: 32
  year: 2017
  ident: 10.1016/j.ygeno.2019.08.001_bb0150
  article-title: Reduced expression of circRNA hsa_circ_0003159 in gastric cancer and its clinical significance
  publication-title: J. Clin. Lab. Anal.
– volume: 29
  start-page: 2617
  year: 2013
  ident: 10.1016/j.ygeno.2019.08.001_bb0225
  article-title: Novel human lncRNA-disease association inference based on lncRNA expression profiles
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt426
– start-page: 1
  year: 2019
  ident: 10.1016/j.ygeno.2019.08.001_bb0115
  article-title: Computational prediction of human disease-associated circRNAs based on manifold regularization learning framework
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 30
  start-page: 4
  year: 2015
  ident: 10.1016/j.ygeno.2019.08.001_bb0220
  article-title: Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2014.04.002
– year: 2019
  ident: 10.1016/j.ygeno.2019.08.001_bb0240
  article-title: Adaptive boosting-based computational model for predicting potential miRNA-disease associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz297
– volume: 15
  start-page: 797
  year: 2018
  ident: 10.1016/j.ygeno.2019.08.001_bb0080
  article-title: HLPI-ensemble: prediction of human lncRNA-protein interactions based on ensemble strategy
  publication-title: RNA Biol.
– volume: 13
  start-page: 1781
  year: 2017
  ident: 10.1016/j.ygeno.2019.08.001_bb0075
  article-title: LPI-ETSLP: lncRNA–protein interaction prediction using eigenvalue transformation-based semi-supervised link prediction
  publication-title: Mol. BioSyst.
  doi: 10.1039/C7MB00290D
– volume: 17
  start-page: 696
  year: 2016
  ident: 10.1016/j.ygeno.2019.08.001_bb0245
  article-title: Drug-target interaction prediction: databases, web servers and computational models
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbv066
– volume: 18
  start-page: 558
  year: 2017
  ident: 10.1016/j.ygeno.2019.08.001_bb0230
  article-title: Long non-coding RNAs and complex diseases: from experimental results to computational models
  publication-title: Brief. Bioinform.
– volume: 19
  start-page: 520
  year: 2018
  ident: 10.1016/j.ygeno.2019.08.001_bb0110
  article-title: DWNN-RLS: regularized least squares method for predicting circRNA-disease associations
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-018-2522-6
– volume: 9
  start-page: 1175
  year: 2017
  ident: 10.1016/j.ygeno.2019.08.001_bb0190
  article-title: Screening circular RNA related to chemotherapeutic resistance in breast cancer
  publication-title: Epigenomics
  doi: 10.2217/epi-2017-0055
– volume: 2018
  start-page: bay044
  year: 2018
  ident: 10.1016/j.ygeno.2019.08.001_bb0035
  article-title: CircR2Disease: a manually curated database for experimentally supported circular RNAs associated with various diseases
  publication-title: Database
  doi: 10.1093/database/bay044
– volume: 9
  start-page: 475
  year: 2018
  ident: 10.1016/j.ygeno.2019.08.001_bb0040
  article-title: circRNA disease: a manually curated database of experimentally supported circRNA-disease associations
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-018-0503-3
– volume: 6
  start-page: 1173
  year: 2017
  ident: 10.1016/j.ygeno.2019.08.001_bb0145
  article-title: Global circular RNA expression profile of human gastric cancer and its clinical significance
  publication-title: Cancer Med.
  doi: 10.1002/cam4.1055
– volume: 8
  start-page: 44096
  year: 2017
  ident: 10.1016/j.ygeno.2019.08.001_bb0185
  article-title: Identification of circular RNAs as a promising new class of diagnostic biomarkers for human breast cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.17307
– volume: 396
  start-page: 138
  year: 2017
  ident: 10.1016/j.ygeno.2019.08.001_bb0025
  article-title: Circular RNAs and cancer
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2017.03.027
– volume: 7
  start-page: 9060
  year: 2017
  ident: 10.1016/j.ygeno.2019.08.001_bb0180
  article-title: Circular RNAs expression profiles in human gastric cancer
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-09076-6
– volume: 9
  start-page: 3
  year: 2018
  ident: 10.1016/j.ygeno.2019.08.001_bb0055
  article-title: EGBMMDA: extreme gradient boosting machine for MiRNA-disease association prediction
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-017-0003-x
– volume: 15
  start-page: 121
  year: 2017
  ident: 10.1016/j.ygeno.2019.08.001_bb0260
  article-title: Network analysis reveals a signaling regulatory loop in the PIK3CA-mutated breast cancer predicting survival outcome
  publication-title: Genom. Proteom. Bioinform.
  doi: 10.1016/j.gpb.2017.02.002
– volume: 14
  start-page: 1950
  year: 2018
  ident: 10.1016/j.ygeno.2019.08.001_bb0105
  article-title: Prediction of CircRNA-disease associations using KATZ model based on heterogeneous networks
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.28260
– volume: 12
  year: 2016
  ident: 10.1016/j.ygeno.2019.08.001_bb0255
  article-title: NLLSS: predicting synergistic drug combinations based on semi-supervised learning
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004975
– volume: 495
  start-page: 384
  year: 2013
  ident: 10.1016/j.ygeno.2019.08.001_bb0020
  article-title: Natural RNA circles function as efficient microRNA sponges
  publication-title: Nature
  doi: 10.1038/nature11993
– start-page: 3360
  year: 2010
  ident: 10.1016/j.ygeno.2019.08.001_bb0275
  article-title: Locality-constrained linear coding for image classification
– volume: 9
  start-page: 239
  year: 2018
  ident: 10.1016/j.ygeno.2019.08.001_bb0095
  article-title: IRWNRLPI: integrating random walk and neighborhood regularized logistic matrix factorization for lncRNA-protein interaction prediction
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2018.00239
– volume: 16
  start-page: 2469
  year: 2017
  ident: 10.1016/j.ygeno.2019.08.001_bb0155
  article-title: Expression profile of circular RNAs in human gastric cancer tissues
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2017.6916
– volume: 16
  start-page: 2301
  year: 2017
  ident: 10.1016/j.ygeno.2019.08.001_bb0175
  article-title: Analysis of co-expression networks for circular RNAs and mRNAs reveals that circular RNAs hsa_circ_0047905, hsa_circ_0138960 and has-circRNA7690-15 are candidate oncogenes in gastric cancer
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2017.1380135
– year: 2018
  ident: 10.1016/j.ygeno.2019.08.001_bb0250
  article-title: MicroRNA-small molecule association identification: from experimental results to computational models
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bby098
– volume: 9
  start-page: 576
  year: 2018
  ident: 10.1016/j.ygeno.2019.08.001_bb0295
  article-title: LLCMDA: a novel method for predicting miRNA gene and disease relationship based on locality-constrained linear coding
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2018.00576
– volume: 88
  start-page: 138
  year: 2017
  ident: 10.1016/j.ygeno.2019.08.001_bb0030
  article-title: Circular BANP, an upregulated circular RNA that modulates cell proliferation in colorectal cancer
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2016.12.097
– volume: 13
  start-page: e1005912
  year: 2017
  ident: 10.1016/j.ygeno.2019.08.001_bb0045
  article-title: LRSSLMDA: laplacian regularized sparse subspace learning for MiRNA-disease association prediction
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005912
– volume: 34
  start-page: D354
  year: 2006
  ident: 10.1016/j.ygeno.2019.08.001_bb0135
  article-title: From genomics to chemical genomics: new developments in KEGG
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkj102
– volume: 34
  start-page: 3178
  year: 2018
  ident: 10.1016/j.ygeno.2019.08.001_bb0065
  article-title: BNPMDA: bipartite network projection for MiRNA-disease association prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty333
– volume: 24
  start-page: 1609
  year: 2017
  ident: 10.1016/j.ygeno.2019.08.001_bb0210
  article-title: A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation
  publication-title: Cell Death Different.
  doi: 10.1038/cdd.2017.86
– volume: 25
  start-page: 830
  year: 2018
  ident: 10.1016/j.ygeno.2019.08.001_bb0085
  article-title: RWLPAP: random walk for lncRNA-protein associations prediction
  publication-title: Prot. Pept. Lett.
  doi: 10.2174/0929866525666180905104904
– volume: 96
  start-page: 1
  year: 2017
  ident: 10.1016/j.ygeno.2019.08.001_bb0160
  article-title: Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection
  publication-title: J. Mol. Med.
– volume: 153
  start-page: 41
  year: 2015
  ident: 10.1016/j.ygeno.2019.08.001_bb0280
  article-title: Label propagation based on local information with adaptive determination of number and degree of neighbor's similarity
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.11.053
– volume: 119
  start-page: 440
  year: 2018
  ident: 10.1016/j.ygeno.2019.08.001_bb0165
  article-title: Overexpression of circular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PI3K/AKT signaling pathway
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.26201
– start-page: 591
  year: 2016
  ident: 10.1016/j.ygeno.2019.08.001_bb0140
  article-title: Predicting unknown interactions between known drugs and targets via matrix completion
  publication-title: Lect. Notes Comput. Sci
  doi: 10.1007/978-3-319-31753-3_47
– volume: 26
  start-page: 1644
  year: 2010
  ident: 10.1016/j.ygeno.2019.08.001_bb0270
  article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq241
– volume: 7
  start-page: 32216
  year: 2017
  ident: 10.1016/j.ygeno.2019.08.001_bb0130
  article-title: A network similarity integration method for predicting microRNA-disease associations
  publication-title: RSC Adv.
  doi: 10.1039/C7RA05348G
– volume: 487
  start-page: 363
  year: 2018
  ident: 10.1016/j.ygeno.2019.08.001_bb0195
  article-title: Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2017.10.011
– volume: 365
  start-page: 141
  year: 2015
  ident: 10.1016/j.ygeno.2019.08.001_bb0015
  article-title: Circular RNA: a new star of noncoding RNAs
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2015.06.003
– volume: 273
  start-page: 526
  year: 2018
  ident: 10.1016/j.ygeno.2019.08.001_bb0290
  article-title: The linear neighborhood propagation method for predicting long non-coding RNA–protein interactions
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.07.065
– volume: 22
  start-page: 2056
  year: 2017
  ident: 10.1016/j.ygeno.2019.08.001_bb0285
  article-title: Drug-target interaction prediction through label propagation with linear neighborhood information
  publication-title: Molecules
  doi: 10.3390/molecules22122056
– volume: 6
  start-page: 61
  year: 2015
  ident: 10.1016/j.ygeno.2019.08.001_bb0010
  article-title: What happens at or after transcription: insights into circRNA biogenesis and function
  publication-title: Transcription
  doi: 10.1080/21541264.2015.1071301
– volume: 7
  start-page: 1566
  year: 2017
  ident: 10.1016/j.ygeno.2019.08.001_bb0200
  article-title: Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271
  publication-title: Am. J. Cancer Res.
– volume: 7
  year: 2017
  ident: 10.1016/j.ygeno.2019.08.001_bb0170
  article-title: Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease
  publication-title: Sci. Rep.
– volume: 36
  start-page: 901
  year: 2017
  ident: 10.1016/j.ygeno.2019.08.001_bb0205
  article-title: Circular RNA hsa_circ_0001982 promotes breast cancer cell carcinogenesis through decreasing miR-143
  publication-title: Dna Cell Biol.
  doi: 10.1089/dna.2017.3862
– volume: 14
  year: 2018
  ident: 10.1016/j.ygeno.2019.08.001_bb0235
  article-title: MDHGI: matrix decomposition and heterogeneous graph inference for miRNA-disease association prediction
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006418
– volume: 8
  start-page: 21187
  year: 2017
  ident: 10.1016/j.ygeno.2019.08.001_bb0125
  article-title: MCMDA: matrix completion for MiRNA-disease association prediction
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.15061
– volume: 13
  start-page: 464
  year: 2018
  ident: 10.1016/j.ygeno.2019.08.001_bb0090
  article-title: The bipartite network projection-recommended algorithm for predicting long non-coding RNA-protein interactions
  publication-title: Mol. Ther. Nucl. Acids
  doi: 10.1016/j.omtn.2018.09.020
– volume: 19
  start-page: 3410
  year: 2018
  ident: 10.1016/j.ygeno.2019.08.001_bb0100
  article-title: PWCDA: path weighted method for predicting circRNA-disease associations
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19113410
– volume: 495
  start-page: 333
  year: 2013
  ident: 10.1016/j.ygeno.2019.08.001_bb0005
  article-title: Circular RNAs are a large class of animal RNAs with regulatory potency
  publication-title: Nature
  doi: 10.1038/nature11928
– year: 2019
  ident: 10.1016/j.ygeno.2019.08.001_bb0120
  article-title: Integrating bipartite network projection and KATZ measure to identify novel CircRNA-disease associations
  publication-title: IEEE Trans. Nanobiosci.
SSID ssj0009382
Score 2.5158358
Snippet Circular RNAs (circRNAs) are a new kind of endogenous non-coding RNAs, which have been discovered continuously. More and more studies have shown that circRNAs...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1335
SubjectTerms Algorithms
Association prediction
breast neoplasms
carcinoma
case studies
circRNA
circular RNA
computational methodology
Cosine similarity
Disease
Genetic Predisposition to Disease
Genome-Wide Association Study - methods
human diseases
Humans
Label propagation
Locality-constrained linear coding
Neoplasms - genetics
non-coding RNA
pathogenesis
prediction
RNA, Circular - genetics
stomach neoplasms
Title Predicting human disease-associated circRNAs based on locality-constrained linear coding
URI https://dx.doi.org/10.1016/j.ygeno.2019.08.001
https://www.ncbi.nlm.nih.gov/pubmed/31394170
https://www.proquest.com/docview/2270003674
https://www.proquest.com/docview/2305198864
Volume 112
WOSCitedRecordID wos000514071600033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1089-8646
  dateEnd: 20200731
  omitProxy: false
  ssIdentifier: ssj0009382
  issn: 0888-7543
  databaseCode: AIEXJ
  dateStart: 20051201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DgQ8ICi3cpmChHgZmXKt7cdqtAU0ygSdlD1ZqeOgVlVaepm2X8Df5hzbSYvWVeOBl6g6SmIr56v9nYvPIeSdn3OfK-W5CvNxgBFELk9z3-VwO9D7bMjzXDeboP0-SxJ-Wqv9Ls_CXExoUbDLSz77r6oGGSgbj87-g7qrl4IAfoPS4Qpqh-utFH86x9iLzmY2DfhsDMZNrSaAYsrRXH7vtxeHuIllGDDQexowclciYcS-ESBHCprOD-W02uAsje0pfZpZe2x_wBAfR-qn8bniUa-jDfdCT5nV9nJUrf_n1kV9Di8dr9bo7Fn5Vy2vxN3U5gWsisnUTsO6KcAmrfK07MrqARZYy_ob1RZZuRz7wQbugo3FFczpeOuqbxwQ46MrrGuL6Xpcl2W1w_9VY7v_TXTPTk7EoJMM3s9-udh-DMP0thfLHtkPaMxZney3P3eSL-v6zSEzgXM747KAlU4VvDbuTSTnJiNGk5nBI_LQWiFO26DnMampokHumr6kVw1y77hsA9ggDzYqVj4hyRpdjkaXcx1dTokuR6PLmRbONnQ5Bl2OQddTctbtDI4_ubY5hyuBUi_duKVoFKRY0DHKKFbJYzKmSqaBx4dKUZlRFQZDL86imA1pnHvBMIiyGDaQMGulMnxG6sW0UC-IE7KcyShWLOIStpSc55RTPMaqaBCnLGuSoPyaQtrK9TjViShTFMdCq0CgCgS2VfX8JvlQPTQzhVt2394q1SQs9zScUgDIdj_4tlSqAM1guC0t1HS1EAHmdABBpNGOe0I0oRggqkmeG0RUsw3BOIt86r28xQivyP31n-41qS_nK_WG3JEXy9FifkD2aMIOLKT_AO-bxF8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+human+disease-associated+circRNAs+based+on+locality-constrained+linear+coding&rft.jtitle=Genomics+%28San+Diego%2C+Calif.%29&rft.au=Ge%2C+Erxia&rft.au=Yang%2C+Yingjuan&rft.au=Gang%2C+Mingjun&rft.au=Fan%2C+Chunlong&rft.date=2020-03-01&rft.issn=1089-8646&rft.eissn=1089-8646&rft.volume=112&rft.issue=2&rft.spage=1335&rft_id=info:doi/10.1016%2Fj.ygeno.2019.08.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-7543&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-7543&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-7543&client=summon