Predicting human disease-associated circRNAs based on locality-constrained linear coding
Circular RNAs (circRNAs) are a new kind of endogenous non-coding RNAs, which have been discovered continuously. More and more studies have shown that circRNAs are related to the occurrence and development of human diseases. Identification of circRNAs associated with diseases can contribute to unders...
Saved in:
| Published in: | Genomics (San Diego, Calif.) Vol. 112; no. 2; pp. 1335 - 1342 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Inc
01.03.2020
|
| Subjects: | |
| ISSN: | 0888-7543, 1089-8646, 1089-8646 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Circular RNAs (circRNAs) are a new kind of endogenous non-coding RNAs, which have been discovered continuously. More and more studies have shown that circRNAs are related to the occurrence and development of human diseases. Identification of circRNAs associated with diseases can contribute to understand the pathogenesis, diagnosis and treatment of diseases. However, experimental methods of circRNA prediction remain expensive and time-consuming. Therefore, it is urgent to propose novel computational methods for the prediction of circRNA-disease associations. In this study, we develop a computational method called LLCDC that integrates the known circRNA-disease associations, circRNA semantic similarity network, disease semantic similarity network, reconstructed circRNA similarity network, and reconstructed disease similarity network to predict circRNAs related to human diseases. Specifically, the reconstructed similarity networks are obtained by using Locality-Constrained Linear Coding (LLC) on the known association matrix, cosine similarities of circRNAs and diseases. Then, the label propagation method is applied to the similarity networks, and four relevant score matrices are respectively obtained. Finally, we use 5-fold cross validation (5-fold CV) to evaluate the performance of LLCDC, and the AUC value of the method is 0.9177, indicating that our method performs better than the other three methods. In addition, case studies on gastric cancer, breast cancer and papillary thyroid carcinoma further verify the reliability of our method in predicting disease-associated circRNAs.
•The computational model made use of locality-constrained linear coding and label propagation.•The AUC of 5-fold cross validation (5-fold CV) were significantly better than other previous computational methods.•Three case studies for important human diseases were implemented.•LLCDC could be a reliable method for human disease associated circRNAs prediction. |
|---|---|
| AbstractList | Circular RNAs (circRNAs) are a new kind of endogenous non-coding RNAs, which have been discovered continuously. More and more studies have shown that circRNAs are related to the occurrence and development of human diseases. Identification of circRNAs associated with diseases can contribute to understand the pathogenesis, diagnosis and treatment of diseases. However, experimental methods of circRNA prediction remain expensive and time-consuming. Therefore, it is urgent to propose novel computational methods for the prediction of circRNA-disease associations. In this study, we develop a computational method called LLCDC that integrates the known circRNA-disease associations, circRNA semantic similarity network, disease semantic similarity network, reconstructed circRNA similarity network, and reconstructed disease similarity network to predict circRNAs related to human diseases. Specifically, the reconstructed similarity networks are obtained by using Locality-Constrained Linear Coding (LLC) on the known association matrix, cosine similarities of circRNAs and diseases. Then, the label propagation method is applied to the similarity networks, and four relevant score matrices are respectively obtained. Finally, we use 5-fold cross validation (5-fold CV) to evaluate the performance of LLCDC, and the AUC value of the method is 0.9177, indicating that our method performs better than the other three methods. In addition, case studies on gastric cancer, breast cancer and papillary thyroid carcinoma further verify the reliability of our method in predicting disease-associated circRNAs. Circular RNAs (circRNAs) are a new kind of endogenous non-coding RNAs, which have been discovered continuously. More and more studies have shown that circRNAs are related to the occurrence and development of human diseases. Identification of circRNAs associated with diseases can contribute to understand the pathogenesis, diagnosis and treatment of diseases. However, experimental methods of circRNA prediction remain expensive and time-consuming. Therefore, it is urgent to propose novel computational methods for the prediction of circRNA-disease associations. In this study, we develop a computational method called LLCDC that integrates the known circRNA-disease associations, circRNA semantic similarity network, disease semantic similarity network, reconstructed circRNA similarity network, and reconstructed disease similarity network to predict circRNAs related to human diseases. Specifically, the reconstructed similarity networks are obtained by using Locality-Constrained Linear Coding (LLC) on the known association matrix, cosine similarities of circRNAs and diseases. Then, the label propagation method is applied to the similarity networks, and four relevant score matrices are respectively obtained. Finally, we use 5-fold cross validation (5-fold CV) to evaluate the performance of LLCDC, and the AUC value of the method is 0.9177, indicating that our method performs better than the other three methods. In addition, case studies on gastric cancer, breast cancer and papillary thyroid carcinoma further verify the reliability of our method in predicting disease-associated circRNAs. •The computational model made use of locality-constrained linear coding and label propagation.•The AUC of 5-fold cross validation (5-fold CV) were significantly better than other previous computational methods.•Three case studies for important human diseases were implemented.•LLCDC could be a reliable method for human disease associated circRNAs prediction. Circular RNAs (circRNAs) are a new kind of endogenous non-coding RNAs, which have been discovered continuously. More and more studies have shown that circRNAs are related to the occurrence and development of human diseases. Identification of circRNAs associated with diseases can contribute to understand the pathogenesis, diagnosis and treatment of diseases. However, experimental methods of circRNA prediction remain expensive and time-consuming. Therefore, it is urgent to propose novel computational methods for the prediction of circRNA-disease associations. In this study, we develop a computational method called LLCDC that integrates the known circRNA-disease associations, circRNA semantic similarity network, disease semantic similarity network, reconstructed circRNA similarity network, and reconstructed disease similarity network to predict circRNAs related to human diseases. Specifically, the reconstructed similarity networks are obtained by using Locality-Constrained Linear Coding (LLC) on the known association matrix, cosine similarities of circRNAs and diseases. Then, the label propagation method is applied to the similarity networks, and four relevant score matrices are respectively obtained. Finally, we use 5-fold cross validation (5-fold CV) to evaluate the performance of LLCDC, and the AUC value of the method is 0.9177, indicating that our method performs better than the other three methods. In addition, case studies on gastric cancer, breast cancer and papillary thyroid carcinoma further verify the reliability of our method in predicting disease-associated circRNAs.Circular RNAs (circRNAs) are a new kind of endogenous non-coding RNAs, which have been discovered continuously. More and more studies have shown that circRNAs are related to the occurrence and development of human diseases. Identification of circRNAs associated with diseases can contribute to understand the pathogenesis, diagnosis and treatment of diseases. However, experimental methods of circRNA prediction remain expensive and time-consuming. Therefore, it is urgent to propose novel computational methods for the prediction of circRNA-disease associations. In this study, we develop a computational method called LLCDC that integrates the known circRNA-disease associations, circRNA semantic similarity network, disease semantic similarity network, reconstructed circRNA similarity network, and reconstructed disease similarity network to predict circRNAs related to human diseases. Specifically, the reconstructed similarity networks are obtained by using Locality-Constrained Linear Coding (LLC) on the known association matrix, cosine similarities of circRNAs and diseases. Then, the label propagation method is applied to the similarity networks, and four relevant score matrices are respectively obtained. Finally, we use 5-fold cross validation (5-fold CV) to evaluate the performance of LLCDC, and the AUC value of the method is 0.9177, indicating that our method performs better than the other three methods. In addition, case studies on gastric cancer, breast cancer and papillary thyroid carcinoma further verify the reliability of our method in predicting disease-associated circRNAs. |
| Author | Zhao, Qi Ge, Erxia Gang, Mingjun Fan, Chunlong Yang, Yingjuan |
| Author_xml | – sequence: 1 givenname: Erxia surname: Ge fullname: Ge, Erxia organization: School of Mathematics, Liaoning University, Shenyang 110036, China – sequence: 2 givenname: Yingjuan surname: Yang fullname: Yang, Yingjuan organization: School of Mathematics, Liaoning University, Shenyang 110036, China – sequence: 3 givenname: Mingjun surname: Gang fullname: Gang, Mingjun organization: School of Mathematics, Jilin University, Changchun 130000, China – sequence: 4 givenname: Chunlong surname: Fan fullname: Fan, Chunlong organization: College of Computer Science, Shenyang Aerospace University, Shenyang 110136, China – sequence: 5 givenname: Qi surname: Zhao fullname: Zhao, Qi email: zhaoqi@lnu.edu.cn organization: College of Computer Science, Shenyang Aerospace University, Shenyang 110136, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31394170$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkT1vFDEQhi0URC6BX4CEtqTZZfy19hYUURRIpAgQAonO8tpzwac9O9g-pPv3-LhAQUGasTR-3ime94ycxBSRkJcUBgp0fLMZ9ncY08CATgPoAYA-ISsKeur1KMYTsgKtda-k4KfkrJQNAExcs2fklFM-CapgRb59yuiDqyHedd93Wxs7Hwragr0tJblgK_rOhew-f7go3dw-fJdityRnl1D3vUux1GxDbPulTZs7l3y79pw8Xdul4IuH95x8fXf15fK6v_34_uby4rZ3fGK1lyMqwazgTAivtJykdlKhswymGVE5r5CzGaQXUs9KroHNTHjJGeN-tI6fk9fHu_c5_dhhqWYbisNlsRHTrhjGQdJJNyOPo0w1RXxUB_TVA7qbt-jNfQ5bm_fmj7gG8CPgciol4_ovQsEc6jEb87sec6jHgDatnpaa_km5UG0NKR4cLo9k3x6z2Gz-DJhNcQGja_VldNX4FP6b_wVbfqvh |
| CitedBy_id | crossref_primary_10_1016_j_gene_2020_145040 crossref_primary_10_1007_s40291_020_00499_y crossref_primary_10_1007_s00438_020_01727_0 crossref_primary_10_1186_s13018_022_03072_x crossref_primary_10_1109_TCE_2025_3575785 crossref_primary_10_1186_s12890_023_02717_9 crossref_primary_10_3389_fgene_2020_540751 crossref_primary_10_1038_s41598_020_70484_2 crossref_primary_10_1016_j_critrevonc_2022_103662 crossref_primary_10_1093_bib_bbac388 crossref_primary_10_1186_s12859_022_04883_9 crossref_primary_10_1093_bib_bbad410 crossref_primary_10_1186_s12859_021_04231_3 crossref_primary_10_1097_MD_0000000000037549 crossref_primary_10_1093_bfgp_elad042 crossref_primary_10_1093_bib_bbab494 crossref_primary_10_3389_fcell_2021_647736 crossref_primary_10_3389_fbioe_2020_00176 crossref_primary_10_1109_TCBBIO_2025_3525780 crossref_primary_10_1093_bib_bbac613 crossref_primary_10_1007_s12539_021_00458_z crossref_primary_10_1093_bib_bbab444 crossref_primary_10_1186_s12864_023_09273_w crossref_primary_10_1109_TCBB_2024_3402248 crossref_primary_10_26599_BDMA_2025_9020027 crossref_primary_10_1007_s12539_021_00455_2 crossref_primary_10_1109_JBHI_2023_3344714 crossref_primary_10_1016_j_ymeth_2023_06_006 crossref_primary_10_1111_jcmm_18180 crossref_primary_10_1007_s13042_024_02375_1 crossref_primary_10_1093_bib_bbab286 crossref_primary_10_1093_bib_bbac155 crossref_primary_10_1109_TCBB_2024_3488281 crossref_primary_10_1093_bib_bbaa350 crossref_primary_10_1007_s12539_023_00590_y crossref_primary_10_1109_TCBB_2021_3111607 crossref_primary_10_1016_j_compbiomed_2023_107414 crossref_primary_10_1016_j_ygeno_2021_02_002 crossref_primary_10_1007_s00521_022_07128_1 crossref_primary_10_1093_bib_bbad259 crossref_primary_10_1007_s12539_025_00725_3 crossref_primary_10_1016_j_jbi_2020_103624 crossref_primary_10_1016_j_knosys_2024_111622 crossref_primary_10_1109_TCYB_2021_3090756 |
| Cites_doi | 10.1093/bib/bbx130 10.1093/bioinformatics/bty503 10.1093/bioinformatics/btt426 10.1016/j.semcancer.2014.04.002 10.1093/bioinformatics/btz297 10.1039/C7MB00290D 10.1093/bib/bbv066 10.1186/s12859-018-2522-6 10.2217/epi-2017-0055 10.1093/database/bay044 10.1038/s41419-018-0503-3 10.1002/cam4.1055 10.18632/oncotarget.17307 10.1016/j.canlet.2017.03.027 10.1038/s41598-017-09076-6 10.1038/s41419-017-0003-x 10.1016/j.gpb.2017.02.002 10.7150/ijbs.28260 10.1371/journal.pcbi.1004975 10.1038/nature11993 10.3389/fgene.2018.00239 10.3892/mmr.2017.6916 10.1080/15384101.2017.1380135 10.1093/bib/bby098 10.3389/fgene.2018.00576 10.1016/j.biopha.2016.12.097 10.1371/journal.pcbi.1005912 10.1093/nar/gkj102 10.1093/bioinformatics/bty333 10.1038/cdd.2017.86 10.2174/0929866525666180905104904 10.1016/j.neucom.2014.11.053 10.1002/jcb.26201 10.1007/978-3-319-31753-3_47 10.1093/bioinformatics/btq241 10.1039/C7RA05348G 10.1016/j.cca.2017.10.011 10.1016/j.canlet.2015.06.003 10.1016/j.neucom.2017.07.065 10.3390/molecules22122056 10.1080/21541264.2015.1071301 10.1089/dna.2017.3862 10.1371/journal.pcbi.1006418 10.18632/oncotarget.15061 10.1016/j.omtn.2018.09.020 10.3390/ijms19113410 10.1038/nature11928 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.ygeno.2019.08.001 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Biology |
| EISSN | 1089-8646 |
| EndPage | 1342 |
| ExternalDocumentID | 31394170 10_1016_j_ygeno_2019_08_001 S0888754319304203 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M -DZ -~X .55 .GJ .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYOK ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABUDA ABVKL ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEXQZ AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHPSJ AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BAWUL BKOJK BLXMC CAG COF CS3 DIK DM4 DOVZS DU5 E3Z EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLW HVGLF HZ~ IHE IXB J1W K-O KOM L7B LG5 LX2 M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K TN5 TR2 VH1 WUQ X7M XPP XSW ZA5 ZGI ZMT ZU3 ZXP ~G- ~KM 9DU AAFWJ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPKN AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM PKN 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c392t-56e742a43244d785958c57eca209bee7cd7e32b05d458b75f02b24d53223d6ac3 |
| ISICitedReferencesCount | 56 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000514071600033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0888-7543 1089-8646 |
| IngestDate | Sun Sep 28 06:35:14 EDT 2025 Thu Oct 02 11:43:58 EDT 2025 Wed Feb 19 02:29:47 EST 2025 Sat Nov 29 07:18:04 EST 2025 Tue Nov 18 22:29:49 EST 2025 Fri Feb 23 02:47:48 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Cosine similarity LLC circRNA Disease ROC FPR DAG Label propagation AUC SVT Locality-constrained linear coding TPR HPRD Association prediction 5-fold CV |
| Language | English |
| License | Copyright © 2019 Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c392t-56e742a43244d785958c57eca209bee7cd7e32b05d458b75f02b24d53223d6ac3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 31394170 |
| PQID | 2270003674 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2305198864 proquest_miscellaneous_2270003674 pubmed_primary_31394170 crossref_primary_10_1016_j_ygeno_2019_08_001 crossref_citationtrail_10_1016_j_ygeno_2019_08_001 elsevier_sciencedirect_doi_10_1016_j_ygeno_2019_08_001 |
| PublicationCentury | 2000 |
| PublicationDate | March 2020 2020-03-00 20200301 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Genomics (San Diego, Calif.) |
| PublicationTitleAlternate | Genomics |
| PublicationYear | 2020 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Zhao, Chen, Yin (bb0240) 2019 Memczak, Jens, Elefsinioti, Torti, Krueger, Rybak, Maier, Mackowiak, Gregersen, Munschauer (bb0005) 2013; 495 Tang, Zhao, Zou, Duan, Zhi, Yang, Yang, Wang (bb0205) 2017; 36 Milanese, Tibiche, Zaman, Zou, Han, Meng, Nantel, Droit, Wang (bb0265) 2018 Wang, Wang, Lu, Song, Cui (bb0270) 2010; 26 Gao, Zhang, Liu, Meng, Fang, Guo, Li (bb0190) 2017; 9 Yan, Wang, Wu (bb0110) 2018; 19 Xiao, Luo, Dai (bb0115) 2019 Fan, Lei, Wu (bb0105) 2018; 14 Zhao, Yang, Ren, Ge, Fan (bb0120) 2019 Wang, Zaman, McGee, Milanese, Masoudi-Nejad, O'Connor-McCourt (bb0220) 2015; 30 Chen, Yan, Zhang, Zhang, Dai, Yin, Zhang (bb0245) 2016; 17 Liao, Guan, Wu, Zhang (bb0140) 2016 He, Xie, Xu, Li, Li (bb0025) 2017; 396 Saffari, Ebrahimi-Moghadam (bb0280) 2015; 153 Hu, Zhang, Ai, Zhang, Fan, Zhao, Liu (bb0080) 2018; 15 Yu, Zhang, Chen, Cheng (bb0295) 2018; 9 Hu, Zhu, Ai, Zhang, Zhao, Zhao, Liu (bb0075) 2017; 13 You, Huang (bb0050) 2017; vol. 13 Tian, Chen, Li, Xiao (bb0150) 2017; 32 Chen, Yin, Qu, Huang (bb0235) 2018; 14 Zhao, Liang, Hu, Ren, Liu (bb0085) 2018; 25 Chen, Wang, Qu, Guan, Li (bb0060) 2018; 34 Huang, Shan (bb0010) 2015; 6 Lü, Sun, Shi, Kong, Xu, He, Zhang, Wang (bb0185) 2017; 8 Chen, Yan (bb0225) 2013; 29 McGee, Tibiche, Trifiro, Wang (bb0260) 2017; 15 Fan, Lei, Fang, Jiang, Wu (bb0035) 2018; 2018 Pan, Li, Jiang, Pan, Ding, Huang, Yu, Kong (bb0165) 2018; 119 Chen, Huang, Xie, Zhao (bb0055) 2018; 9 Zhu, Xu, Chen, Yan (bb0030) 2017; 88 Zhao, Yu, Ming, Hu, Ren, Liu (bb0090) 2018; 13 Chen, Xie, Wang, Zhao, You, Liu (bb0065) 2018; 34 Yin, Yan, Fang, Guo, Xiong, Zhang (bb0195) 2018; 487 Chen, Ren, Chen, Wang, Zhang, Yan (bb0255) 2016; 12 Kanehisa, Goto, Hattori, Aoki-Kinoshita, Itoh, Kawashima, Katayama, Araki, Hirakawa (bb0135) 2006; 34 Hansen, Jensen, Clausen, Bramsen, Finsen, Damgaard, Kjems (bb0020) 2013; 495 Zhao, Wang, Wu, Wang, Zhang, Hu, Liu, Jiang (bb0040) 2018; 9 Huang, Jie, Zou, Weng (bb0155) 2017; 16 Li, Lin, Gu (bb0130) 2017; 7 Li, Shao, Fu, Xie, Zhu, Sun, Yu, Xiao, Guo (bb0160) 2017; 96 Qu, Yang, Li, Wang, Gao, Shang, Sun, Dou, Li (bb0015) 2015; 365 Shao, Li, Lu, Li, Yang, Xiao, Guo (bb0145) 2017; 6 Chen, Guan, Sun, Li, Qu (bb0250) 2018 Wang, Yang, Kai, Lv, Huang, Gong (bb0275) 2010 Chen, Xie, Zhao, You (bb0070) 2019; 20 Chen, Huang (bb0045) 2017; 13 Chen, Yan, Zhang, You (bb0230) 2017; 18 Li, Rong, Chen, Yan, You (bb0125) 2017; 8 Zhao, Zhang, Hu, Ren, Zhang, Liu (bb0095) 2018; 9 Lai, Yang, Yan, Li, Li, Wang, Shen, Ye, Jiang, Wang (bb0175) 2017; 16 Peng, Shi, Zhang, Hu, Wang, Ye (bb0215) 2017; 12 Yang, Du, Wu, Yang, Awan, Fang, Ma, Li, Zeng, Yang (bb0210) 2017; 24 Liang, Zhang, Liu, Jia, Li (bb0200) 2017; 7 Zhang, Chen, Li (bb0285) 2017; 22 Zhao, Li, Gao, Jian, Hao, Rao, Li (bb0170) 2017; 7 Zhang, Qu, Zhang, Wang (bb0290) 2018; 273 Lei, Fang, Chen, Wu (bb0100) 2018; 19 Dang, Ouyang, Zhang, Wang, Lin, Sun, Wang, Wang, Huang (bb0180) 2017; 7 Pan (10.1016/j.ygeno.2019.08.001_bb0165) 2018; 119 Chen (10.1016/j.ygeno.2019.08.001_bb0235) 2018; 14 Hu (10.1016/j.ygeno.2019.08.001_bb0080) 2018; 15 Huang (10.1016/j.ygeno.2019.08.001_bb0155) 2017; 16 Zhao (10.1016/j.ygeno.2019.08.001_bb0085) 2018; 25 Peng (10.1016/j.ygeno.2019.08.001_bb0215) 2017; 12 Zhang (10.1016/j.ygeno.2019.08.001_bb0285) 2017; 22 Chen (10.1016/j.ygeno.2019.08.001_bb0070) 2019; 20 Xiao (10.1016/j.ygeno.2019.08.001_bb0115) 2019 Chen (10.1016/j.ygeno.2019.08.001_bb0060) 2018; 34 Zhao (10.1016/j.ygeno.2019.08.001_bb0170) 2017; 7 Fan (10.1016/j.ygeno.2019.08.001_bb0035) 2018; 2018 Yin (10.1016/j.ygeno.2019.08.001_bb0195) 2018; 487 Zhao (10.1016/j.ygeno.2019.08.001_bb0095) 2018; 9 Li (10.1016/j.ygeno.2019.08.001_bb0130) 2017; 7 Zhao (10.1016/j.ygeno.2019.08.001_bb0240) 2019 Milanese (10.1016/j.ygeno.2019.08.001_bb0265) 2018 Tang (10.1016/j.ygeno.2019.08.001_bb0205) 2017; 36 Wang (10.1016/j.ygeno.2019.08.001_bb0270) 2010; 26 Li (10.1016/j.ygeno.2019.08.001_bb0125) 2017; 8 Yu (10.1016/j.ygeno.2019.08.001_bb0295) 2018; 9 Dang (10.1016/j.ygeno.2019.08.001_bb0180) 2017; 7 Gao (10.1016/j.ygeno.2019.08.001_bb0190) 2017; 9 Zhao (10.1016/j.ygeno.2019.08.001_bb0040) 2018; 9 Qu (10.1016/j.ygeno.2019.08.001_bb0015) 2015; 365 Zhu (10.1016/j.ygeno.2019.08.001_bb0030) 2017; 88 Chen (10.1016/j.ygeno.2019.08.001_bb0255) 2016; 12 Chen (10.1016/j.ygeno.2019.08.001_bb0245) 2016; 17 He (10.1016/j.ygeno.2019.08.001_bb0025) 2017; 396 Chen (10.1016/j.ygeno.2019.08.001_bb0250) 2018 Wang (10.1016/j.ygeno.2019.08.001_bb0220) 2015; 30 Hansen (10.1016/j.ygeno.2019.08.001_bb0020) 2013; 495 Shao (10.1016/j.ygeno.2019.08.001_bb0145) 2017; 6 Yang (10.1016/j.ygeno.2019.08.001_bb0210) 2017; 24 Zhang (10.1016/j.ygeno.2019.08.001_bb0290) 2018; 273 Chen (10.1016/j.ygeno.2019.08.001_bb0045) 2017; 13 Chen (10.1016/j.ygeno.2019.08.001_bb0230) 2017; 18 Liang (10.1016/j.ygeno.2019.08.001_bb0200) 2017; 7 Chen (10.1016/j.ygeno.2019.08.001_bb0225) 2013; 29 You (10.1016/j.ygeno.2019.08.001_bb0050) 2017; vol. 13 Memczak (10.1016/j.ygeno.2019.08.001_bb0005) 2013; 495 McGee (10.1016/j.ygeno.2019.08.001_bb0260) 2017; 15 Saffari (10.1016/j.ygeno.2019.08.001_bb0280) 2015; 153 Lü (10.1016/j.ygeno.2019.08.001_bb0185) 2017; 8 Zhao (10.1016/j.ygeno.2019.08.001_bb0120) 2019 Chen (10.1016/j.ygeno.2019.08.001_bb0065) 2018; 34 Yan (10.1016/j.ygeno.2019.08.001_bb0110) 2018; 19 Chen (10.1016/j.ygeno.2019.08.001_bb0055) 2018; 9 Wang (10.1016/j.ygeno.2019.08.001_bb0275) 2010 Liao (10.1016/j.ygeno.2019.08.001_bb0140) 2016 Li (10.1016/j.ygeno.2019.08.001_bb0160) 2017; 96 Huang (10.1016/j.ygeno.2019.08.001_bb0010) 2015; 6 Fan (10.1016/j.ygeno.2019.08.001_bb0105) 2018; 14 Kanehisa (10.1016/j.ygeno.2019.08.001_bb0135) 2006; 34 Lai (10.1016/j.ygeno.2019.08.001_bb0175) 2017; 16 Tian (10.1016/j.ygeno.2019.08.001_bb0150) 2017; 32 Zhao (10.1016/j.ygeno.2019.08.001_bb0090) 2018; 13 Hu (10.1016/j.ygeno.2019.08.001_bb0075) 2017; 13 Lei (10.1016/j.ygeno.2019.08.001_bb0100) 2018; 19 |
| References_xml | – volume: 25 start-page: 830 year: 2018 end-page: 837 ident: bb0085 article-title: RWLPAP: random walk for lncRNA-protein associations prediction publication-title: Prot. Pept. Lett. – volume: 14 year: 2018 ident: bb0235 article-title: MDHGI: matrix decomposition and heterogeneous graph inference for miRNA-disease association prediction publication-title: PLoS Comput. Biol. – volume: 119 start-page: 440 year: 2018 end-page: 446 ident: bb0165 article-title: Overexpression of circular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PI3K/AKT signaling pathway publication-title: J. Cell. Biochem. – volume: 22 start-page: 2056 year: 2017 ident: bb0285 article-title: Drug-target interaction prediction through label propagation with linear neighborhood information publication-title: Molecules – volume: 495 start-page: 384 year: 2013 ident: bb0020 article-title: Natural RNA circles function as efficient microRNA sponges publication-title: Nature – volume: 12 year: 2016 ident: bb0255 article-title: NLLSS: predicting synergistic drug combinations based on semi-supervised learning publication-title: PLoS Comput. Biol. – volume: 2018 start-page: bay044 year: 2018 ident: bb0035 article-title: CircR2Disease: a manually curated database for experimentally supported circular RNAs associated with various diseases publication-title: Database – volume: 273 start-page: 526 year: 2018 end-page: 534 ident: bb0290 article-title: The linear neighborhood propagation method for predicting long non-coding RNA–protein interactions publication-title: Neurocomputing – volume: 6 start-page: 1173 year: 2017 end-page: 1180 ident: bb0145 article-title: Global circular RNA expression profile of human gastric cancer and its clinical significance publication-title: Cancer Med. – volume: 7 start-page: 1566 year: 2017 end-page: 1576 ident: bb0200 article-title: Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271 publication-title: Am. J. Cancer Res. – volume: 495 start-page: 333 year: 2013 end-page: 338 ident: bb0005 article-title: Circular RNAs are a large class of animal RNAs with regulatory potency publication-title: Nature – volume: 26 start-page: 1644 year: 2010 end-page: 1650 ident: bb0270 article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases publication-title: Bioinformatics – volume: 12 year: 2017 ident: bb0215 article-title: Microarray profiling of circular RNAs in human papillary thyroid carcinoma publication-title: PLoS One – volume: 13 start-page: 1781 year: 2017 end-page: 1787 ident: bb0075 article-title: LPI-ETSLP: lncRNA–protein interaction prediction using eigenvalue transformation-based semi-supervised link prediction publication-title: Mol. BioSyst. – volume: 14 start-page: 1950 year: 2018 end-page: 1959 ident: bb0105 article-title: Prediction of CircRNA-disease associations using KATZ model based on heterogeneous networks publication-title: Int. J. Biol. Sci. – volume: 6 start-page: 61 year: 2015 end-page: 64 ident: bb0010 article-title: What happens at or after transcription: insights into circRNA biogenesis and function publication-title: Transcription – volume: 88 start-page: 138 year: 2017 end-page: 144 ident: bb0030 article-title: Circular BANP, an upregulated circular RNA that modulates cell proliferation in colorectal cancer publication-title: Biomed. Pharmacother. – volume: 29 start-page: 2617 year: 2013 end-page: 2624 ident: bb0225 article-title: Novel human lncRNA-disease association inference based on lncRNA expression profiles publication-title: Bioinformatics – volume: 24 start-page: 1609 year: 2017 ident: bb0210 article-title: A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation publication-title: Cell Death Different. – volume: 36 start-page: 901 year: 2017 ident: bb0205 article-title: Circular RNA hsa_circ_0001982 promotes breast cancer cell carcinogenesis through decreasing miR-143 publication-title: Dna Cell Biol. – volume: 34 start-page: 3178 year: 2018 end-page: 3186 ident: bb0065 article-title: BNPMDA: bipartite network projection for MiRNA-disease association prediction publication-title: Bioinformatics – volume: 16 start-page: 2469 year: 2017 end-page: 2476 ident: bb0155 article-title: Expression profile of circular RNAs in human gastric cancer tissues publication-title: Mol. Med. Rep. – start-page: 1 year: 2019 ident: bb0115 article-title: Computational prediction of human disease-associated circRNAs based on manifold regularization learning framework publication-title: IEEE J. Biomed. Health Inform. – volume: 18 start-page: 558 year: 2017 end-page: 576 ident: bb0230 article-title: Long non-coding RNAs and complex diseases: from experimental results to computational models publication-title: Brief. Bioinform. – start-page: 591 year: 2016 end-page: 604 ident: bb0140 article-title: Predicting unknown interactions between known drugs and targets via matrix completion publication-title: Lect. Notes Comput. Sci – volume: 30 start-page: 4 year: 2015 end-page: 12 ident: bb0220 article-title: Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data publication-title: Semin. Cancer Biol. – year: 2018 ident: bb0265 article-title: Germline genomic landscapes of breast cancer patients significantly predict clinical outcomes publication-title: bioRxiv – volume: 34 start-page: D354 year: 2006 end-page: D357 ident: bb0135 article-title: From genomics to chemical genomics: new developments in KEGG publication-title: Nucleic Acids Res. – volume: 9 start-page: 3 year: 2018 ident: bb0055 article-title: EGBMMDA: extreme gradient boosting machine for MiRNA-disease association prediction publication-title: Cell Death Dis. – volume: 34 start-page: 4256 year: 2018 end-page: 4265 ident: bb0060 article-title: Predicting miRNA-disease association based on inductive matrix completion publication-title: Bioinformatics – volume: 13 start-page: 464 year: 2018 end-page: 471 ident: bb0090 article-title: The bipartite network projection-recommended algorithm for predicting long non-coding RNA-protein interactions publication-title: Mol. Ther. Nucl. Acids – volume: 8 start-page: 44096 year: 2017 end-page: 44107 ident: bb0185 article-title: Identification of circular RNAs as a promising new class of diagnostic biomarkers for human breast cancer publication-title: Oncotarget – year: 2019 ident: bb0240 article-title: Adaptive boosting-based computational model for predicting potential miRNA-disease associations publication-title: Bioinformatics – volume: 9 start-page: 475 year: 2018 ident: bb0040 article-title: circRNA disease: a manually curated database of experimentally supported circRNA-disease associations publication-title: Cell Death Dis. – volume: 9 start-page: 1175 year: 2017 end-page: 1188 ident: bb0190 article-title: Screening circular RNA related to chemotherapeutic resistance in breast cancer publication-title: Epigenomics – volume: 15 start-page: 797 year: 2018 end-page: 806 ident: bb0080 article-title: HLPI-ensemble: prediction of human lncRNA-protein interactions based on ensemble strategy publication-title: RNA Biol. – volume: 15 start-page: 121 year: 2017 end-page: 129 ident: bb0260 article-title: Network analysis reveals a signaling regulatory loop in the PIK3CA-mutated breast cancer predicting survival outcome publication-title: Genom. Proteom. Bioinform. – volume: 9 start-page: 576 year: 2018 ident: bb0295 article-title: LLCMDA: a novel method for predicting miRNA gene and disease relationship based on locality-constrained linear coding publication-title: Front. Genet. – volume: vol. 13 year: 2017 ident: bb0050 article-title: PBMDA: A Novel and Effective Path-based Computational Model for miRNA-disease Association Prediction – volume: 20 start-page: 515 year: 2019 end-page: 539 ident: bb0070 article-title: MicroRNAs and complex diseases: from experimental results to computational models publication-title: Brief. Bioinform. – year: 2019 ident: bb0120 article-title: Integrating bipartite network projection and KATZ measure to identify novel CircRNA-disease associations publication-title: IEEE Trans. Nanobiosci. – volume: 17 start-page: 696 year: 2016 end-page: 712 ident: bb0245 article-title: Drug-target interaction prediction: databases, web servers and computational models publication-title: Brief. Bioinform. – volume: 19 start-page: 520 year: 2018 ident: bb0110 article-title: DWNN-RLS: regularized least squares method for predicting circRNA-disease associations publication-title: BMC Bioinform. – start-page: 3360 year: 2010 end-page: 3367 ident: bb0275 article-title: Locality-constrained linear coding for image classification publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition – volume: 396 start-page: 138 year: 2017 ident: bb0025 article-title: Circular RNAs and cancer publication-title: Cancer Lett. – volume: 365 start-page: 141 year: 2015 end-page: 148 ident: bb0015 article-title: Circular RNA: a new star of noncoding RNAs publication-title: Cancer Lett. – year: 2018 ident: bb0250 article-title: MicroRNA-small molecule association identification: from experimental results to computational models publication-title: Brief. Bioinform. – volume: 8 start-page: 21187 year: 2017 end-page: 21199 ident: bb0125 article-title: MCMDA: matrix completion for MiRNA-disease association prediction publication-title: Oncotarget – volume: 7 start-page: 9060 year: 2017 ident: bb0180 article-title: Circular RNAs expression profiles in human gastric cancer publication-title: Sci. Rep. – volume: 19 start-page: 3410 year: 2018 ident: bb0100 article-title: PWCDA: path weighted method for predicting circRNA-disease associations publication-title: Int. J. Mol. Sci. – volume: 32 year: 2017 ident: bb0150 article-title: Reduced expression of circRNA hsa_circ_0003159 in gastric cancer and its clinical significance publication-title: J. Clin. Lab. Anal. – volume: 7 year: 2017 ident: bb0170 article-title: Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease publication-title: Sci. Rep. – volume: 487 start-page: 363 year: 2018 end-page: 368 ident: bb0195 article-title: Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection publication-title: Clin. Chim. Acta – volume: 9 start-page: 239 year: 2018 ident: bb0095 article-title: IRWNRLPI: integrating random walk and neighborhood regularized logistic matrix factorization for lncRNA-protein interaction prediction publication-title: Front. Genet. – volume: 7 start-page: 32216 year: 2017 end-page: 32224 ident: bb0130 article-title: A network similarity integration method for predicting microRNA-disease associations publication-title: RSC Adv. – volume: 16 start-page: 2301 year: 2017 end-page: 2311 ident: bb0175 article-title: Analysis of co-expression networks for circular RNAs and mRNAs reveals that circular RNAs hsa_circ_0047905, hsa_circ_0138960 and has-circRNA7690-15 are candidate oncogenes in gastric cancer publication-title: Cell Cycle – volume: 153 start-page: 41 year: 2015 end-page: 53 ident: bb0280 article-title: Label propagation based on local information with adaptive determination of number and degree of neighbor's similarity publication-title: Neurocomputing – volume: 96 start-page: 1 year: 2017 end-page: 12 ident: bb0160 article-title: Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection publication-title: J. Mol. Med. – volume: 13 start-page: e1005912 year: 2017 ident: bb0045 article-title: LRSSLMDA: laplacian regularized sparse subspace learning for MiRNA-disease association prediction publication-title: PLoS Comput. Biol. – volume: vol. 13 year: 2017 ident: 10.1016/j.ygeno.2019.08.001_bb0050 – volume: 20 start-page: 515 year: 2019 ident: 10.1016/j.ygeno.2019.08.001_bb0070 article-title: MicroRNAs and complex diseases: from experimental results to computational models publication-title: Brief. Bioinform. doi: 10.1093/bib/bbx130 – year: 2018 ident: 10.1016/j.ygeno.2019.08.001_bb0265 article-title: Germline genomic landscapes of breast cancer patients significantly predict clinical outcomes publication-title: bioRxiv – volume: 34 start-page: 4256 year: 2018 ident: 10.1016/j.ygeno.2019.08.001_bb0060 article-title: Predicting miRNA-disease association based on inductive matrix completion publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty503 – volume: 12 year: 2017 ident: 10.1016/j.ygeno.2019.08.001_bb0215 article-title: Microarray profiling of circular RNAs in human papillary thyroid carcinoma publication-title: PLoS One – volume: 32 year: 2017 ident: 10.1016/j.ygeno.2019.08.001_bb0150 article-title: Reduced expression of circRNA hsa_circ_0003159 in gastric cancer and its clinical significance publication-title: J. Clin. Lab. Anal. – volume: 29 start-page: 2617 year: 2013 ident: 10.1016/j.ygeno.2019.08.001_bb0225 article-title: Novel human lncRNA-disease association inference based on lncRNA expression profiles publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt426 – start-page: 1 year: 2019 ident: 10.1016/j.ygeno.2019.08.001_bb0115 article-title: Computational prediction of human disease-associated circRNAs based on manifold regularization learning framework publication-title: IEEE J. Biomed. Health Inform. – volume: 30 start-page: 4 year: 2015 ident: 10.1016/j.ygeno.2019.08.001_bb0220 article-title: Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2014.04.002 – year: 2019 ident: 10.1016/j.ygeno.2019.08.001_bb0240 article-title: Adaptive boosting-based computational model for predicting potential miRNA-disease associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz297 – volume: 15 start-page: 797 year: 2018 ident: 10.1016/j.ygeno.2019.08.001_bb0080 article-title: HLPI-ensemble: prediction of human lncRNA-protein interactions based on ensemble strategy publication-title: RNA Biol. – volume: 13 start-page: 1781 year: 2017 ident: 10.1016/j.ygeno.2019.08.001_bb0075 article-title: LPI-ETSLP: lncRNA–protein interaction prediction using eigenvalue transformation-based semi-supervised link prediction publication-title: Mol. BioSyst. doi: 10.1039/C7MB00290D – volume: 17 start-page: 696 year: 2016 ident: 10.1016/j.ygeno.2019.08.001_bb0245 article-title: Drug-target interaction prediction: databases, web servers and computational models publication-title: Brief. Bioinform. doi: 10.1093/bib/bbv066 – volume: 18 start-page: 558 year: 2017 ident: 10.1016/j.ygeno.2019.08.001_bb0230 article-title: Long non-coding RNAs and complex diseases: from experimental results to computational models publication-title: Brief. Bioinform. – volume: 19 start-page: 520 year: 2018 ident: 10.1016/j.ygeno.2019.08.001_bb0110 article-title: DWNN-RLS: regularized least squares method for predicting circRNA-disease associations publication-title: BMC Bioinform. doi: 10.1186/s12859-018-2522-6 – volume: 9 start-page: 1175 year: 2017 ident: 10.1016/j.ygeno.2019.08.001_bb0190 article-title: Screening circular RNA related to chemotherapeutic resistance in breast cancer publication-title: Epigenomics doi: 10.2217/epi-2017-0055 – volume: 2018 start-page: bay044 year: 2018 ident: 10.1016/j.ygeno.2019.08.001_bb0035 article-title: CircR2Disease: a manually curated database for experimentally supported circular RNAs associated with various diseases publication-title: Database doi: 10.1093/database/bay044 – volume: 9 start-page: 475 year: 2018 ident: 10.1016/j.ygeno.2019.08.001_bb0040 article-title: circRNA disease: a manually curated database of experimentally supported circRNA-disease associations publication-title: Cell Death Dis. doi: 10.1038/s41419-018-0503-3 – volume: 6 start-page: 1173 year: 2017 ident: 10.1016/j.ygeno.2019.08.001_bb0145 article-title: Global circular RNA expression profile of human gastric cancer and its clinical significance publication-title: Cancer Med. doi: 10.1002/cam4.1055 – volume: 8 start-page: 44096 year: 2017 ident: 10.1016/j.ygeno.2019.08.001_bb0185 article-title: Identification of circular RNAs as a promising new class of diagnostic biomarkers for human breast cancer publication-title: Oncotarget doi: 10.18632/oncotarget.17307 – volume: 396 start-page: 138 year: 2017 ident: 10.1016/j.ygeno.2019.08.001_bb0025 article-title: Circular RNAs and cancer publication-title: Cancer Lett. doi: 10.1016/j.canlet.2017.03.027 – volume: 7 start-page: 9060 year: 2017 ident: 10.1016/j.ygeno.2019.08.001_bb0180 article-title: Circular RNAs expression profiles in human gastric cancer publication-title: Sci. Rep. doi: 10.1038/s41598-017-09076-6 – volume: 9 start-page: 3 year: 2018 ident: 10.1016/j.ygeno.2019.08.001_bb0055 article-title: EGBMMDA: extreme gradient boosting machine for MiRNA-disease association prediction publication-title: Cell Death Dis. doi: 10.1038/s41419-017-0003-x – volume: 15 start-page: 121 year: 2017 ident: 10.1016/j.ygeno.2019.08.001_bb0260 article-title: Network analysis reveals a signaling regulatory loop in the PIK3CA-mutated breast cancer predicting survival outcome publication-title: Genom. Proteom. Bioinform. doi: 10.1016/j.gpb.2017.02.002 – volume: 14 start-page: 1950 year: 2018 ident: 10.1016/j.ygeno.2019.08.001_bb0105 article-title: Prediction of CircRNA-disease associations using KATZ model based on heterogeneous networks publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.28260 – volume: 12 year: 2016 ident: 10.1016/j.ygeno.2019.08.001_bb0255 article-title: NLLSS: predicting synergistic drug combinations based on semi-supervised learning publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004975 – volume: 495 start-page: 384 year: 2013 ident: 10.1016/j.ygeno.2019.08.001_bb0020 article-title: Natural RNA circles function as efficient microRNA sponges publication-title: Nature doi: 10.1038/nature11993 – start-page: 3360 year: 2010 ident: 10.1016/j.ygeno.2019.08.001_bb0275 article-title: Locality-constrained linear coding for image classification – volume: 9 start-page: 239 year: 2018 ident: 10.1016/j.ygeno.2019.08.001_bb0095 article-title: IRWNRLPI: integrating random walk and neighborhood regularized logistic matrix factorization for lncRNA-protein interaction prediction publication-title: Front. Genet. doi: 10.3389/fgene.2018.00239 – volume: 16 start-page: 2469 year: 2017 ident: 10.1016/j.ygeno.2019.08.001_bb0155 article-title: Expression profile of circular RNAs in human gastric cancer tissues publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2017.6916 – volume: 16 start-page: 2301 year: 2017 ident: 10.1016/j.ygeno.2019.08.001_bb0175 article-title: Analysis of co-expression networks for circular RNAs and mRNAs reveals that circular RNAs hsa_circ_0047905, hsa_circ_0138960 and has-circRNA7690-15 are candidate oncogenes in gastric cancer publication-title: Cell Cycle doi: 10.1080/15384101.2017.1380135 – year: 2018 ident: 10.1016/j.ygeno.2019.08.001_bb0250 article-title: MicroRNA-small molecule association identification: from experimental results to computational models publication-title: Brief. Bioinform. doi: 10.1093/bib/bby098 – volume: 9 start-page: 576 year: 2018 ident: 10.1016/j.ygeno.2019.08.001_bb0295 article-title: LLCMDA: a novel method for predicting miRNA gene and disease relationship based on locality-constrained linear coding publication-title: Front. Genet. doi: 10.3389/fgene.2018.00576 – volume: 88 start-page: 138 year: 2017 ident: 10.1016/j.ygeno.2019.08.001_bb0030 article-title: Circular BANP, an upregulated circular RNA that modulates cell proliferation in colorectal cancer publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2016.12.097 – volume: 13 start-page: e1005912 year: 2017 ident: 10.1016/j.ygeno.2019.08.001_bb0045 article-title: LRSSLMDA: laplacian regularized sparse subspace learning for MiRNA-disease association prediction publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005912 – volume: 34 start-page: D354 year: 2006 ident: 10.1016/j.ygeno.2019.08.001_bb0135 article-title: From genomics to chemical genomics: new developments in KEGG publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkj102 – volume: 34 start-page: 3178 year: 2018 ident: 10.1016/j.ygeno.2019.08.001_bb0065 article-title: BNPMDA: bipartite network projection for MiRNA-disease association prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty333 – volume: 24 start-page: 1609 year: 2017 ident: 10.1016/j.ygeno.2019.08.001_bb0210 article-title: A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation publication-title: Cell Death Different. doi: 10.1038/cdd.2017.86 – volume: 25 start-page: 830 year: 2018 ident: 10.1016/j.ygeno.2019.08.001_bb0085 article-title: RWLPAP: random walk for lncRNA-protein associations prediction publication-title: Prot. Pept. Lett. doi: 10.2174/0929866525666180905104904 – volume: 96 start-page: 1 year: 2017 ident: 10.1016/j.ygeno.2019.08.001_bb0160 article-title: Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection publication-title: J. Mol. Med. – volume: 153 start-page: 41 year: 2015 ident: 10.1016/j.ygeno.2019.08.001_bb0280 article-title: Label propagation based on local information with adaptive determination of number and degree of neighbor's similarity publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.11.053 – volume: 119 start-page: 440 year: 2018 ident: 10.1016/j.ygeno.2019.08.001_bb0165 article-title: Overexpression of circular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PI3K/AKT signaling pathway publication-title: J. Cell. Biochem. doi: 10.1002/jcb.26201 – start-page: 591 year: 2016 ident: 10.1016/j.ygeno.2019.08.001_bb0140 article-title: Predicting unknown interactions between known drugs and targets via matrix completion publication-title: Lect. Notes Comput. Sci doi: 10.1007/978-3-319-31753-3_47 – volume: 26 start-page: 1644 year: 2010 ident: 10.1016/j.ygeno.2019.08.001_bb0270 article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq241 – volume: 7 start-page: 32216 year: 2017 ident: 10.1016/j.ygeno.2019.08.001_bb0130 article-title: A network similarity integration method for predicting microRNA-disease associations publication-title: RSC Adv. doi: 10.1039/C7RA05348G – volume: 487 start-page: 363 year: 2018 ident: 10.1016/j.ygeno.2019.08.001_bb0195 article-title: Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection publication-title: Clin. Chim. Acta doi: 10.1016/j.cca.2017.10.011 – volume: 365 start-page: 141 year: 2015 ident: 10.1016/j.ygeno.2019.08.001_bb0015 article-title: Circular RNA: a new star of noncoding RNAs publication-title: Cancer Lett. doi: 10.1016/j.canlet.2015.06.003 – volume: 273 start-page: 526 year: 2018 ident: 10.1016/j.ygeno.2019.08.001_bb0290 article-title: The linear neighborhood propagation method for predicting long non-coding RNA–protein interactions publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.07.065 – volume: 22 start-page: 2056 year: 2017 ident: 10.1016/j.ygeno.2019.08.001_bb0285 article-title: Drug-target interaction prediction through label propagation with linear neighborhood information publication-title: Molecules doi: 10.3390/molecules22122056 – volume: 6 start-page: 61 year: 2015 ident: 10.1016/j.ygeno.2019.08.001_bb0010 article-title: What happens at or after transcription: insights into circRNA biogenesis and function publication-title: Transcription doi: 10.1080/21541264.2015.1071301 – volume: 7 start-page: 1566 year: 2017 ident: 10.1016/j.ygeno.2019.08.001_bb0200 article-title: Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271 publication-title: Am. J. Cancer Res. – volume: 7 year: 2017 ident: 10.1016/j.ygeno.2019.08.001_bb0170 article-title: Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease publication-title: Sci. Rep. – volume: 36 start-page: 901 year: 2017 ident: 10.1016/j.ygeno.2019.08.001_bb0205 article-title: Circular RNA hsa_circ_0001982 promotes breast cancer cell carcinogenesis through decreasing miR-143 publication-title: Dna Cell Biol. doi: 10.1089/dna.2017.3862 – volume: 14 year: 2018 ident: 10.1016/j.ygeno.2019.08.001_bb0235 article-title: MDHGI: matrix decomposition and heterogeneous graph inference for miRNA-disease association prediction publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006418 – volume: 8 start-page: 21187 year: 2017 ident: 10.1016/j.ygeno.2019.08.001_bb0125 article-title: MCMDA: matrix completion for MiRNA-disease association prediction publication-title: Oncotarget doi: 10.18632/oncotarget.15061 – volume: 13 start-page: 464 year: 2018 ident: 10.1016/j.ygeno.2019.08.001_bb0090 article-title: The bipartite network projection-recommended algorithm for predicting long non-coding RNA-protein interactions publication-title: Mol. Ther. Nucl. Acids doi: 10.1016/j.omtn.2018.09.020 – volume: 19 start-page: 3410 year: 2018 ident: 10.1016/j.ygeno.2019.08.001_bb0100 article-title: PWCDA: path weighted method for predicting circRNA-disease associations publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19113410 – volume: 495 start-page: 333 year: 2013 ident: 10.1016/j.ygeno.2019.08.001_bb0005 article-title: Circular RNAs are a large class of animal RNAs with regulatory potency publication-title: Nature doi: 10.1038/nature11928 – year: 2019 ident: 10.1016/j.ygeno.2019.08.001_bb0120 article-title: Integrating bipartite network projection and KATZ measure to identify novel CircRNA-disease associations publication-title: IEEE Trans. Nanobiosci. |
| SSID | ssj0009382 |
| Score | 2.5158358 |
| Snippet | Circular RNAs (circRNAs) are a new kind of endogenous non-coding RNAs, which have been discovered continuously. More and more studies have shown that circRNAs... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1335 |
| SubjectTerms | Algorithms Association prediction breast neoplasms carcinoma case studies circRNA circular RNA computational methodology Cosine similarity Disease Genetic Predisposition to Disease Genome-Wide Association Study - methods human diseases Humans Label propagation Locality-constrained linear coding Neoplasms - genetics non-coding RNA pathogenesis prediction RNA, Circular - genetics stomach neoplasms |
| Title | Predicting human disease-associated circRNAs based on locality-constrained linear coding |
| URI | https://dx.doi.org/10.1016/j.ygeno.2019.08.001 https://www.ncbi.nlm.nih.gov/pubmed/31394170 https://www.proquest.com/docview/2270003674 https://www.proquest.com/docview/2305198864 |
| Volume | 112 |
| WOSCitedRecordID | wos000514071600033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1089-8646 dateEnd: 20200731 omitProxy: false ssIdentifier: ssj0009382 issn: 0888-7543 databaseCode: AIEXJ dateStart: 20051201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DgQ8ICi3cpmChHgZmXKt7cdqtAU0ygSdlD1ZqeOgVlVaepm2X8Df5hzbSYvWVeOBl6g6SmIr56v9nYvPIeSdn3OfK-W5CvNxgBFELk9z3-VwO9D7bMjzXDeboP0-SxJ-Wqv9Ls_CXExoUbDLSz77r6oGGSgbj87-g7qrl4IAfoPS4Qpqh-utFH86x9iLzmY2DfhsDMZNrSaAYsrRXH7vtxeHuIllGDDQexowclciYcS-ESBHCprOD-W02uAsje0pfZpZe2x_wBAfR-qn8bniUa-jDfdCT5nV9nJUrf_n1kV9Di8dr9bo7Fn5Vy2vxN3U5gWsisnUTsO6KcAmrfK07MrqARZYy_ob1RZZuRz7wQbugo3FFczpeOuqbxwQ46MrrGuL6Xpcl2W1w_9VY7v_TXTPTk7EoJMM3s9-udh-DMP0thfLHtkPaMxZney3P3eSL-v6zSEzgXM747KAlU4VvDbuTSTnJiNGk5nBI_LQWiFO26DnMampokHumr6kVw1y77hsA9ggDzYqVj4hyRpdjkaXcx1dTokuR6PLmRbONnQ5Bl2OQddTctbtDI4_ubY5hyuBUi_duKVoFKRY0DHKKFbJYzKmSqaBx4dKUZlRFQZDL86imA1pnHvBMIiyGDaQMGulMnxG6sW0UC-IE7KcyShWLOIStpSc55RTPMaqaBCnLGuSoPyaQtrK9TjViShTFMdCq0CgCgS2VfX8JvlQPTQzhVt2394q1SQs9zScUgDIdj_4tlSqAM1guC0t1HS1EAHmdABBpNGOe0I0oRggqkmeG0RUsw3BOIt86r28xQivyP31n-41qS_nK_WG3JEXy9FifkD2aMIOLKT_AO-bxF8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+human+disease-associated+circRNAs+based+on+locality-constrained+linear+coding&rft.jtitle=Genomics+%28San+Diego%2C+Calif.%29&rft.au=Ge%2C+Erxia&rft.au=Yang%2C+Yingjuan&rft.au=Gang%2C+Mingjun&rft.au=Fan%2C+Chunlong&rft.date=2020-03-01&rft.issn=1089-8646&rft.eissn=1089-8646&rft.volume=112&rft.issue=2&rft.spage=1335&rft_id=info:doi/10.1016%2Fj.ygeno.2019.08.001&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-7543&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-7543&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-7543&client=summon |