Beyond Monocular Deraining: Parallel Stereo Deraining Network Via Semantic Prior
Rain is a common natural phenomenon. Taking images in the rain however often results in degraded quality of images, thus compromises the performance of many computer vision systems. Most existing de-rain algorithms use only one single input image and aim to recover a clean image. Few work has exploi...
Uloženo v:
| Vydáno v: | International journal of computer vision Ročník 130; číslo 7; s. 1754 - 1769 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.07.2022
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0920-5691, 1573-1405 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Rain is a common natural phenomenon. Taking images in the rain however often results in degraded quality of images, thus compromises the performance of many computer vision systems. Most existing de-rain algorithms use only one single input image and aim to recover a clean image. Few work has exploited stereo images. Moreover, even for single image based monocular deraining, many current methods fail to complete the task satisfactorily because they mostly rely on per pixel loss functions and ignore semantic information. In this paper, we present a Paired Rain Removal Network (PRRNet), which exploits both stereo images and semantic information. Specifically, we develop a Semantic-Aware Deraining Module (SADM) which solves both tasks of semantic segmentation and deraining of scenes, and a Semantic-Fusion Network (SFNet) and a View-Fusion Network (VFNet) which fuse semantic information and multi-view information respectively. In addition, we also introduce an Enhanced Paired Rain Removal Network (EPRRNet) which exploits semantic prior to remove rain streaks from stereo images. We first use a coarse deraining network to reduce the rain streaks on the input images, and then adopt a pre-trained semantic segmentation network to extract semantic features from the coarse derained image. Finally, a parallel stereo deraining network fuses semantic and multi-view information to restore finer results. We also propose new stereo based rainy datasets for benchmarking. Experiments on both monocular and the newly proposed stereo rainy datasets demonstrate that the proposed method achieves the state-of-the-art performance.
https://github.com/HDCVLab/Stereo-Image-Deraining
. |
|---|---|
| AbstractList | Rain is a common natural phenomenon. Taking images in the rain however often results in degraded quality of images, thus compromises the performance of many computer vision systems. Most existing de-rain algorithms use only one single input image and aim to recover a clean image. Few work has exploited stereo images. Moreover, even for single image based monocular deraining, many current methods fail to complete the task satisfactorily because they mostly rely on per pixel loss functions and ignore semantic information. In this paper, we present a Paired Rain Removal Network (PRRNet), which exploits both stereo images and semantic information. Specifically, we develop a Semantic-Aware Deraining Module (SADM) which solves both tasks of semantic segmentation and deraining of scenes, and a Semantic-Fusion Network (SFNet) and a View-Fusion Network (VFNet) which fuse semantic information and multi-view information respectively. In addition, we also introduce an Enhanced Paired Rain Removal Network (EPRRNet) which exploits semantic prior to remove rain streaks from stereo images. We first use a coarse deraining network to reduce the rain streaks on the input images, and then adopt a pre-trained semantic segmentation network to extract semantic features from the coarse derained image. Finally, a parallel stereo deraining network fuses semantic and multi-view information to restore finer results. We also propose new stereo based rainy datasets for benchmarking. Experiments on both monocular and the newly proposed stereo rainy datasets demonstrate that the proposed method achieves the state-of-the-art performance. Rain is a common natural phenomenon. Taking images in the rain however often results in degraded quality of images, thus compromises the performance of many computer vision systems. Most existing de-rain algorithms use only one single input image and aim to recover a clean image. Few work has exploited stereo images. Moreover, even for single image based monocular deraining, many current methods fail to complete the task satisfactorily because they mostly rely on per pixel loss functions and ignore semantic information. In this paper, we present a Paired Rain Removal Network (PRRNet), which exploits both stereo images and semantic information. Specifically, we develop a Semantic-Aware Deraining Module (SADM) which solves both tasks of semantic segmentation and deraining of scenes, and a Semantic-Fusion Network (SFNet) and a View-Fusion Network (VFNet) which fuse semantic information and multi-view information respectively. In addition, we also introduce an Enhanced Paired Rain Removal Network (EPRRNet) which exploits semantic prior to remove rain streaks from stereo images. We first use a coarse deraining network to reduce the rain streaks on the input images, and then adopt a pre-trained semantic segmentation network to extract semantic features from the coarse derained image. Finally, a parallel stereo deraining network fuses semantic and multi-view information to restore finer results. We also propose new stereo based rainy datasets for benchmarking. Experiments on both monocular and the newly proposed stereo rainy datasets demonstrate that the proposed method achieves the state-of-the-art performance. https://github.com/HDCVLab/Stereo-Image-Deraining. Rain is a common natural phenomenon. Taking images in the rain however often results in degraded quality of images, thus compromises the performance of many computer vision systems. Most existing de-rain algorithms use only one single input image and aim to recover a clean image. Few work has exploited stereo images. Moreover, even for single image based monocular deraining, many current methods fail to complete the task satisfactorily because they mostly rely on per pixel loss functions and ignore semantic information. In this paper, we present a Paired Rain Removal Network (PRRNet), which exploits both stereo images and semantic information. Specifically, we develop a Semantic-Aware Deraining Module (SADM) which solves both tasks of semantic segmentation and deraining of scenes, and a Semantic-Fusion Network (SFNet) and a View-Fusion Network (VFNet) which fuse semantic information and multi-view information respectively. In addition, we also introduce an Enhanced Paired Rain Removal Network (EPRRNet) which exploits semantic prior to remove rain streaks from stereo images. We first use a coarse deraining network to reduce the rain streaks on the input images, and then adopt a pre-trained semantic segmentation network to extract semantic features from the coarse derained image. Finally, a parallel stereo deraining network fuses semantic and multi-view information to restore finer results. We also propose new stereo based rainy datasets for benchmarking. Experiments on both monocular and the newly proposed stereo rainy datasets demonstrate that the proposed method achieves the state-of-the-art performance. https://github.com/HDCVLab/Stereo-Image-Deraining . |
| Audience | Academic |
| Author | Yu, Yanjiang Li, Changsheng Liu, Wei Ren, Wenqi Ma, Lin Zhang, Kaihao Luo, Wenhan Zhao, Fang Li, Hongdong |
| Author_xml | – sequence: 1 givenname: Kaihao surname: Zhang fullname: Zhang, Kaihao organization: Australian National University – sequence: 2 givenname: Wenhan orcidid: 0000-0002-5697-4168 surname: Luo fullname: Luo, Wenhan email: whluo.china@gmail.com organization: Sun Yat-sen University – sequence: 3 givenname: Yanjiang surname: Yu fullname: Yu, Yanjiang organization: Beijing Institute of Technology – sequence: 4 givenname: Wenqi surname: Ren fullname: Ren, Wenqi organization: Sun Yat-sen University – sequence: 5 givenname: Fang surname: Zhao fullname: Zhao, Fang organization: Inception Institute of Artificial Intelligence – sequence: 6 givenname: Changsheng surname: Li fullname: Li, Changsheng organization: Beijing Institute of Technology – sequence: 7 givenname: Lin surname: Ma fullname: Ma, Lin organization: Meituan Group – sequence: 8 givenname: Wei surname: Liu fullname: Liu, Wei organization: Tencent – sequence: 9 givenname: Hongdong surname: Li fullname: Li, Hongdong organization: Australian National University |
| BookMark | eNp9kctOHDEQRa0IpAyPH8iqpayyaLCr_ersCG-JJCMmydYybntk0mOD7dHA32PoSIgskBclVZ1jy3V30FaIwSL0ieADgrE4zIQA71oM0GLCAbebD2hGmOhaQjHbQjPc1ybjPfmIdnK-xRiDhG6G5t_sYwxD8z2GaNajTs2JTdoHH5Zfm7lOehzt2CyKTTa-jpoftmxi-tv88bpZ2JUOxZtmnnxMe2jb6THb_X91F_0-O_11fNFe_Ty_PD66ak3XQ2mpY84wzMQg6M2ALQjHOHQOiOEDpTdaUEmdBimYg8EwqTGnopcaBmF5D90u-jzde5fi_drmom7jOoX6pAIuCUjK-75SBxO11KNVPrhYkjb1DHblTd2h87V_JLCkEjgjVfjyRqhMsQ9lqdc5q8vF9VtWTqxJMedknTK-6OKrUvc0KoLVczhqCkfVcNRLOGpTVfhPvUt-pdPj-1I3SbnCYWnT65ffsZ4A72OiKA |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_128308 crossref_primary_10_1109_ACCESS_2024_3523419 crossref_primary_10_1109_TCSVT_2024_3480930 crossref_primary_10_1109_TCSVT_2025_3532321 crossref_primary_10_1109_TMM_2022_3214780 crossref_primary_10_3390_computers14010011 crossref_primary_10_1016_j_patrec_2024_01_006 crossref_primary_10_1109_TCI_2025_3527142 crossref_primary_10_1109_TIV_2023_3347952 crossref_primary_10_1016_j_engappai_2025_110490 crossref_primary_10_1016_j_jvcir_2024_104117 crossref_primary_10_1109_TCSVT_2024_3516074 crossref_primary_10_1016_j_displa_2024_102736 crossref_primary_10_1007_s11760_023_02649_1 crossref_primary_10_1016_j_eswa_2023_121339 crossref_primary_10_1007_s11263_024_02148_x crossref_primary_10_1016_j_neucom_2024_127752 crossref_primary_10_3390_electronics14071447 crossref_primary_10_1016_j_patcog_2024_110370 crossref_primary_10_1016_j_knosys_2025_114086 crossref_primary_10_1109_TASE_2025_3539632 crossref_primary_10_1109_TPAMI_2024_3442955 crossref_primary_10_1109_LSP_2025_3586178 crossref_primary_10_1016_j_eswa_2023_122592 crossref_primary_10_1109_TIP_2023_3334556 crossref_primary_10_1016_j_patcog_2024_110840 crossref_primary_10_1109_TGRS_2023_3346041 crossref_primary_10_1088_1361_6501_ad916b crossref_primary_10_3390_s22134707 crossref_primary_10_1007_s00138_025_01710_y crossref_primary_10_1016_j_patcog_2024_110743 crossref_primary_10_1109_LSP_2025_3561724 crossref_primary_10_1109_TCSVT_2024_3450971 crossref_primary_10_1016_j_eswa_2025_126857 crossref_primary_10_3390_futuretransp5020039 crossref_primary_10_1109_TCE_2025_3534680 crossref_primary_10_1109_TITS_2023_3277709 crossref_primary_10_1049_ipr2_70089 crossref_primary_10_1109_TCSVT_2023_3299324 crossref_primary_10_1109_TIP_2023_3234692 crossref_primary_10_1016_j_neunet_2024_106428 crossref_primary_10_1109_TMM_2024_3368918 crossref_primary_10_1016_j_displa_2024_102842 crossref_primary_10_1016_j_cviu_2023_103819 crossref_primary_10_1016_j_neunet_2024_106464 crossref_primary_10_1016_j_neucom_2023_127066 crossref_primary_10_1016_j_knosys_2023_110890 crossref_primary_10_1109_TPAMI_2023_3307666 |
| Cites_doi | 10.1109/TIP.2020.2973802 10.1109/TIP.2018.2867733 10.1177/0278364913491297 10.1109/TCSVT.2019.2920407 10.1109/TPAMI.2020.2995190 10.1109/TMM.2013.2284759 10.1109/TIP.2011.2179057 10.1049/iet-ipr.2010.0547 10.1109/TIP.2018.2869722 10.1109/TPAMI.2019.2895793 10.1109/TIP.2013.2290595 10.1109/TIP.2015.2428933 10.1007/s11263-008-0200-2 10.1109/TIP.2017.2691802 10.1007/s11263-019-01288-9 10.1109/CVPR.2017.699 10.1109/CVPR42600.2020.01256 10.1109/CVPR42600.2020.00861 10.1109/CVPR.2018.00185 10.1109/CVPR.2019.00176 10.1109/ICCV.2015.312 10.1109/CVPR.2018.00341 10.1109/CVPR.2016.614 10.1007/978-3-030-58583-9_5 10.1109/CVPR.2017.660 10.1109/CVPR.2019.01125 10.1109/ICME.2006.262572 10.1109/CVPR.2016.299 10.1109/TPAMI.2021.3083076 10.1109/CVPR.2017.186 10.1109/CVPR.2015.7299097 10.1109/CVPR.2019.00821 10.1109/IROS.2005.1545103 10.1109/ICCV.2013.247 10.1007/s11263-014-0759-8 10.1109/CVPR.2015.7298965 10.1109/ICCV.2017.276 10.1109/CVPR.2019.00860 10.1109/CVPR.2018.00682 10.1609/aaai.v33i01.33019203 10.1109/CVPR42600.2020.01457 10.1109/TIP.2021.3104166 10.1109/CVPR42600.2020.00281 10.1007/978-3-030-58610-2_12 10.1007/978-3-319-46475-6_10 10.1109/ICCV.2015.388 10.1109/CVPR.2017.183 10.1007/978-3-030-01234-2_16 10.1109/CVPR.2018.00337 10.1109/ICCV.2013.84 10.1109/CVPR.2015.7299152 10.1109/CVPR.2018.00079 10.1109/CVPR.2018.00696 10.1109/CVPR42600.2020.00280 10.1109/CVPR.2017.301 10.1109/ICIP.2014.7026099 10.1109/WACV.2017.145 10.1109/CVPR.2016.350 10.1109/CVPR42600.2020.00324 10.1109/CVPR.2019.00781 10.1109/ICCV48922.2021.01450 10.1109/CVPR.2018.00862 10.1109/ICCV.2017.275 10.1109/ICCV.2019.00740 10.1109/CVPR.2017.19 10.1109/CVPR46437.2021.01458 10.1109/CVPR.2018.00567 10.1145/1179352.1141985 10.1109/CVPR.2018.00263 10.1109/TPAMI.2022.3148707 10.1007/978-3-030-01267-0_2 10.1109/CVPR.2016.90 10.1109/CVPR46437.2021.00763 10.1109/CVPR.2018.00658 10.1109/CVPR.2004.1315077 10.1007/978-3-540-89689-0_49 10.1109/TIP.2021.3108019 10.1109/ICCVW.2017.108 10.1007/s11263-022-01633-5 10.1109/CVPR.2017.303 10.1109/CVPR.2019.00396 10.1109/CVPR.2019.00173 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 COPYRIGHT 2022 Springer The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: COPYRIGHT 2022 Springer – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| DBID | AAYXX CITATION ISR 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PYYUZ Q9U |
| DOI | 10.1007/s11263-022-01620-w |
| DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1573-1405 |
| EndPage | 1769 |
| ExternalDocumentID | A708482651 10_1007_s11263_022_01620_w |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c392t-4f5fc5057d74bd0e27f5623f21c6d44ba7484fa2875f2dc58a064798a2d7e6923 |
| IEDL.DBID | M0C |
| ISICitedReferencesCount | 59 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000796848800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-5691 |
| IngestDate | Wed Nov 05 02:15:47 EST 2025 Sat Nov 29 10:36:11 EST 2025 Mon Nov 24 14:35:43 EST 2025 Tue Nov 18 21:22:03 EST 2025 Sat Nov 29 06:42:29 EST 2025 Fri Feb 21 02:46:28 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Deep learning Parallel stereo network Stereo image deraining View fusion |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c392t-4f5fc5057d74bd0e27f5623f21c6d44ba7484fa2875f2dc58a064798a2d7e6923 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5697-4168 |
| PQID | 2681284699 |
| PQPubID | 1456341 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2681284699 gale_infotracacademiconefile_A708482651 gale_incontextgauss_ISR_A708482651 crossref_citationtrail_10_1007_s11263_022_01620_w crossref_primary_10_1007_s11263_022_01620_w springer_journals_10_1007_s11263_022_01620_w |
| PublicationCentury | 2000 |
| PublicationDate | 20220700 2022-07-00 20220701 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 7 year: 2022 text: 20220700 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | International journal of computer vision |
| PublicationTitleAbbrev | Int J Comput Vis |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | Kang, Lin, Fu (CR25) 2011; 21 CR38 CR37 CR36 CR35 CR79 CR34 CR78 CR33 CR77 CR32 CR76 CR31 CR75 CR30 CR74 CR73 CR72 CR71 CR70 Liu, Xu, Liu, Tang (CR39) 2009; 2 CR2 CR4 CR3 CR6 CR5 CR7 CR9 CR49 CR48 CR47 CR46 Huang, Kang, Wang, Lin (CR22) 2013; 16 CR45 Yasarla, Patel (CR65) 2020; 29 CR44 Tripathi, Mukhopadhyay (CR56) 2012; 6 CR88 CR43 CR87 CR42 CR86 CR41 CR85 Shen, Lai, Xu, Kautz, Yang (CR53) 2020; 128 CR84 CR83 Zhang, Sindagi, Patel (CR82) 2019; 30 Geiger, Lenz, Stiller, Urtasun (CR17) 2013; 32 CR80 Barnum, Narasimhan, Kanade (CR1) 2010; 86 CR19 Yang, Tan, Feng, Guo, Yan, Liu (CR61) 2019; 42 CR18 Liu, Yang, Yang, Guo (CR40) 2018; 28 CR16 CR15 CR59 CR58 CR13 CR57 CR12 CR11 CR55 CR10 CR54 CR52 CR51 CR50 Chen, Chau (CR8) 2013; 23 Kim, Sim, Kim (CR27) 2015; 24 CR29 CR28 Fu, Huang, Ding, Liao, Paisley (CR14) 2017; 26 CR26 CR69 CR24 CR68 CR23 CR67 CR66 CR21 CR20 Yang, Tan, Wang, Fang, Liu (CR62) 2020; 43 CR64 CR63 CR60 Zhang, Luo, Zhong, Ma, Liu, Li (CR81) 2018; 28 1620_CR49 DA Huang (1620_CR22) 2013; 16 1620_CR80 1620_CR84 1620_CR83 1620_CR44 1620_CR88 1620_CR43 1620_CR87 1620_CR42 1620_CR86 1620_CR41 1620_CR85 1620_CR48 JH Kim (1620_CR27) 2015; 24 1620_CR47 1620_CR46 1620_CR45 1620_CR19 1620_CR18 J Liu (1620_CR40) 2018; 28 1620_CR16 W Yang (1620_CR62) 2020; 43 P Liu (1620_CR39) 2009; 2 H Zhang (1620_CR82) 2019; 30 Z Shen (1620_CR53) 2020; 128 J Chen (1620_CR8) 2013; 23 1620_CR51 1620_CR50 1620_CR11 1620_CR55 1620_CR10 1620_CR54 X Fu (1620_CR14) 2017; 26 1620_CR52 PC Barnum (1620_CR1) 2010; 86 1620_CR15 1620_CR59 1620_CR58 1620_CR13 1620_CR57 W Yang (1620_CR61) 2019; 42 1620_CR12 1620_CR7 1620_CR29 1620_CR28 1620_CR9 1620_CR4 1620_CR3 1620_CR6 1620_CR5 1620_CR2 LW Kang (1620_CR25) 2011; 21 1620_CR60 1620_CR66 1620_CR21 1620_CR20 1620_CR64 1620_CR63 1620_CR26 R Yasarla (1620_CR65) 2020; 29 1620_CR69 1620_CR24 1620_CR68 1620_CR23 1620_CR67 1620_CR38 A Geiger (1620_CR17) 2013; 32 A Tripathi (1620_CR56) 2012; 6 K Zhang (1620_CR81) 2018; 28 1620_CR73 1620_CR72 1620_CR71 1620_CR70 1620_CR33 1620_CR77 1620_CR32 1620_CR76 1620_CR31 1620_CR75 1620_CR30 1620_CR74 1620_CR37 1620_CR36 1620_CR35 1620_CR79 1620_CR34 1620_CR78 |
| References_xml | – ident: CR45 – ident: CR70 – volume: 29 start-page: 4544 year: 2020 end-page: 4555 ident: CR65 article-title: Confidence measure guided single image de-raining publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2020.2973802 – ident: CR49 – ident: CR68 – ident: CR74 – ident: CR4 – ident: CR87 – ident: CR16 – ident: CR51 – ident: CR12 – volume: 28 start-page: 291 issue: 1 year: 2018 end-page: 301 ident: CR81 article-title: Adversarial spatio-temporal learning for video deblurring publication-title: IEEE Transactions on Image Processing (TIP) doi: 10.1109/TIP.2018.2867733 – volume: 32 start-page: 1231 issue: 11 year: 2013 end-page: 1237 ident: CR17 article-title: Vision meets robotics: The kitti dataset publication-title: The International Journal of Robotics Research (IJRR) doi: 10.1177/0278364913491297 – ident: CR35 – ident: CR29 – ident: CR54 – ident: CR80 – ident: CR77 – ident: CR58 – ident: CR84 – ident: CR42 – ident: CR21 – ident: CR46 – ident: CR71 – ident: CR19 – volume: 30 start-page: 3943 issue: 11 year: 2019 end-page: 3956 ident: CR82 article-title: Image de-raining using a conditional generative adversarial network publication-title: IEEE Transactions on Circuits and Systems for Video Technology (TCSVT) doi: 10.1109/TCSVT.2019.2920407 – volume: 43 start-page: 4059 issue: 11 year: 2020 end-page: 4077 ident: CR62 article-title: Single image deraining: From model-based to data-driven and beyond publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2020.2995190 – volume: 16 start-page: 83 issue: 1 year: 2013 end-page: 93 ident: CR22 article-title: Self-learning based image decomposition with applications to single image denoising publication-title: IEEE Transactions on Multimedia (TMM) doi: 10.1109/TMM.2013.2284759 – ident: CR67 – ident: CR75 – ident: CR15 – ident: CR88 – ident: CR50 – ident: CR11 – ident: CR9 – ident: CR57 – ident: CR32 – ident: CR60 – ident: CR36 – ident: CR78 – ident: CR85 – ident: CR5 – volume: 21 start-page: 1742 issue: 4 year: 2011 end-page: 1755 ident: CR25 article-title: Automatic single-image-based rain streaks removal via image decomposition publication-title: IEEE Transactions on Image Processing (TIP) doi: 10.1109/TIP.2011.2179057 – ident: CR64 – ident: CR26 – ident: CR18 – ident: CR43 – ident: CR66 – ident: CR47 – volume: 6 start-page: 181 issue: 2 year: 2012 end-page: 196 ident: CR56 article-title: Video post processing: Low-latency spatiotemporal approach for detection and removal of rain publication-title: IET Image Processing doi: 10.1049/iet-ipr.2010.0547 – ident: CR72 – volume: 28 start-page: 699 issue: 2 year: 2018 end-page: 712 ident: CR40 article-title: D3r-net: Dynamic routing residue recurrent network for video rain removal publication-title: IEEE Transactions on Image Processing (TIP) doi: 10.1109/TIP.2018.2869722 – volume: 42 start-page: 1377 issue: 6 year: 2019 end-page: 1393 ident: CR61 article-title: Joint rain detection and removal from a single image with contextualized deep networks publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2019.2895793 – ident: CR2 – ident: CR37 – ident: CR30 – volume: 23 start-page: 1097 year: 2013 end-page: 1104 ident: CR8 article-title: A rain pixel recovery algorithm for videos with highly dynamic scenes publication-title: IEEE Transactions on Image Processing (TIP) doi: 10.1109/TIP.2013.2290595 – ident: CR10 – ident: CR33 – ident: CR6 – ident: CR79 – ident: CR86 – volume: 24 start-page: 2658 issue: 9 year: 2015 end-page: 2670 ident: CR27 article-title: Video deraining and desnowing using temporal correlation and low-rank matrix completion publication-title: IEEE Transactions on Image Processing (TIP) doi: 10.1109/TIP.2015.2428933 – ident: CR63 – ident: CR23 – ident: CR69 – ident: CR44 – ident: CR48 – ident: CR73 – volume: 2 start-page: 53 issue: 1 year: 2009 end-page: 60 ident: CR39 article-title: Pixel based temporal analysis using chromatic property for removing rain from videos publication-title: Computer and Information Science – ident: CR3 – ident: CR38 – ident: CR52 – ident: CR31 – ident: CR13 – volume: 86 start-page: 256 year: 2010 end-page: 274 ident: CR1 article-title: Analysis of rain and snow in frequency space publication-title: International Journal of Computer Vision (IJCV) doi: 10.1007/s11263-008-0200-2 – ident: CR34 – ident: CR55 – ident: CR7 – ident: CR59 – ident: CR76 – ident: CR83 – volume: 26 start-page: 2944 issue: 6 year: 2017 end-page: 2956 ident: CR14 article-title: Clearing the skies: A deep network architecture for single-image rain removal publication-title: IEEE Transactions on Image Processing (TIP) doi: 10.1109/TIP.2017.2691802 – ident: CR28 – ident: CR41 – ident: CR24 – volume: 128 start-page: 1829 issue: 7 year: 2020 end-page: 1846 ident: CR53 article-title: Exploiting semantics for face image deblurring publication-title: International Journal of Computer Vision doi: 10.1007/s11263-019-01288-9 – ident: CR20 – ident: 1620_CR18 doi: 10.1109/CVPR.2017.699 – ident: 1620_CR80 doi: 10.1109/CVPR42600.2020.01256 – ident: 1620_CR70 doi: 10.1109/CVPR42600.2020.00861 – volume: 29 start-page: 4544 year: 2020 ident: 1620_CR65 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2020.2973802 – ident: 1620_CR23 doi: 10.1109/CVPR.2018.00185 – ident: 1620_CR58 doi: 10.1109/CVPR.2019.00176 – ident: 1620_CR5 doi: 10.1109/ICCV.2015.312 – ident: 1620_CR38 doi: 10.1109/CVPR.2018.00341 – ident: 1620_CR42 doi: 10.1109/CVPR.2016.614 – ident: 1620_CR77 doi: 10.1007/978-3-030-58583-9_5 – ident: 1620_CR83 doi: 10.1109/CVPR.2017.660 – ident: 1620_CR87 doi: 10.1109/CVPR.2019.01125 – ident: 1620_CR74 doi: 10.1109/ICME.2006.262572 – volume: 86 start-page: 256 year: 2010 ident: 1620_CR1 publication-title: International Journal of Computer Vision (IJCV) doi: 10.1007/s11263-008-0200-2 – ident: 1620_CR34 doi: 10.1109/CVPR.2016.299 – ident: 1620_CR60 doi: 10.1109/TPAMI.2021.3083076 – ident: 1620_CR13 doi: 10.1109/CVPR.2017.186 – ident: 1620_CR51 doi: 10.1109/CVPR.2015.7299097 – ident: 1620_CR55 – ident: 1620_CR21 doi: 10.1109/CVPR.2019.00821 – ident: 1620_CR54 doi: 10.1109/IROS.2005.1545103 – volume: 2 start-page: 53 issue: 1 year: 2009 ident: 1620_CR39 publication-title: Computer and Information Science – ident: 1620_CR4 doi: 10.1109/ICCV.2013.247 – ident: 1620_CR50 doi: 10.1007/s11263-014-0759-8 – ident: 1620_CR41 doi: 10.1109/CVPR.2015.7298965 – ident: 1620_CR88 doi: 10.1109/ICCV.2017.276 – volume: 28 start-page: 291 issue: 1 year: 2018 ident: 1620_CR81 publication-title: IEEE Transactions on Image Processing (TIP) doi: 10.1109/TIP.2018.2867733 – ident: 1620_CR63 doi: 10.1109/CVPR.2019.00860 – ident: 1620_CR31 doi: 10.1109/CVPR.2018.00682 – ident: 1620_CR76 doi: 10.1609/aaai.v33i01.33019203 – ident: 1620_CR10 doi: 10.1109/CVPR42600.2020.01457 – ident: 1620_CR75 doi: 10.1109/TIP.2021.3104166 – ident: 1620_CR78 doi: 10.1109/CVPR42600.2020.00281 – ident: 1620_CR44 doi: 10.1007/978-3-030-58610-2_12 – volume: 42 start-page: 1377 issue: 6 year: 2019 ident: 1620_CR61 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2019.2895793 – ident: 1620_CR47 doi: 10.1007/978-3-319-46475-6_10 – ident: 1620_CR43 doi: 10.1109/ICCV.2015.388 – ident: 1620_CR59 doi: 10.1109/CVPR.2017.183 – ident: 1620_CR35 doi: 10.1007/978-3-030-01234-2_16 – volume: 128 start-page: 1829 issue: 7 year: 2020 ident: 1620_CR53 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-019-01288-9 – ident: 1620_CR68 doi: 10.1109/CVPR.2018.00337 – volume: 6 start-page: 181 issue: 2 year: 2012 ident: 1620_CR56 publication-title: IET Image Processing doi: 10.1049/iet-ipr.2010.0547 – ident: 1620_CR11 doi: 10.1109/ICCV.2013.84 – ident: 1620_CR37 doi: 10.1109/CVPR.2015.7299152 – ident: 1620_CR69 doi: 10.1109/CVPR.2018.00079 – ident: 1620_CR7 doi: 10.1109/CVPR.2018.00696 – volume: 32 start-page: 1231 issue: 11 year: 2013 ident: 1620_CR17 publication-title: The International Journal of Robotics Research (IJRR) doi: 10.1177/0278364913491297 – volume: 16 start-page: 83 issue: 1 year: 2013 ident: 1620_CR22 publication-title: IEEE Transactions on Multimedia (TMM) doi: 10.1109/TMM.2013.2284759 – ident: 1620_CR64 doi: 10.1109/CVPR42600.2020.00280 – ident: 1620_CR20 – ident: 1620_CR24 doi: 10.1109/CVPR.2017.301 – ident: 1620_CR26 doi: 10.1109/ICIP.2014.7026099 – ident: 1620_CR86 – volume: 43 start-page: 4059 issue: 11 year: 2020 ident: 1620_CR62 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2020.2995190 – ident: 1620_CR67 doi: 10.1109/WACV.2017.145 – ident: 1620_CR9 doi: 10.1109/CVPR.2016.350 – volume: 30 start-page: 3943 issue: 11 year: 2019 ident: 1620_CR82 publication-title: IEEE Transactions on Circuits and Systems for Video Technology (TCSVT) doi: 10.1109/TCSVT.2019.2920407 – ident: 1620_CR32 doi: 10.1109/CVPR42600.2020.00324 – ident: 1620_CR49 doi: 10.1109/CVPR.2019.00781 – ident: 1620_CR73 doi: 10.1109/ICCV48922.2021.01450 – volume: 26 start-page: 2944 issue: 6 year: 2017 ident: 1620_CR14 publication-title: IEEE Transactions on Image Processing (TIP) doi: 10.1109/TIP.2017.2691802 – ident: 1620_CR52 doi: 10.1109/CVPR.2018.00862 – ident: 1620_CR57 doi: 10.1109/ICCV.2017.275 – ident: 1620_CR33 doi: 10.1109/ICCV.2019.00740 – ident: 1620_CR28 doi: 10.1109/CVPR.2017.19 – volume: 28 start-page: 699 issue: 2 year: 2018 ident: 1620_CR40 publication-title: IEEE Transactions on Image Processing (TIP) doi: 10.1109/TIP.2018.2869722 – ident: 1620_CR66 doi: 10.1109/CVPR46437.2021.01458 – ident: 1620_CR3 doi: 10.1109/CVPR.2018.00567 – ident: 1620_CR16 doi: 10.1145/1179352.1141985 – volume: 21 start-page: 1742 issue: 4 year: 2011 ident: 1620_CR25 publication-title: IEEE Transactions on Image Processing (TIP) doi: 10.1109/TIP.2011.2179057 – ident: 1620_CR46 doi: 10.1109/CVPR.2018.00263 – ident: 1620_CR71 doi: 10.1109/TPAMI.2022.3148707 – ident: 1620_CR84 doi: 10.1007/978-3-030-01267-0_2 – ident: 1620_CR19 doi: 10.1109/CVPR.2016.90 – ident: 1620_CR12 – ident: 1620_CR85 – volume: 24 start-page: 2658 issue: 9 year: 2015 ident: 1620_CR27 publication-title: IEEE Transactions on Image Processing (TIP) doi: 10.1109/TIP.2015.2428933 – ident: 1620_CR36 doi: 10.1109/CVPR46437.2021.00763 – ident: 1620_CR6 doi: 10.1109/CVPR.2018.00658 – ident: 1620_CR15 doi: 10.1109/CVPR.2004.1315077 – ident: 1620_CR2 doi: 10.1007/978-3-540-89689-0_49 – ident: 1620_CR72 doi: 10.1109/TIP.2021.3108019 – volume: 23 start-page: 1097 year: 2013 ident: 1620_CR8 publication-title: IEEE Transactions on Image Processing (TIP) doi: 10.1109/TIP.2013.2290595 – ident: 1620_CR45 doi: 10.1109/ICCVW.2017.108 – ident: 1620_CR79 doi: 10.1007/s11263-022-01633-5 – ident: 1620_CR48 doi: 10.1109/CVPR.2017.303 – ident: 1620_CR29 doi: 10.1109/CVPR.2019.00396 – ident: 1620_CR30 doi: 10.1109/CVPR.2019.00173 |
| SSID | ssj0002823 |
| Score | 2.6051698 |
| Snippet | Rain is a common natural phenomenon. Taking images in the rain however often results in degraded quality of images, thus compromises the performance of many... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1754 |
| SubjectTerms | Algorithms Artificial Intelligence Computer Imaging Computer Science Computer vision Datasets Feature extraction Image Processing and Computer Vision Image quality Image segmentation Machine vision Pattern Recognition Pattern Recognition and Graphics Rain Semantic segmentation Semantics Vision Vision systems |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB68HnzxFteLIIIPWtjGXvFNPFCQZXFVfAtpksrCupV21b_vTJu6eIK-JpM2ncwk3zRzAOyaLDACYaiXWiXob1XbS0WiPRWaUAXGt9pWKfOv4k4nub8XXRcUVjbe7s2VZLVTj4PdfF7dOZIrQYRGz-skTONxl1DBhuve3fv-i0ZEXUAeacJI-C5U5vtnfDiOPm_KX25Hq0PnfP5_012AOQcy2XEtFYswYYdLMO8AJ3PqXGJTU9OhaVuGbh3SwlDX88pFlZ1aV0XiiHVVQaVXBqyHY2w-7mKd2puc3fUV69lHXK6-Zt2inxcrcHt-dnNy4bmqC55GrDTygizMNJktJg5S07Y8zggjZdzXkQmCVFH20UyhpRVm3OgwURSvKhLFTWwjxIurMDXMh3YNmNJ-4Kf8UHHRRlim0zQxhzZRIS1bInQL_Ib5UruU5FQZYyDHyZSJixK5KCsuytcW7L-PeaoTcvxKvUNrKinTxZBcaR7Uc1nKy961PI6plACPQr8Fe44oy_H1WrnIBPwISo71gXKzkQ3pdL2UnFK4IYwTogUHjSyMu3-e3PrfyDdgllfiRL7CmzA1Kp7tFszol1G_LLYrHXgDE3D-5g priority: 102 providerName: Springer Nature |
| Title | Beyond Monocular Deraining: Parallel Stereo Deraining Network Via Semantic Prior |
| URI | https://link.springer.com/article/10.1007/s11263-022-01620-w https://www.proquest.com/docview/2681284699 |
| Volume | 130 |
| WOSCitedRecordID | wos000796848800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Core Collection customDbUrl: eissn: 1573-1405 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002823 issn: 0920-5691 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VhQOX0hZQl8LKqir1UCI2Ji_3gigFtWq7inYpr4vl2E61Et1Asgt_n5nEYUUruHCxFD8SR-MZz9gz8wF8MHlgBKqhXmaVoNOqvpeJRHsqNKEKjG-1rVPm_4wHg-TsTKTuwK1ybpWtTKwFtSk0nZHvcEqUhZulEHtX1x6hRtHtqoPQWIBF0mzIpe9X_-BeEqM50UDJo4kURsJ3QTNN6JzP6xtMckyIsP32wcb0r3j-75603n6OVp478Vfw0imebL9ZKa_hhZ28gRWnhDLH4hVWtTgPbd0qpE2YC0P-L2q3VfbVOmSJzyxVJcGxXLIRjrHFvIkNGg9zdjJWbGT_IgnHmqXluCjX4PfR4fHBN88hMXga9aepF-RhrsmUMXGQmb7lcU56U859HZkgyBRlJM0VWl9hzo0OE0UxrCJR3MQ2Qh1yHTqTYmLfAlPaD_yM7you-qiq6SxLzK5NFFpKIkmE7oLfkkFql6ac0DIu5TzBMpFOIulkTTp524VP92OumiQdT_Z-T9SVlP1iQu41f9SsquT30VDuxwQvwKPQ78JH1ykv8PNauWgF_AlKmPWg52ZLd-n4v5Jzondhu1058-bHJ7fx9NvewTKv1yz5C29CZ1rO7BYs6ZvpuCp7sBCfnvdg8cvhIB3i04_Y69UcgWUaXmA5HJ3cAZkODek |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB1VpRJcKC0gAoVaqBUHWJF19sNGQqiiVI2SRhEpqDfXa3tRpJItuykRf4rfyMyut1Gp6K0Hrmvv9_N4xp55D2DH5pGV6IYGmdOSVqu6QSaFCXRsYx3Z0BlXU-YP09FInJzI8Qr8bmthKK2ytYm1obaFoTXyt5yIsnCylPLD-Y-AVKNod7WV0GhgMXC_FhiyVe_7-_h_dzk_-HT88TDwqgKBQV9gHkR5nBtyy20aZbbreJqTD5Dz0CQ2ijJN7Jq5xkgizrk1sdBUjymF5jZ1iSSiAzT5d6KeSGlcDdLg0vJj-NJI12NIFicy9EU6TaleyOsdU0qESLB9cWUi_Hs6uLYvW093B-v_24d6APe9Y832mpGwAStutgnr3slm3oRVeKjVsWiPPYRxU8bD0L4VdVou23deOeMdG-uS5GbO2ATPccWyiY2aDHr2darZxH1HiE4NG5fTonwEX27lVR_D6qyYuSfAtAmjMOM9zWUXXVGTZcL2nNAYCUohpOlA2P52ZTwNO6mBnKklgTRBRSFUVA0VtejA68tzzhsSkht7vyQ0KWL3mFH60Dd9UVWqP_ms9lKST-BJHHbgle-UF3h7o301Br4EEYJd6bnV4kx5-1apJcg68KZF6rL53w_39OarbcPdw-OjoRr2R4NncI_X44Vyo7dgdV5euOewZn7Op1X5oh55DE5vG8F_AHsEZAQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD6UWsQXq63iaq2DtPigoZtpbiOIlK6LS8sSXJXiyziZiyzUTU22Lv41f53nJJMutdi3Pviamdx2vzmXzDnfB7BjXGQEhqFBYZWgr1X9oBCZDlRsYhWZ0GrbUOYfp-NxdnIi8hX43fXCUFllZxMbQ21KTd_I9zgRZaGzFGLP-bKIfDB8e_YjIAUp2mnt5DRaiBzZXwtM3-o3owH-17ucD999PHwfeIWBQGNcMA8iFztNIbpJo8L0LU8dxQOOhzoxUVQoYtp0CrOK2HGj40xRb6bIFDepTQSRHqD5v5XiY1E5YR5_ufACmMq0MvaYnsWJCH3DTtu2F_Jm95SKIhIcX1xyin-7hit7tI3rG67_zz_aPbjrA2520K6Q-7BiZxuw7oNv5k1bjYc6fYvu2CbkbXsPQ7tXNuW6bGC9osZrlquKZGhO2QTPseVyiI3bynr2earYxH5H6E41y6tpWT2ATzfyqg9hdVbO7CNgSodRWPB9xUUfQ1RdFJnZt5nCDFFkmdA9CDsISO3p2Ukl5FQuiaUJNhJhIxvYyEUPXl6cc9aSk1w7-zkhSxLrx4yg8E2d17UcTT7Ig5RkFXgShz144Se5Em-vle_SwJcgorBLM7c6zElv92q5BFwPXnWoXQ7_--EeX3-1Z3AbgSuPR-OjJ3CHN0uHSqa3YHVendunsKZ_zqd1td0sQgZfbxrAfwDMJW0o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+Monocular+Deraining%3A+Parallel+Stereo+Deraining+Network+Via+Semantic+Prior&rft.jtitle=International+journal+of+computer+vision&rft.au=Zhang%2C+Kaihao&rft.au=Luo%2C+Wenhan&rft.au=Yu%2C+Yanjiang&rft.au=Ren%2C+Wenqi&rft.date=2022-07-01&rft.pub=Springer&rft.issn=0920-5691&rft.volume=130&rft.issue=7&rft.spage=1754&rft_id=info:doi/10.1007%2Fs11263-022-01620-w&rft.externalDBID=ISR&rft.externalDocID=A708482651 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon |