SDLDA: lncRNA-disease association prediction based on singular value decomposition and deep learning

•A novel hybrid computational framework for lncRNA-disease association prediction.•Improved method that combines matrix factorization and deep learning techniques.•Show good results in term of AUC and AUPR compared with the other methods. In recent years, accumulating studies have shown that long no...

Full description

Saved in:
Bibliographic Details
Published in:Methods (San Diego, Calif.) Vol. 179; pp. 73 - 80
Main Authors: Zeng, Min, Lu, Chengqian, Zhang, Fuhao, Li, Yiming, Wu, Fang-Xiang, Li, Yaohang, Li, Min
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01.07.2020
Subjects:
ISSN:1046-2023, 1095-9130, 1095-9130
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A novel hybrid computational framework for lncRNA-disease association prediction.•Improved method that combines matrix factorization and deep learning techniques.•Show good results in term of AUC and AUPR compared with the other methods. In recent years, accumulating studies have shown that long non-coding RNAs (lncRNAs) not only play an important role in the regulation of various biological processes but also are the foundation for understanding mechanisms of human diseases. Due to the high cost of traditional biological experiments, the number of experimentally verified lncRNA-disease associations is very limited. Thus, many computational approaches have been proposed to discover the underlying associations between lncRNAs and diseases. However, the associations between lncRNAs and diseases are too complicated to model by using only traditional matrix factorization-based methods. In this study, we propose a hybrid computational framework (SDLDA) for the lncRNA-disease association prediction. In our computational framework, we use singular value decomposition and deep learning to extract linear and non-linear features of lncRNAs and diseases, respectively. Then we train SDLDA by combing the linear and non-linear features. Compared to previous computational methods, the combination of linear and non-linear features reinforces each other, which is better than using only either matrix factorization or deep learning. The computational results show that SDLDA has a better performance over existing methods in the leave-one-out cross-validation. Furthermore, the case studies show that 28 out of 30 cancer-related lncRNAs (10 for gastric cancer, 10 for colon cancer and 8 for renal cancer) are verified by mining recent biomedical literature. Code and data can be accessed at https://github.com/CSUBioGroup/SDLDA.
AbstractList In recent years, accumulating studies have shown that long non-coding RNAs (lncRNAs) not only play an important role in the regulation of various biological processes but also are the foundation for understanding mechanisms of human diseases. Due to the high cost of traditional biological experiments, the number of experimentally verified lncRNA-disease associations is very limited. Thus, many computational approaches have been proposed to discover the underlying associations between lncRNAs and diseases. However, the associations between lncRNAs and diseases are too complicated to model by using only traditional matrix factorization-based methods. In this study, we propose a hybrid computational framework (SDLDA) for the lncRNA-disease association prediction. In our computational framework, we use singular value decomposition and deep learning to extract linear and non-linear features of lncRNAs and diseases, respectively. Then we train SDLDA by combing the linear and non-linear features. Compared to previous computational methods, the combination of linear and non-linear features reinforces each other, which is better than using only either matrix factorization or deep learning. The computational results show that SDLDA has a better performance over existing methods in the leave-one-out cross-validation. Furthermore, the case studies show that 28 out of 30 cancer-related lncRNAs (10 for gastric cancer, 10 for colon cancer and 8 for renal cancer) are verified by mining recent biomedical literature. Code and data can be accessed at https://github.com/CSUBioGroup/SDLDA.In recent years, accumulating studies have shown that long non-coding RNAs (lncRNAs) not only play an important role in the regulation of various biological processes but also are the foundation for understanding mechanisms of human diseases. Due to the high cost of traditional biological experiments, the number of experimentally verified lncRNA-disease associations is very limited. Thus, many computational approaches have been proposed to discover the underlying associations between lncRNAs and diseases. However, the associations between lncRNAs and diseases are too complicated to model by using only traditional matrix factorization-based methods. In this study, we propose a hybrid computational framework (SDLDA) for the lncRNA-disease association prediction. In our computational framework, we use singular value decomposition and deep learning to extract linear and non-linear features of lncRNAs and diseases, respectively. Then we train SDLDA by combing the linear and non-linear features. Compared to previous computational methods, the combination of linear and non-linear features reinforces each other, which is better than using only either matrix factorization or deep learning. The computational results show that SDLDA has a better performance over existing methods in the leave-one-out cross-validation. Furthermore, the case studies show that 28 out of 30 cancer-related lncRNAs (10 for gastric cancer, 10 for colon cancer and 8 for renal cancer) are verified by mining recent biomedical literature. Code and data can be accessed at https://github.com/CSUBioGroup/SDLDA.
In recent years, accumulating studies have shown that long non-coding RNAs (lncRNAs) not only play an important role in the regulation of various biological processes but also are the foundation for understanding mechanisms of human diseases. Due to the high cost of traditional biological experiments, the number of experimentally verified lncRNA-disease associations is very limited. Thus, many computational approaches have been proposed to discover the underlying associations between lncRNAs and diseases. However, the associations between lncRNAs and diseases are too complicated to model by using only traditional matrix factorization-based methods. In this study, we propose a hybrid computational framework (SDLDA) for the lncRNA-disease association prediction. In our computational framework, we use singular value decomposition and deep learning to extract linear and non-linear features of lncRNAs and diseases, respectively. Then we train SDLDA by combing the linear and non-linear features. Compared to previous computational methods, the combination of linear and non-linear features reinforces each other, which is better than using only either matrix factorization or deep learning. The computational results show that SDLDA has a better performance over existing methods in the leave-one-out cross-validation. Furthermore, the case studies show that 28 out of 30 cancer-related lncRNAs (10 for gastric cancer, 10 for colon cancer and 8 for renal cancer) are verified by mining recent biomedical literature. Code and data can be accessed at https://github.com/CSUBioGroup/SDLDA.
•A novel hybrid computational framework for lncRNA-disease association prediction.•Improved method that combines matrix factorization and deep learning techniques.•Show good results in term of AUC and AUPR compared with the other methods. In recent years, accumulating studies have shown that long non-coding RNAs (lncRNAs) not only play an important role in the regulation of various biological processes but also are the foundation for understanding mechanisms of human diseases. Due to the high cost of traditional biological experiments, the number of experimentally verified lncRNA-disease associations is very limited. Thus, many computational approaches have been proposed to discover the underlying associations between lncRNAs and diseases. However, the associations between lncRNAs and diseases are too complicated to model by using only traditional matrix factorization-based methods. In this study, we propose a hybrid computational framework (SDLDA) for the lncRNA-disease association prediction. In our computational framework, we use singular value decomposition and deep learning to extract linear and non-linear features of lncRNAs and diseases, respectively. Then we train SDLDA by combing the linear and non-linear features. Compared to previous computational methods, the combination of linear and non-linear features reinforces each other, which is better than using only either matrix factorization or deep learning. The computational results show that SDLDA has a better performance over existing methods in the leave-one-out cross-validation. Furthermore, the case studies show that 28 out of 30 cancer-related lncRNAs (10 for gastric cancer, 10 for colon cancer and 8 for renal cancer) are verified by mining recent biomedical literature. Code and data can be accessed at https://github.com/CSUBioGroup/SDLDA.
Author Lu, Chengqian
Li, Yiming
Li, Yaohang
Li, Min
Zeng, Min
Zhang, Fuhao
Wu, Fang-Xiang
Author_xml – sequence: 1
  givenname: Min
  surname: Zeng
  fullname: Zeng, Min
  organization: School of Computer Science and Engineering, Central South University, Changsha 410083, China
– sequence: 2
  givenname: Chengqian
  surname: Lu
  fullname: Lu, Chengqian
  organization: School of Computer Science and Engineering, Central South University, Changsha 410083, China
– sequence: 3
  givenname: Fuhao
  surname: Zhang
  fullname: Zhang, Fuhao
  organization: School of Computer Science and Engineering, Central South University, Changsha 410083, China
– sequence: 4
  givenname: Yiming
  surname: Li
  fullname: Li, Yiming
  organization: School of Computer Science and Engineering, Central South University, Changsha 410083, China
– sequence: 5
  givenname: Fang-Xiang
  surname: Wu
  fullname: Wu, Fang-Xiang
  organization: Division of Biomedical Engineering and Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N5A9, Canada
– sequence: 6
  givenname: Yaohang
  surname: Li
  fullname: Li, Yaohang
  organization: Department of Computer Science, Old Dominion University, VA 23507 Norfolk, USA
– sequence: 7
  givenname: Min
  surname: Li
  fullname: Li, Min
  email: limin@mail.csu.edu.cn
  organization: School of Computer Science and Engineering, Central South University, Changsha 410083, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32387314$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtr3DAUhUVJaR7tLygUL7Oxe_WwRypkMSR9wdBCm72QpTuJBltyJTuQf1_NTLLpInSlg-53zuKcc3ISYkBC3lNoKNDu4655HHG-bxgwaKBtANgrckZBtbWiHE72WnR1OfNTcp7zDgAoW8k35JQzLlecijPift9sbtafqiHYXz_WtfMZTcbK5BytN7OPoZoSOm8Psi83VxWRfbhbBpOqBzMsWDm0cZxi9gfKBFd-cKoGNCkU8i15vTVDxndP7wW5_fL59vpbvfn59fv1elNbrthciy1dUSp6Ca3qOuawhEhQTiB2qKzsgbZMWmGQmZ4ypQTtAWwvoEdpgF-Qy2PslOKfBfOsR58tDoMJGJesmeBUKlBK_gcKlFLgShT0wxO69CM6PSU_mvSonzssgDoCNsWcE2619fOhujkZP2gKer-X3unDXnq_l4ZWl72Kl__jfY5_2XV1dGEp88Fj0tl6DLbslNDO2kX_ov8vEPWvjg
CitedBy_id crossref_primary_10_1093_bib_bbaf179
crossref_primary_10_3389_fgene_2021_808962
crossref_primary_10_3389_fgene_2023_1249171
crossref_primary_10_3390_app13020804
crossref_primary_10_3389_fgene_2021_813873
crossref_primary_10_1016_j_eswa_2025_128548
crossref_primary_10_1109_TCBB_2021_3116318
crossref_primary_10_1186_s12859_021_04548_z
crossref_primary_10_3390_ijms221910508
crossref_primary_10_3390_ijms241914429
crossref_primary_10_1038_s41598_021_99493_5
crossref_primary_10_1007_s00438_021_01764_3
crossref_primary_10_1093_bfgp_elae010
crossref_primary_10_1093_bib_bbab604
crossref_primary_10_1186_s12864_023_09578_w
crossref_primary_10_1109_ACCESS_2021_3053839
crossref_primary_10_26599_BDMA_2024_9020002
crossref_primary_10_3389_fgene_2024_1356205
crossref_primary_10_1007_s12539_021_00455_2
crossref_primary_10_1007_s12539_021_00492_x
crossref_primary_10_1093_bib_bbac370
crossref_primary_10_1038_s41598_022_16594_5
crossref_primary_10_1016_j_ymeth_2023_01_006
crossref_primary_10_1093_bib_bbac531
crossref_primary_10_1093_bib_bbad466
crossref_primary_10_1016_j_bbrc_2025_152521
crossref_primary_10_1093_bib_bbac452
crossref_primary_10_1016_j_ymeth_2022_06_005
crossref_primary_10_1093_bib_bbaa350
crossref_primary_10_1093_bib_bbab360
crossref_primary_10_1155_2022_9976909
crossref_primary_10_3389_fgene_2022_862272
crossref_primary_10_3390_ijms21197271
crossref_primary_10_1016_j_compbiomed_2022_106069
crossref_primary_10_1109_TCBB_2021_3113122
crossref_primary_10_1109_TCBB_2023_3258448
crossref_primary_10_1186_s12859_022_04715_w
crossref_primary_10_1109_TCBB_2023_3302468
crossref_primary_10_3390_sym15061178
crossref_primary_10_1093_bib_bbac565
crossref_primary_10_1186_s12859_025_06169_2
crossref_primary_10_1016_j_future_2024_05_043
crossref_primary_10_1007_s12539_024_00619_w
crossref_primary_10_1016_j_compbiomed_2022_105447
crossref_primary_10_1016_j_drudis_2022_103432
crossref_primary_10_3389_fgene_2022_959701
crossref_primary_10_1038_s41598_025_16177_0
crossref_primary_10_1109_TCBB_2023_3235299
crossref_primary_10_1016_j_ymeth_2020_05_024
crossref_primary_10_1186_s12859_024_05950_z
crossref_primary_10_1016_j_ymeth_2021_10_008
crossref_primary_10_1186_s12859_021_04457_1
crossref_primary_10_1093_bib_bbae533
crossref_primary_10_1093_bib_bbad247
crossref_primary_10_1016_j_compbiomed_2022_106527
crossref_primary_10_1021_acs_jcim_4c02276
crossref_primary_10_1371_journal_pcbi_1011634
crossref_primary_10_1016_j_compbiolchem_2024_108320
crossref_primary_10_1038_s41598_025_03269_0
crossref_primary_10_1109_TCBB_2021_3136886
crossref_primary_10_1016_j_future_2024_06_010
crossref_primary_10_3389_fgene_2022_1029300
Cites_doi 10.18632/oncotarget.19743
10.1002/pmic.201900019
10.1038/s41388-018-0250-z
10.18632/oncotarget.20487
10.3390/ijms17040573
10.1038/nrg2521
10.1039/C4MB00478G
10.1038/srep39516
10.4149/neo_2015_049
10.1002/jcb.27905
10.1007/s13304-016-0359-y
10.1142/9789812772435_0026
10.1186/s12957-016-0799-3
10.18632/oncotarget.14625
10.1016/S0140-6736(16)30354-3
10.1109/BIBM47256.2019.8983279
10.1038/nrg3074
10.1007/BF00968788
10.2217/bmm-2017-0090
10.1016/j.cell.2013.06.009
10.1016/j.neucom.2018.04.081
10.1126/science.1138341
10.1158/1538-7445.AM2011-1176
10.1038/s41598-018-19357-3
10.2147/OTT.S116392
10.1016/j.canlet.2017.02.035
10.2147/OTT.S111794
10.1111/j.1464-410X.2011.10377.x
10.18632/oncotarget.17757
10.1186/s13046-015-0197-7
10.1039/C4MB00511B
10.1159/000491974
10.1093/bioinformatics/btt426
10.1186/s12859-019-3076-y
10.1038/srep13186
10.1038/srep16840
10.1093/bioinformatics/btw639
10.1038/cddis.2017.328
10.1093/bioinformatics/btx794
10.1038/srep20690
10.1159/000433499
10.1039/C3MB70608G
10.1093/nar/gks1099
10.24963/ijcai.2017/447
10.1093/nar/gkv1094
10.18632/oncotarget.23585
10.1109/TCBB.2018.2817488
10.1159/000480028
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.ymeth.2020.05.002
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1095-9130
EndPage 80
ExternalDocumentID 32387314
10_1016_j_ymeth_2020_05_002
S1046202320300013
Genre Journal Article
GroupedDBID ---
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMG
IHE
J1W
KOM
LG5
LX2
LZ5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSU
SSZ
T5K
XPP
Y6R
ZMT
ZU3
~G-
--K
.GJ
29M
53G
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AGRDE
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
EJD
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
K-O
R2-
SBG
SEW
SIN
WUQ
ZGI
~HD
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c392t-4f17114b8059662dedee809d4ee6e9c8b01528c4ae2ab129941b00cb40be8a03
ISICitedReferencesCount 84
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000557190100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1046-2023
1095-9130
IngestDate Sun Nov 09 09:58:33 EST 2025
Sun Sep 28 01:40:41 EDT 2025
Wed Feb 19 02:30:29 EST 2025
Sat Nov 29 07:07:02 EST 2025
Tue Nov 18 21:05:38 EST 2025
Fri Feb 23 02:46:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Linear feature
lncRNA-disease association prediction
Non-linear feature
Singular value decomposition
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c392t-4f17114b8059662dedee809d4ee6e9c8b01528c4ae2ab129941b00cb40be8a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32387314
PQID 2401110394
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2431890998
proquest_miscellaneous_2401110394
pubmed_primary_32387314
crossref_citationtrail_10_1016_j_ymeth_2020_05_002
crossref_primary_10_1016_j_ymeth_2020_05_002
elsevier_sciencedirect_doi_10_1016_j_ymeth_2020_05_002
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Methods (San Diego, Calif.)
PublicationTitleAlternate Methods
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Z. Lu, K. Bretonnel Cohen, L. Hunter, GeneRIF quality assurance as summary revision, Biocomputing 2007, (World Scientific, 2007), pp. 269–280.
Billsus, Pazzani (b0155) 1998
Lu, Yang, Luo, Wu, Li, Pan, Li, Wang (b0095) 2018; 1
Xiao, Yurievich, Yosypovych (b0270) 2017; 8
Sun, Shi, Wang, Zhang, Liu, Wang, He, Hao, Liu, Zhou (b0040) 2014; 10
Chen (b0070) 2015; 5
Lan, Li, Zhao, Liu, Wu, Pan, Wang (b0080) 2016; 33
Riquelme, Ili, Roa, Brebi (b0200) 2016; 5
Fu, Wang, Domeniconi, Yu (b0090) 2017; 34
X. Zhang, M.A. Hildebrandt, Y. Horikawa, X. Pu, C.G. Wood, J. Gu, The expression of RN7SK paralogs in tumors of renal cell carcinoma is associated with patient survival, (AACR2011).
Kapranov, Cheng, Dike, Nix, Duttagupta, Willingham, Stadler, Hertel, Hackermüller, Hofacker (b0005) 2007; 316
T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space, arXiv preprint arXiv:1301.3781, 2013.
Ding, Wang, Sun, Li (b0135) 2018; 8
Wang, Cai, Zhao, Jia, Zhang, Liu, Zhen, Wang, Tang, Liu (b0295) 2015; 62
Liu, Chen, Chen, Cui, Yan (b0065) 2014; 9
Yang, Zhou, Liu, Yan, Yao, Chen, Zeng, Li, Hu, Xu (b0325) 2017; 8
M. Zeng, C. Lu, F. Zhang, Z. Lu, F. Wu, Y. Li, M. Li, LncRNA–disease association prediction through combining linear and non-linear features with matrix factorization and deep learning techniques, 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)2019), pp. 577–582.
DiStefano (b0025) 2018
Chen, Yan, Zhang, You (b0250) 2016; 18
Cao, Ding, Yu, Gao, Wang (b0290) 2016; 9
Guttman, Russell, Ingolia, Weissman, Lander (b0015) 2013; 154
Ren, Yang, Yang, Zhang, Zhao, Wei, Zhang, Zhang (b0235) 2018; 9
Peng, Si, Zhang, Li, Zhao, Wang, Yu, Ma (b0220) 2015; 34
Guo, Deng, Wang, Xia, Shan, Liang, Yao, Jin (b0225) 2015; 38
T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed representations of words and phrases and their compositionality, Advances in neural information processing systems, 2013, pp. 3111–3119.
Baratieh, Khalaj, Honardoost, Emadi-Baygi, Khanahmad, Salehi, Nikpour (b0215) 2017; 11
H.-J. Xue, X. Dai, J. Zhang, S. Huang, J. Chen, Deep Matrix Factorization Models for Recommender Systems, IJCAI2017, pp. 3203–3209.
Chen, Yuan, Yang, Ren (b0255) 2019; 120
Yao, Wu, Li, Guang Yang, Sun, Li, He, Feng, Li, Li (b0045) 2017; 7
Qu, Xiao, Xiao, Xiong, Hu, Gao, Ru, Wang, Bao, Wang (b0305) 2018; 48
Zeng, Zhang, Wu, Li, Wang, Li (b0165) 2019
Favoriti, Carbone, Greco, Pirozzi, Pirozzi, Corcione (b0240) 2016; 68
M. Li, Z. Fei, M. Zeng, F. Wu, Y. Li, Y. Pan, J. Wang, Automated ICD-9 Coding via A Deep Learning Approach, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 1-1.
Van Cutsem, Sagaert, Topal, Haustermans, Prenen (b0185) 2016; 388
Liu, Chen, Gong, Xiao, Wang, Pan (b0310) 2017; 8
Lukiw, Handley, Wong, McLachlan (b0035) 1992; 17
Ding, Li, Wang, Tian, Xie, He, Ji, Ma, Hui, Wang (b0285) 2017; 8
A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems 2012, pp. 1097–1105.
Zhao, Xu, Liu, Bai, Xu, Xiao, Li, Zhang (b0075) 2015; 11
He, Xu, Kuang, Han, Wang, Yang (b0300) 2016; 9
Zhang, Song, Zeng, Li, Kurgan, Li (b0130) 2019
Zhou, Wang, Li, Hao, Wang, Shi, Han, Zhou, Sun (b0055) 2015; 11
Zeng, Li, Wu, Li, Pan (b0160) 2019; 20
M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, Tensorflow: a system for large-scale machine learning, OSDI2016, pp. 265–283.
Esteller (b0020) 2011; 12
Wang, Wu, Zhong, Liu, Qiao (b0315) 2017; 21
Chen (b0050) 2015; 5
Chen, Yan (b0085) 2013; 29
Chen, Wang, Wang, Qiu, Liu, Chen, Zhang, Yan, Cui (b0140) 2012; 41
Ma, Liu, Yan, Wei, Deng, Sun (b0205) 2016; 14
Zhao, Du, Cui, Qin, Wu, Zhou, Zhang, Qin, Huang (b0210) 2018; 37
Zhang, Zhang, Chen, Deng (b0060) 2017
Zeng, Li, Fei, Yu, Pan, Wang (b0100) 2019; 324
Zeng, Li, Fei, Wu, Li, Pan, Wang (b0125) 2019
Mercer, Dinger, Mattick (b0010) 2009; 10
Yan, Zhang, She, Li, Peng, Wang, Liu, Shen, Zhang, Dong (b0190) 2017; 42
Li, Wu, Yuan, Sun, Lin, Huang, Bin, Liao, Liao (b0195) 2017; 395
Ning, Zhang, Wang, Zhi, Wang, Liu, Gao, Guo, Yue, Wang (b0150) 2016; 44
Yu, Zhao, He (b0245) 2018; 23
Song, Yan, Liu, Zhou (b0260) 2017; 10
Ren, Chen, Liu, Wang, Ye, Xi (b0275) 2017; 9
Seles, Hutterer, Kiesslich, Pummer, Berindan-Neagoe, Perakis, Schwarzenbacher, Stotz, Gerger, Pichler (b0320) 2016; 17
Sunamura, Ohira, Kataoka, Inaoka, Tanabe, Nakayama, Oshimura, Kugoh (b0230) 2016; 6
van Poppel, Haese, Graefen, de la Taille, Irani, de Reijke, Remzi, Marberger (b0030) 2012; 109
Li, Li, Huang, He, Zhao, Lin, Li, Qian, Zhou, Chen (b0265) 2017; 8
Ren, Xiao, Wan, Zhao, Li, Li, Han, Chen, Zou, Wang (b0280) 2015; 8
M. van Baalen, Deep Matrix Factorization for Recommendation, 2016.
10.1016/j.ymeth.2020.05.002_b0175
Van Cutsem (10.1016/j.ymeth.2020.05.002_b0185) 2016; 388
10.1016/j.ymeth.2020.05.002_b0330
Billsus (10.1016/j.ymeth.2020.05.002_b0155) 1998
Guo (10.1016/j.ymeth.2020.05.002_b0225) 2015; 38
Li (10.1016/j.ymeth.2020.05.002_b0265) 2017; 8
Chen (10.1016/j.ymeth.2020.05.002_b0255) 2019; 120
Zhang (10.1016/j.ymeth.2020.05.002_b0130) 2019
Ma (10.1016/j.ymeth.2020.05.002_b0205) 2016; 14
10.1016/j.ymeth.2020.05.002_b0335
Zeng (10.1016/j.ymeth.2020.05.002_b0165) 2019
Wang (10.1016/j.ymeth.2020.05.002_b0315) 2017; 21
Lan (10.1016/j.ymeth.2020.05.002_b0080) 2016; 33
Esteller (10.1016/j.ymeth.2020.05.002_b0020) 2011; 12
Mercer (10.1016/j.ymeth.2020.05.002_b0010) 2009; 10
Zeng (10.1016/j.ymeth.2020.05.002_b0125) 2019
10.1016/j.ymeth.2020.05.002_b0170
10.1016/j.ymeth.2020.05.002_b0120
Lu (10.1016/j.ymeth.2020.05.002_b0095) 2018; 1
van Poppel (10.1016/j.ymeth.2020.05.002_b0030) 2012; 109
Sun (10.1016/j.ymeth.2020.05.002_b0040) 2014; 10
Favoriti (10.1016/j.ymeth.2020.05.002_b0240) 2016; 68
Fu (10.1016/j.ymeth.2020.05.002_b0090) 2017; 34
Cao (10.1016/j.ymeth.2020.05.002_b0290) 2016; 9
Yao (10.1016/j.ymeth.2020.05.002_b0045) 2017; 7
Zhao (10.1016/j.ymeth.2020.05.002_b0210) 2018; 37
Wang (10.1016/j.ymeth.2020.05.002_b0295) 2015; 62
DiStefano (10.1016/j.ymeth.2020.05.002_b0025) 2018
Sunamura (10.1016/j.ymeth.2020.05.002_b0230) 2016; 6
Qu (10.1016/j.ymeth.2020.05.002_b0305) 2018; 48
Chen (10.1016/j.ymeth.2020.05.002_b0050) 2015; 5
10.1016/j.ymeth.2020.05.002_b0110
Zhang (10.1016/j.ymeth.2020.05.002_b0060) 2017
Ren (10.1016/j.ymeth.2020.05.002_b0280) 2015; 8
Xiao (10.1016/j.ymeth.2020.05.002_b0270) 2017; 8
Zeng (10.1016/j.ymeth.2020.05.002_b0160) 2019; 20
Liu (10.1016/j.ymeth.2020.05.002_b0310) 2017; 8
Chen (10.1016/j.ymeth.2020.05.002_b0250) 2016; 18
Ren (10.1016/j.ymeth.2020.05.002_b0235) 2018; 9
Ning (10.1016/j.ymeth.2020.05.002_b0150) 2016; 44
Baratieh (10.1016/j.ymeth.2020.05.002_b0215) 2017; 11
10.1016/j.ymeth.2020.05.002_b0115
Seles (10.1016/j.ymeth.2020.05.002_b0320) 2016; 17
Li (10.1016/j.ymeth.2020.05.002_b0195) 2017; 395
Kapranov (10.1016/j.ymeth.2020.05.002_b0005) 2007; 316
Zhao (10.1016/j.ymeth.2020.05.002_b0075) 2015; 11
Guttman (10.1016/j.ymeth.2020.05.002_b0015) 2013; 154
Song (10.1016/j.ymeth.2020.05.002_b0260) 2017; 10
Ding (10.1016/j.ymeth.2020.05.002_b0285) 2017; 8
Yang (10.1016/j.ymeth.2020.05.002_b0325) 2017; 8
Chen (10.1016/j.ymeth.2020.05.002_b0085) 2013; 29
He (10.1016/j.ymeth.2020.05.002_b0300) 2016; 9
Chen (10.1016/j.ymeth.2020.05.002_b0140) 2012; 41
10.1016/j.ymeth.2020.05.002_b0145
Zeng (10.1016/j.ymeth.2020.05.002_b0100) 2019; 324
Yu (10.1016/j.ymeth.2020.05.002_b0245) 2018; 23
Ding (10.1016/j.ymeth.2020.05.002_b0135) 2018; 8
Riquelme (10.1016/j.ymeth.2020.05.002_b0200) 2016; 5
10.1016/j.ymeth.2020.05.002_b0105
Lukiw (10.1016/j.ymeth.2020.05.002_b0035) 1992; 17
Ren (10.1016/j.ymeth.2020.05.002_b0275) 2017; 9
Chen (10.1016/j.ymeth.2020.05.002_b0070) 2015; 5
Yan (10.1016/j.ymeth.2020.05.002_b0190) 2017; 42
Zhou (10.1016/j.ymeth.2020.05.002_b0055) 2015; 11
10.1016/j.ymeth.2020.05.002_b0180
Peng (10.1016/j.ymeth.2020.05.002_b0220) 2015; 34
Liu (10.1016/j.ymeth.2020.05.002_b0065) 2014; 9
References_xml – year: 2019
  ident: b0125
  article-title: A deep learning framework for identifying essential proteins by integrating multiple types of biological information
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
– reference: T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space, arXiv preprint arXiv:1301.3781, 2013.
– volume: 23
  start-page: 48
  year: 2018
  end-page: 54
  ident: b0245
  article-title: Long non-coding RNA PVT1 functions as an oncogene in human colon cancer through miR-30d-5p/RUNX2 axis
  publication-title: J. BUON
– volume: 48
  start-page: 1075
  year: 2018
  end-page: 1087
  ident: b0305
  article-title: Upregulation of MIAT regulates LOXL2 expression by competitively binding MiR-29c in clear cell renal cell carcinoma
  publication-title: Cell. Physiol. Biochem.
– volume: 120
  start-page: 6178
  year: 2019
  end-page: 6187
  ident: b0255
  article-title: LincRNA-p21 enhances the sensitivity of radiotherapy for gastric cancer by targeting the β-catenin signaling pathway
  publication-title: J. Cell. Biochem.
– volume: 38
  start-page: 362
  year: 2015
  end-page: 366
  ident: b0225
  article-title: GAS5 inhibits gastric cancer cell proliferation partly by modulating CDK6
  publication-title: Oncol. Res. Treatment
– volume: 34
  start-page: 79
  year: 2015
  ident: b0220
  article-title: Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate gastric cancer progression
  publication-title: J. Exp. Clin. Cancer Res.
– volume: 11
  start-page: 126
  year: 2015
  end-page: 136
  ident: b0075
  article-title: Identification of cancer-related lncRNAs through integrating genome, regulome and transcriptome features
  publication-title: Mol. BioSyst.
– volume: 9
  start-page: 6399
  year: 2016
  ident: b0300
  article-title: Biomarker and competing endogenous RNA potential of tumor-specific long noncoding RNA in chromophobe renal cell carcinoma
  publication-title: OncoTargets Therapy
– volume: 42
  start-page: 2364
  year: 2017
  end-page: 2376
  ident: b0190
  article-title: Long noncoding RNA H19/miR-675 axis promotes gastric cancer via FADD/Caspase 8/Caspase 3 signaling pathway
  publication-title: Cell. Physiol. Biochem.
– volume: 11
  start-page: 1077
  year: 2017
  end-page: 1090
  ident: b0215
  article-title: Aberrant expression of PlncRNA-1 and TUG1: potential biomarkers for gastric cancer diagnosis and clinically monitoring cancer progression
  publication-title: Biomarkers Med.
– volume: 8
  start-page: 85353
  year: 2017
  ident: b0325
  article-title: lncRNA PVT1 and its splicing variant function as competing endogenous RNA to regulate clear cell renal cell carcinoma progression
  publication-title: Oncotarget
– volume: 68
  start-page: 7
  year: 2016
  end-page: 11
  ident: b0240
  article-title: Worldwide burden of colorectal cancer: a review
  publication-title: Updates Surgery
– reference: X. Zhang, M.A. Hildebrandt, Y. Horikawa, X. Pu, C.G. Wood, J. Gu, The expression of RN7SK paralogs in tumors of renal cell carcinoma is associated with patient survival, (AACR2011).
– volume: 41
  start-page: D983
  year: 2012
  end-page: D986
  ident: b0140
  article-title: LncRNADisease: a database for long-non-coding RNA-associated diseases
  publication-title: Nucleic Acids Res.
– year: 2019
  ident: b0165
  article-title: Protein–protein interaction site prediction through combining local and global features with deep neural networks
  publication-title: Bioinformatics
– reference: M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, Tensorflow: a system for large-scale machine learning, OSDI2016, pp. 265–283.
– volume: 8
  start-page: 11458
  year: 2015
  ident: b0280
  article-title: Association of long non-coding RNA HOTTIP with progression and prognosis in colorectal cancer
  publication-title: Int. J. Clin. Exp. Path.
– start-page: 46
  year: 1998
  end-page: 54
  ident: b0155
  article-title: Learning collaborative information filters
  publication-title: Icml
– reference: T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed representations of words and phrases and their compositionality, Advances in neural information processing systems, 2013, pp. 3111–3119.
– volume: 8
  year: 2017
  ident: b0285
  article-title: Long noncoding RNA CRNDE promotes colorectal cancer cell proliferation via epigenetically silencing DUSP5/CDKN1A expression
  publication-title: Cell Death Dis.
– volume: 10
  start-page: 4470
  year: 2017
  end-page: 4478
  ident: b0260
  article-title: Long non-coding RNA NEAT1 promotes metastasis via enhancing ZEB2 by sponging miR-662 in colorectal cancer
  publication-title: Int. J. Clin. Exp. Pathol.
– volume: 14
  start-page: 41
  year: 2016
  ident: b0205
  article-title: Enhanced expression of long non-coding RNA NEAT1 is associated with the progression of gastric adenocarcinomas
  publication-title: World J. Surgical Oncol.
– volume: 10
  start-page: 2074
  year: 2014
  end-page: 2081
  ident: b0040
  article-title: Inferring novel lncRNA–disease associations based on a random walk model of a lncRNA functional similarity network
  publication-title: Mol. BioSyst.
– volume: 9
  start-page: 4026
  year: 2017
  ident: b0275
  article-title: TUSC7 acts as a tumor suppressor in colorectal cancer
  publication-title: Am. J. Transl. Res.
– start-page: 91
  year: 2018
  end-page: 110
  ident: b0025
  article-title: The Emerging Role of Long Noncoding RNAs in Human Disease, Disease Gene Identification
– volume: 29
  start-page: 2617
  year: 2013
  end-page: 2624
  ident: b0085
  article-title: Novel human lncRNA–disease association inference based on lncRNA expression profiles
  publication-title: Bioinformatics
– volume: 34
  start-page: 1529
  year: 2017
  end-page: 1537
  ident: b0090
  article-title: Matrix factorization-based data fusion for the prediction of lncRNA–disease associations
  publication-title: Bioinformatics
– volume: 6
  start-page: 20690
  year: 2016
  ident: b0230
  article-title: Regulation of functional KCNQ1OT1 lncRNA by β-catenin
  publication-title: Sci. Rep.
– reference: H.-J. Xue, X. Dai, J. Zhang, S. Huang, J. Chen, Deep Matrix Factorization Models for Recommender Systems, IJCAI2017, pp. 3203–3209.
– reference: A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems 2012, pp. 1097–1105.
– volume: 20
  start-page: 506
  year: 2019
  ident: b0160
  article-title: DeepEP: a deep learning framework for identifying essential proteins
  publication-title: BMC Bioinf.
– volume: 21
  start-page: 82
  year: 2017
  end-page: 86
  ident: b0315
  article-title: Prognostic significance of overexpressed long non-coding RNA TUG1 in patients with clear cell renal cell carcinoma
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
– volume: 5
  start-page: 16840
  year: 2015
  ident: b0050
  article-title: KATZLDA: KATZ measure for the lncRNA-disease association prediction
  publication-title: Sci. Rep.
– volume: 7
  start-page: 39516
  year: 2017
  ident: b0045
  article-title: Global prioritizing disease candidate lncRNAs via a multi-level composite network
  publication-title: Sci. Rep.
– reference: M. Li, Z. Fei, M. Zeng, F. Wu, Y. Li, Y. Pan, J. Wang, Automated ICD-9 Coding via A Deep Learning Approach, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 1-1.
– volume: 12
  start-page: 861
  year: 2011
  ident: b0020
  article-title: Non-coding RNAs in human disease
  publication-title: Nat. Rev. Genet.
– volume: 17
  start-page: 573
  year: 2016
  ident: b0320
  article-title: Current insights into long non-coding RNAs in renal cell carcinoma
  publication-title: Int. J. Mol. Sci.
– year: 2019
  ident: b0130
  article-title: DeepFunc: a deep learning framework for accurate prediction of protein functions from protein sequences and interactions
  publication-title: Proteomics
– volume: 18
  start-page: 558
  year: 2016
  end-page: 576
  ident: b0250
  article-title: Long non-coding RNAs and complex diseases: from experimental results to computational models
  publication-title: Briefings Bioinf.
– volume: 109
  start-page: 360
  year: 2012
  end-page: 366
  ident: b0030
  article-title: The relationship between Prostate CAncer gene 3 (PCA3) and prostate cancer significance
  publication-title: BJU Int.
– volume: 388
  start-page: 2654
  year: 2016
  end-page: 2664
  ident: b0185
  article-title: Gastric cancer
  publication-title: Lancet
– volume: 17
  start-page: 591
  year: 1992
  end-page: 597
  ident: b0035
  article-title: BC200 RNA in normal human neocortex, non-Alzheimer dementia (NAD), and senile dementia of the Alzheimer type (AD)
  publication-title: Neurochem. Res.
– volume: 1
  start-page: 8
  year: 2018
  ident: b0095
  article-title: Prediction of lncRNA-disease associations based on inductive matrix completion
  publication-title: Bioinformatics
– volume: 5
  year: 2016
  ident: b0200
  article-title: Long non-coding RNAs in gastric cancer: mechanisms and potential applications
  publication-title: Oncotarget
– volume: 8
  start-page: 13690
  year: 2017
  ident: b0265
  article-title: Long non-coding RNA growth arrest specific transcript 5 acts as a tumour suppressor in colorectal cancer by inhibiting interleukin-10 and vascular endothelial growth factor expression
  publication-title: Oncotarget
– volume: 44
  start-page: D980
  year: 2016
  end-page: D985
  ident: b0150
  article-title: Lnc2Cancer: a manually curated database of experimentally supported lncRNAs associated with various human cancers
  publication-title: Nucleic Acids Res.
– volume: 5
  start-page: 13186
  year: 2015
  ident: b0070
  article-title: Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA
  publication-title: Sci. Rep.
– volume: 37
  start-page: 4094
  year: 2018
  ident: b0210
  article-title: LncRNA PVT1 promotes angiogenesis via activating the STAT3/VEGFA axis in gastric cancer
  publication-title: Oncogene
– volume: 9
  start-page: 5417
  year: 2016
  ident: b0290
  article-title: long noncoding RNA SPRY4-IT1 promotes malignant development of colorectal cancer by targeting epithelial–mesenchymal transition
  publication-title: OncoTargets Therapy
– volume: 62
  start-page: 412
  year: 2015
  end-page: 418
  ident: b0295
  article-title: Down-regulated long non-coding RNA H19 inhibits carcinogenesis of renal cell carcinoma
  publication-title: Neoplasma
– volume: 11
  start-page: 760
  year: 2015
  end-page: 769
  ident: b0055
  article-title: Prioritizing candidate disease-related long non-coding RNAs by walking on the heterogeneous lncRNA and disease network
  publication-title: Mol. BioSyst.
– volume: 324
  start-page: 43
  year: 2019
  end-page: 50
  ident: b0100
  article-title: Automatic ICD-9 coding via deep transfer learning
  publication-title: Neurocomputing
– volume: 8
  start-page: 62927
  year: 2017
  ident: b0310
  article-title: The long non-coding RNA NEAT1 enhances epithelial-to-mesenchymal transition and chemoresistance via the miR-34a/c-Met axis in renal cell carcinoma
  publication-title: Oncotarget
– year: 2017
  ident: b0060
  article-title: Integrating multiple heterogeneous networks for novel lncRNA-disease association inference
  publication-title: IEEE/ACM transactions on computational biology and bioinformatics
– volume: 33
  start-page: 458
  year: 2016
  end-page: 460
  ident: b0080
  article-title: LDAP: a web server for lncRNA-disease association prediction
  publication-title: Bioinformatics
– volume: 10
  start-page: 155
  year: 2009
  ident: b0010
  article-title: Long non-coding RNAs: insights into functions
  publication-title: Nat. Rev. Genet.
– volume: 395
  start-page: 31
  year: 2017
  end-page: 44
  ident: b0195
  article-title: Long non-coding RNA MALAT1 promotes gastric cancer tumorigenicity and metastasis by regulating vasculogenic mimicry and angiogenesis
  publication-title: Cancer Lett.
– reference: M. van Baalen, Deep Matrix Factorization for Recommendation, 2016.
– volume: 9
  year: 2014
  ident: b0065
  article-title: A computational framework to infer human disease-associated long noncoding RNAs
  publication-title: PLoS ONE
– volume: 8
  start-page: 83171
  year: 2017
  ident: b0270
  article-title: Long noncoding RNA XIST is a prognostic factor in colorectal cancer and inhibits 5-fluorouracil-induced cell cytotoxicity through promoting thymidylate synthase expression
  publication-title: Oncotarget
– volume: 9
  start-page: 4851
  year: 2018
  ident: b0235
  article-title: Upregulation of LncRNA BCYRN1 promotes tumor progression and enhances EpCAM expression in gastric carcinoma
  publication-title: Oncotarget
– volume: 316
  start-page: 1484
  year: 2007
  end-page: 1488
  ident: b0005
  article-title: RNA maps reveal new RNA classes and a possible function for pervasive transcription
  publication-title: Science
– volume: 8
  start-page: 1065
  year: 2018
  ident: b0135
  article-title: TPGLDA: Novel prediction of associations between lncRNAs and diseases via lncRNA-disease-gene tripartite graph
  publication-title: Sci. Rep.
– volume: 154
  start-page: 240
  year: 2013
  end-page: 251
  ident: b0015
  article-title: Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins
  publication-title: Cell
– reference: M. Zeng, C. Lu, F. Zhang, Z. Lu, F. Wu, Y. Li, M. Li, LncRNA–disease association prediction through combining linear and non-linear features with matrix factorization and deep learning techniques, 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)2019), pp. 577–582.
– reference: Z. Lu, K. Bretonnel Cohen, L. Hunter, GeneRIF quality assurance as summary revision, Biocomputing 2007, (World Scientific, 2007), pp. 269–280.
– volume: 8
  start-page: 85353
  year: 2017
  ident: 10.1016/j.ymeth.2020.05.002_b0325
  article-title: lncRNA PVT1 and its splicing variant function as competing endogenous RNA to regulate clear cell renal cell carcinoma progression
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.19743
– year: 2019
  ident: 10.1016/j.ymeth.2020.05.002_b0130
  article-title: DeepFunc: a deep learning framework for accurate prediction of protein functions from protein sequences and interactions
  publication-title: Proteomics
  doi: 10.1002/pmic.201900019
– volume: 37
  start-page: 4094
  year: 2018
  ident: 10.1016/j.ymeth.2020.05.002_b0210
  article-title: LncRNA PVT1 promotes angiogenesis via activating the STAT3/VEGFA axis in gastric cancer
  publication-title: Oncogene
  doi: 10.1038/s41388-018-0250-z
– volume: 8
  start-page: 83171
  year: 2017
  ident: 10.1016/j.ymeth.2020.05.002_b0270
  article-title: Long noncoding RNA XIST is a prognostic factor in colorectal cancer and inhibits 5-fluorouracil-induced cell cytotoxicity through promoting thymidylate synthase expression
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.20487
– volume: 17
  start-page: 573
  year: 2016
  ident: 10.1016/j.ymeth.2020.05.002_b0320
  article-title: Current insights into long non-coding RNAs in renal cell carcinoma
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms17040573
– ident: 10.1016/j.ymeth.2020.05.002_b0180
– volume: 10
  start-page: 155
  year: 2009
  ident: 10.1016/j.ymeth.2020.05.002_b0010
  article-title: Long non-coding RNAs: insights into functions
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2521
– volume: 11
  start-page: 126
  year: 2015
  ident: 10.1016/j.ymeth.2020.05.002_b0075
  article-title: Identification of cancer-related lncRNAs through integrating genome, regulome and transcriptome features
  publication-title: Mol. BioSyst.
  doi: 10.1039/C4MB00478G
– volume: 7
  start-page: 39516
  year: 2017
  ident: 10.1016/j.ymeth.2020.05.002_b0045
  article-title: Global prioritizing disease candidate lncRNAs via a multi-level composite network
  publication-title: Sci. Rep.
  doi: 10.1038/srep39516
– volume: 18
  start-page: 558
  year: 2016
  ident: 10.1016/j.ymeth.2020.05.002_b0250
  article-title: Long non-coding RNAs and complex diseases: from experimental results to computational models
  publication-title: Briefings Bioinf.
– volume: 62
  start-page: 412
  year: 2015
  ident: 10.1016/j.ymeth.2020.05.002_b0295
  article-title: Down-regulated long non-coding RNA H19 inhibits carcinogenesis of renal cell carcinoma
  publication-title: Neoplasma
  doi: 10.4149/neo_2015_049
– volume: 120
  start-page: 6178
  year: 2019
  ident: 10.1016/j.ymeth.2020.05.002_b0255
  article-title: LincRNA-p21 enhances the sensitivity of radiotherapy for gastric cancer by targeting the β-catenin signaling pathway
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.27905
– ident: 10.1016/j.ymeth.2020.05.002_b0175
– volume: 68
  start-page: 7
  year: 2016
  ident: 10.1016/j.ymeth.2020.05.002_b0240
  article-title: Worldwide burden of colorectal cancer: a review
  publication-title: Updates Surgery
  doi: 10.1007/s13304-016-0359-y
– ident: 10.1016/j.ymeth.2020.05.002_b0145
  doi: 10.1142/9789812772435_0026
– volume: 14
  start-page: 41
  year: 2016
  ident: 10.1016/j.ymeth.2020.05.002_b0205
  article-title: Enhanced expression of long non-coding RNA NEAT1 is associated with the progression of gastric adenocarcinomas
  publication-title: World J. Surgical Oncol.
  doi: 10.1186/s12957-016-0799-3
– volume: 8
  start-page: 13690
  year: 2017
  ident: 10.1016/j.ymeth.2020.05.002_b0265
  article-title: Long non-coding RNA growth arrest specific transcript 5 acts as a tumour suppressor in colorectal cancer by inhibiting interleukin-10 and vascular endothelial growth factor expression
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14625
– volume: 388
  start-page: 2654
  year: 2016
  ident: 10.1016/j.ymeth.2020.05.002_b0185
  article-title: Gastric cancer
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)30354-3
– ident: 10.1016/j.ymeth.2020.05.002_b0335
  doi: 10.1109/BIBM47256.2019.8983279
– volume: 12
  start-page: 861
  year: 2011
  ident: 10.1016/j.ymeth.2020.05.002_b0020
  article-title: Non-coding RNAs in human disease
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3074
– volume: 17
  start-page: 591
  year: 1992
  ident: 10.1016/j.ymeth.2020.05.002_b0035
  article-title: BC200 RNA in normal human neocortex, non-Alzheimer dementia (NAD), and senile dementia of the Alzheimer type (AD)
  publication-title: Neurochem. Res.
  doi: 10.1007/BF00968788
– volume: 11
  start-page: 1077
  year: 2017
  ident: 10.1016/j.ymeth.2020.05.002_b0215
  article-title: Aberrant expression of PlncRNA-1 and TUG1: potential biomarkers for gastric cancer diagnosis and clinically monitoring cancer progression
  publication-title: Biomarkers Med.
  doi: 10.2217/bmm-2017-0090
– year: 2019
  ident: 10.1016/j.ymeth.2020.05.002_b0125
  article-title: A deep learning framework for identifying essential proteins by integrating multiple types of biological information
– volume: 154
  start-page: 240
  year: 2013
  ident: 10.1016/j.ymeth.2020.05.002_b0015
  article-title: Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2013.06.009
– volume: 324
  start-page: 43
  year: 2019
  ident: 10.1016/j.ymeth.2020.05.002_b0100
  article-title: Automatic ICD-9 coding via deep transfer learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.081
– year: 2019
  ident: 10.1016/j.ymeth.2020.05.002_b0165
  article-title: Protein–protein interaction site prediction through combining local and global features with deep neural networks
  publication-title: Bioinformatics
– volume: 5
  year: 2016
  ident: 10.1016/j.ymeth.2020.05.002_b0200
  article-title: Long non-coding RNAs in gastric cancer: mechanisms and potential applications
  publication-title: Oncotarget
– volume: 9
  start-page: 4026
  year: 2017
  ident: 10.1016/j.ymeth.2020.05.002_b0275
  article-title: TUSC7 acts as a tumor suppressor in colorectal cancer
  publication-title: Am. J. Transl. Res.
– volume: 316
  start-page: 1484
  year: 2007
  ident: 10.1016/j.ymeth.2020.05.002_b0005
  article-title: RNA maps reveal new RNA classes and a possible function for pervasive transcription
  publication-title: Science
  doi: 10.1126/science.1138341
– ident: 10.1016/j.ymeth.2020.05.002_b0115
– ident: 10.1016/j.ymeth.2020.05.002_b0330
  doi: 10.1158/1538-7445.AM2011-1176
– ident: 10.1016/j.ymeth.2020.05.002_b0105
– year: 2017
  ident: 10.1016/j.ymeth.2020.05.002_b0060
  article-title: Integrating multiple heterogeneous networks for novel lncRNA-disease association inference
– volume: 8
  start-page: 1065
  year: 2018
  ident: 10.1016/j.ymeth.2020.05.002_b0135
  article-title: TPGLDA: Novel prediction of associations between lncRNAs and diseases via lncRNA-disease-gene tripartite graph
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-19357-3
– volume: 9
  start-page: 6399
  year: 2016
  ident: 10.1016/j.ymeth.2020.05.002_b0300
  article-title: Biomarker and competing endogenous RNA potential of tumor-specific long noncoding RNA in chromophobe renal cell carcinoma
  publication-title: OncoTargets Therapy
  doi: 10.2147/OTT.S116392
– volume: 395
  start-page: 31
  year: 2017
  ident: 10.1016/j.ymeth.2020.05.002_b0195
  article-title: Long non-coding RNA MALAT1 promotes gastric cancer tumorigenicity and metastasis by regulating vasculogenic mimicry and angiogenesis
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2017.02.035
– volume: 9
  start-page: 5417
  year: 2016
  ident: 10.1016/j.ymeth.2020.05.002_b0290
  article-title: long noncoding RNA SPRY4-IT1 promotes malignant development of colorectal cancer by targeting epithelial–mesenchymal transition
  publication-title: OncoTargets Therapy
  doi: 10.2147/OTT.S111794
– volume: 109
  start-page: 360
  year: 2012
  ident: 10.1016/j.ymeth.2020.05.002_b0030
  article-title: The relationship between Prostate CAncer gene 3 (PCA3) and prostate cancer significance
  publication-title: BJU Int.
  doi: 10.1111/j.1464-410X.2011.10377.x
– volume: 23
  start-page: 48
  year: 2018
  ident: 10.1016/j.ymeth.2020.05.002_b0245
  article-title: Long non-coding RNA PVT1 functions as an oncogene in human colon cancer through miR-30d-5p/RUNX2 axis
  publication-title: J. BUON
– volume: 8
  start-page: 62927
  year: 2017
  ident: 10.1016/j.ymeth.2020.05.002_b0310
  article-title: The long non-coding RNA NEAT1 enhances epithelial-to-mesenchymal transition and chemoresistance via the miR-34a/c-Met axis in renal cell carcinoma
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.17757
– volume: 34
  start-page: 79
  year: 2015
  ident: 10.1016/j.ymeth.2020.05.002_b0220
  article-title: Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate gastric cancer progression
  publication-title: J. Exp. Clin. Cancer Res.
  doi: 10.1186/s13046-015-0197-7
– volume: 11
  start-page: 760
  year: 2015
  ident: 10.1016/j.ymeth.2020.05.002_b0055
  article-title: Prioritizing candidate disease-related long non-coding RNAs by walking on the heterogeneous lncRNA and disease network
  publication-title: Mol. BioSyst.
  doi: 10.1039/C4MB00511B
– volume: 48
  start-page: 1075
  year: 2018
  ident: 10.1016/j.ymeth.2020.05.002_b0305
  article-title: Upregulation of MIAT regulates LOXL2 expression by competitively binding MiR-29c in clear cell renal cell carcinoma
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000491974
– volume: 29
  start-page: 2617
  year: 2013
  ident: 10.1016/j.ymeth.2020.05.002_b0085
  article-title: Novel human lncRNA–disease association inference based on lncRNA expression profiles
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt426
– volume: 20
  start-page: 506
  year: 2019
  ident: 10.1016/j.ymeth.2020.05.002_b0160
  article-title: DeepEP: a deep learning framework for identifying essential proteins
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-019-3076-y
– volume: 5
  start-page: 13186
  year: 2015
  ident: 10.1016/j.ymeth.2020.05.002_b0070
  article-title: Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA
  publication-title: Sci. Rep.
  doi: 10.1038/srep13186
– volume: 5
  start-page: 16840
  year: 2015
  ident: 10.1016/j.ymeth.2020.05.002_b0050
  article-title: KATZLDA: KATZ measure for the lncRNA-disease association prediction
  publication-title: Sci. Rep.
  doi: 10.1038/srep16840
– volume: 33
  start-page: 458
  year: 2016
  ident: 10.1016/j.ymeth.2020.05.002_b0080
  article-title: LDAP: a web server for lncRNA-disease association prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw639
– volume: 8
  year: 2017
  ident: 10.1016/j.ymeth.2020.05.002_b0285
  article-title: Long noncoding RNA CRNDE promotes colorectal cancer cell proliferation via epigenetically silencing DUSP5/CDKN1A expression
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2017.328
– volume: 34
  start-page: 1529
  year: 2017
  ident: 10.1016/j.ymeth.2020.05.002_b0090
  article-title: Matrix factorization-based data fusion for the prediction of lncRNA–disease associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx794
– volume: 6
  start-page: 20690
  year: 2016
  ident: 10.1016/j.ymeth.2020.05.002_b0230
  article-title: Regulation of functional KCNQ1OT1 lncRNA by β-catenin
  publication-title: Sci. Rep.
  doi: 10.1038/srep20690
– volume: 38
  start-page: 362
  year: 2015
  ident: 10.1016/j.ymeth.2020.05.002_b0225
  article-title: GAS5 inhibits gastric cancer cell proliferation partly by modulating CDK6
  publication-title: Oncol. Res. Treatment
  doi: 10.1159/000433499
– volume: 10
  start-page: 2074
  year: 2014
  ident: 10.1016/j.ymeth.2020.05.002_b0040
  article-title: Inferring novel lncRNA–disease associations based on a random walk model of a lncRNA functional similarity network
  publication-title: Mol. BioSyst.
  doi: 10.1039/C3MB70608G
– volume: 21
  start-page: 82
  year: 2017
  ident: 10.1016/j.ymeth.2020.05.002_b0315
  article-title: Prognostic significance of overexpressed long non-coding RNA TUG1 in patients with clear cell renal cell carcinoma
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
– volume: 1
  start-page: 8
  year: 2018
  ident: 10.1016/j.ymeth.2020.05.002_b0095
  article-title: Prediction of lncRNA-disease associations based on inductive matrix completion
  publication-title: Bioinformatics
– volume: 41
  start-page: D983
  year: 2012
  ident: 10.1016/j.ymeth.2020.05.002_b0140
  article-title: LncRNADisease: a database for long-non-coding RNA-associated diseases
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1099
– start-page: 46
  year: 1998
  ident: 10.1016/j.ymeth.2020.05.002_b0155
  article-title: Learning collaborative information filters
  publication-title: Icml
– volume: 10
  start-page: 4470
  year: 2017
  ident: 10.1016/j.ymeth.2020.05.002_b0260
  article-title: Long non-coding RNA NEAT1 promotes metastasis via enhancing ZEB2 by sponging miR-662 in colorectal cancer
  publication-title: Int. J. Clin. Exp. Pathol.
– ident: 10.1016/j.ymeth.2020.05.002_b0110
– ident: 10.1016/j.ymeth.2020.05.002_b0170
  doi: 10.24963/ijcai.2017/447
– volume: 44
  start-page: D980
  year: 2016
  ident: 10.1016/j.ymeth.2020.05.002_b0150
  article-title: Lnc2Cancer: a manually curated database of experimentally supported lncRNAs associated with various human cancers
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1094
– volume: 9
  start-page: 4851
  year: 2018
  ident: 10.1016/j.ymeth.2020.05.002_b0235
  article-title: Upregulation of LncRNA BCYRN1 promotes tumor progression and enhances EpCAM expression in gastric carcinoma
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.23585
– volume: 9
  year: 2014
  ident: 10.1016/j.ymeth.2020.05.002_b0065
  article-title: A computational framework to infer human disease-associated long noncoding RNAs
  publication-title: PLoS ONE
– start-page: 91
  year: 2018
  ident: 10.1016/j.ymeth.2020.05.002_b0025
– volume: 8
  start-page: 11458
  year: 2015
  ident: 10.1016/j.ymeth.2020.05.002_b0280
  article-title: Association of long non-coding RNA HOTTIP with progression and prognosis in colorectal cancer
  publication-title: Int. J. Clin. Exp. Path.
– ident: 10.1016/j.ymeth.2020.05.002_b0120
  doi: 10.1109/TCBB.2018.2817488
– volume: 42
  start-page: 2364
  year: 2017
  ident: 10.1016/j.ymeth.2020.05.002_b0190
  article-title: Long noncoding RNA H19/miR-675 axis promotes gastric cancer via FADD/Caspase 8/Caspase 3 signaling pathway
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000480028
SSID ssj0001278
Score 2.5688894
Snippet •A novel hybrid computational framework for lncRNA-disease association prediction.•Improved method that combines matrix factorization and deep learning...
In recent years, accumulating studies have shown that long non-coding RNAs (lncRNAs) not only play an important role in the regulation of various biological...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 73
SubjectTerms case studies
colorectal neoplasms
computational methodology
Deep learning
human diseases
kidney neoplasms
Linear feature
lncRNA-disease association prediction
non-coding RNA
Non-linear feature
prediction
Singular value decomposition
stomach neoplasms
Title SDLDA: lncRNA-disease association prediction based on singular value decomposition and deep learning
URI https://dx.doi.org/10.1016/j.ymeth.2020.05.002
https://www.ncbi.nlm.nih.gov/pubmed/32387314
https://www.proquest.com/docview/2401110394
https://www.proquest.com/docview/2431890998
Volume 179
WOSCitedRecordID wos000557190100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9130
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001278
  issn: 1046-2023
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKhgQXBBuM8TEZCXGBVGniJja3at0EaKsQq1DhYjmxWzqVtGzttP0T_M28Z8dpCqxiBy5RlNpJ3PfL-_Z7hLwECyFXJtOByodJwKIoDTI0VlSSCqGNyGObRPP5KO31-GAgPjYaP_1emItJWhT88lLM_iup4RoQG7fO3oDc1U3hApwD0eEIZIfjPxH-pHvUtV7zSZF_6nWCMgTzWi0JgZUB9Ng1CUcxpjFkgE4Dm5OK9b9xNxVmm5cpXTbEoI2Z-S4To7pSe2y7UFv37Qmwi-7YjJwDFvd9NWu-hq_GcZbj8TIRaOGC_vDLjxpSKz_24eKbmlaDberBF2xENqq7K8A29amtnsOCQR5gz_YVFuwaypRM1PU28eI4_Cujdz6H0-YVNtpu4oOazju2lGs-lv-buKuSEH1-26m0N5F4Exm2pa1NuhmlbQFccrPz_mDwoZLtrSh1myvLRfg6VjZj8I93uU7Xuc6WsTpN_z65VxojtONA9IA0TLFFtjuFmk-_X9FX1KYH27jLFrmz71sDbhNtMfaWriKM1hBGlwijFmEUTjzCqEUYXUEYBYRRRBj1CHtI-ocH_f13QdmuI8hByZ4HbNhKwbrOOHZ0SiJtYBIPhWbGJPDR8ww0z4jnTJlIZaBmCtYCnp9nLMwMV2H8iGwU08I8JlRpExuwo8GWZUzrmLcFS7jgoPtqM0z4Lon8_yrzspQ9dlSZyDU03SVvqkkzV8ll_fDEE0yWyqhTMiVAcP3EF568EsiC8TdVmOniXILyDJpFGAu2bgwIWQFmGyxyx2GjetsY1Os0brEnN1vJU3J3-SE-Ixvzs4V5Tm7nF_Px-dkeuZUO-F6J818lNcu1
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SDLDA%3A+lncRNA-disease+association+prediction+based+on+singular+value+decomposition+and+deep+learning&rft.jtitle=Methods+%28San+Diego%2C+Calif.%29&rft.au=Zeng%2C+Min&rft.au=Lu%2C+Chengqian&rft.au=Zhang%2C+Fuhao&rft.au=Li%2C+Yiming&rft.date=2020-07-01&rft.issn=1046-2023&rft.volume=179&rft.spage=73&rft.epage=80&rft_id=info:doi/10.1016%2Fj.ymeth.2020.05.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymeth_2020_05_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1046-2023&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1046-2023&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1046-2023&client=summon