Application of a Nonparametric Pattern Recognition Algorithm to the Problem of Testing the Hypothesis of the Independence of Variables of Multi-Valued Functions
The problem of hypothesis testing for the independence of two-dimensional random variables in the analysis of variables of multi-valued functions is considered. To solve it, we used a technique based on a nonparametric kernel-type pattern recognition algorithm corresponding to the maximum likelihood...
Gespeichert in:
| Veröffentlicht in: | Measurement techniques Jg. 65; H. 1; S. 17 - 23 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.04.2022
Springer Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0543-1972, 1573-8906 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The problem of hypothesis testing for the independence of two-dimensional random variables in the analysis of variables of multi-valued functions is considered. To solve it, we used a technique based on a nonparametric kernel-type pattern recognition algorithm corresponding to the maximum likelihood criterion. The technique made it possible to bypass the problem of decomposing the random variable domain of values into intervals. Based on the results of computational experiments, the effectiveness of the applied technique was estimated depending on the type of multi-valued functions, the level of random noise and the amount of initial statistical data. The results obtained are relevant for solving the problem of detecting natural and technical objects from remote sensing data. |
|---|---|
| AbstractList | The problem of hypothesis testing for the independence of two-dimensional random variables in the analysis of variables of multi-valued functions is considered. To solve it, we used a technique based on a nonparametric kernel-type pattern recognition algorithm corresponding to the maximum likelihood criterion. The technique made it possible to bypass the problem of decomposing the random variable domain of values into intervals. Based on the results of computational experiments, the effectiveness of the applied technique was estimated depending on the type of multi-valued functions, the level of random noise and the amount of initial statistical data. The results obtained are relevant for solving the problem of detecting natural and technical objects from remote sensing data. |
| Audience | Academic |
| Author | Lapko, A. V. Bakhtina, A. V. Lapko, V. A. |
| Author_xml | – sequence: 1 givenname: A. V. surname: Lapko fullname: Lapko, A. V. email: lapko@icm.krasn.ru organization: Institute of Computational Modeling, Siberian Branch of the Russian Academy of Sciences, Reshetnev Siberian State University of Science and Technology – sequence: 2 givenname: V. A. surname: Lapko fullname: Lapko, V. A. organization: Institute of Computational Modeling, Siberian Branch of the Russian Academy of Sciences, Reshetnev Siberian State University of Science and Technology – sequence: 3 givenname: A. V. surname: Bakhtina fullname: Bakhtina, A. V. organization: Reshetnev Siberian State University of Science and Technology |
| BookMark | eNp9kc1u3CAUhVGVSp2kfYGuLHXVhVP-ZrCXo6hJRkraKE2zRRhfHCIbXMBS8zZ91GK7UpQuAoIrHc7HBZ1jdOS8A4Q-EnxKMBZfIiGYVCWmNC_MWUnfoA3ZClZWNd4doQ3eZpHUgr5DxzE-YoyZ2NUb9Gc_jr3VKlnvCm8KVXzzblRBDZCC1cWNSgmCK25B-87ZxbbvOx9sehiK5Iv0AMVN8E0Pw8zfQUzWdYt8-TT6XKON88msHFwLI-TNaZi1exWsyuhiuJ76ZMt71U_QFueT03Oz-B69NaqP8OFfPUE_z7_enV2WV98vDmf7q1KzmqaSawGGUqUEcKEVcMo0Zaw1rTFVA3iXh-EAoAhtOK_aHa2w0oILwhtcNewEfVrvHYP_NeVfyEc_BZdbSrqrMWViS1h2na6uTvUgrTM-BaXzbGGwOmdibNb3gmCOa8yqDHx-AWRPgt-pU1OM8vDj9qWXrl4dfIwBjByDHVR4kgTLOWa5xixzzHKJWdIMVf9B2qYlzvwy27-OshWNuY_rIDx_-RXqL_vNwAY |
| CitedBy_id | crossref_primary_10_1007_s11018_023_02214_9 crossref_primary_10_31772_2712_8970_2025_26_1_48_59 crossref_primary_10_1007_s11018_024_02288_z crossref_primary_10_3103_S8756699025700116 crossref_primary_10_3103_S875669902302005X |
| Cites_doi | 10.1155/2015/242683 10.1080/00949658508810822 10.32446/0368-1025it.2021-3-9-14 10.1214/aoms/1177704472 10.1007/s10182-013-0216-y 10.15372/AUT20210205 10.1007/s11009-007-9057-z 10.1016/j.csda.2016.02.014 10.18287/2412-6179-CO-871 10.1002/9781118575574 10.18287/2412-6179-CO-801 10.1080/03610918.2013.862275 10.1214/10-AOS799 10.1080/009 10.1109/TC.1976.1674577 10.1214/aos/1176346329 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2022 COPYRIGHT 2022 Springer Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: COPYRIGHT 2022 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| DBID | AAYXX CITATION ISR 7U5 8FD JQ2 L7M |
| DOI | 10.1007/s11018-022-02043-2 |
| DatabaseName | CrossRef Gale In Context: Science Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1573-8906 |
| EndPage | 23 |
| ExternalDocumentID | A710409038 10_1007_s11018_022_02043_2 |
| GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 6TJ 7WY 88I 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GPTSA GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IHE IJ- IKXTQ ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2P M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9T PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ~A9 ~EX AAPKM AAYXX ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PHGZT PQGLB 7U5 8FD JQ2 L7M |
| ID | FETCH-LOGICAL-c392t-4c7ef22aa7e47cae423c233dfdff8be06666f4eeea12b448d6280ac74714b08b3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819895500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0543-1972 |
| IngestDate | Thu Sep 25 00:45:42 EDT 2025 Sat Nov 29 10:36:18 EST 2025 Mon Nov 24 14:44:02 EST 2025 Sat Nov 29 01:47:07 EST 2025 Tue Nov 18 21:43:04 EST 2025 Fri Feb 21 02:45:32 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | maximum likelihood test kernel estimation of probability density hypothesis testing multi-valued functional dependencies dependent random variables two-dimensional random variables independent random variables pattern recognition algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c392t-4c7ef22aa7e47cae423c233dfdff8be06666f4eeea12b448d6280ac74714b08b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2690237513 |
| PQPubID | 54071 |
| PageCount | 7 |
| ParticipantIDs | proquest_journals_2690237513 gale_infotracacademiconefile_A710409038 gale_incontextgauss_ISR_A710409038 crossref_primary_10_1007_s11018_022_02043_2 crossref_citationtrail_10_1007_s11018_022_02043_2 springer_journals_10_1007_s11018_022_02043_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Measurement techniques |
| PublicationTitleAbbrev | Meas Tech |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | A. V. Lapko and V. A. Lapko, “Analysis of the ratio of standard deviations of the kernel estimate of the probability density under conditions of independent and dependent random variables,” Izmer. Tekhn., No. 3, 9–14 (2021), 10.32446/0368-1025it.2021-3-9-14. DuttaSComm. Stat.-Simul. Comp.201645247249010.1080/03610918.2013.862275 LapkoAVLapkoVAAnalysis of methods for optimizing nonparametric estimation of the probability density using a kernel function blur coefficientIzmer. Tekhn., No.2017638 I. V. Zenkov, A. V. Lapko, V. A. Lapko, et al., “Nonparametric algorithm for automatic classification of large volume multidimensional statistical data and its application,” Comp. Opt., 45, No. 2, 253–260 (2021), 10.18287/2412-6179-CO-801. S. Chen, J. Probab. Stat., 2015, 242683 (2015), https://doi.org/10.1155/2015/242683. BotevZIGrotowskiJFKroeseDPAnn. Stat.20103852916295710.1214/10-AOS799 BotevZIKroeseDPMethod. Comp. Appl. Probab.200810343545110.1007/s11009-007-9057-z A. V. Lapko and V. A. Lapko, “Testing the hypothesis about the independence of two-dimensional random variables using a nonparametric pattern recognition algorithm,” Avtometriya, 57, No. 2, 41–48 (2021), https://doi.org/10.15372/AUT20210205. SilvermanBWDensity Estimation for Statistics and Data Analysis1986LondonChapman & Hall0617.62042 O’BrienTAKashinathKCavanaughNRComp. Stat. Data Anal.201610114816010.1016/j.csda.2016.02.014 SharakshaneASZheleznovIGIvnitskiiVAComplex Systems1977MoscowVyssh. Shk I. V. Zenkov, A. V. Lapko, V. A. Lapko, et al., “Nonparametric pattern recognition algorithm in the problem testing the hypothesis of the independence of random variables,” Comp. Opt., 45, No. 5, 767–772 (2021), https://doi.org/10.18287/2412-6179-CO-871. ScottDWMultivariate Density Estimation: Theory, Practice, and Visualization2015New YorkWiley1311.62004 TrofimovaEAKislyakNVGilevDVProbability Theory and Mathematical Statistics: Textbook2018EkaterinburgUral Federal University Press DobrovidovAVRudkoIMChoosing the width of the window of the kernel function in the nonparametric estimation of the density derivative by the method of smoothed cross-validationAvtomat. Telemekh., No.201024258 M. Rudemo, “Empirical choice of histograms and kernel density estimators,” Scand. J. Stat., 9, No. 2, 65–78 (1982). LiQRacineJSNonparametric Econometrics: Theory and Practice2007PrincetonPrinceton University Press1183.62200 DuinRPWIEEE T. Comp.197625111175117910.1109/TC.1976.1674577 HallPAnn. Stat.19831141156117410.1214/aos/1176346329 JiangMProvostSBJ. Stat. Comp. Simul.201484361462710.1080/009 EpanechnikovVANonparametric estimation of multidimensional probability densityTeor. Veroyatn. Primen.19691411561612504220175.17101 HeidenreichN-BSchindlerASperlichSAStA Adv. Stat. Anal.2013974403433310559010.1007/s10182-013-0216-y BowmanAWJ. Stat. Comp. Simul.19852131332710.1080/00949658508810822 ParzenEAnn. Math. Stat.19623331065107610.1214/aoms/1177704472 AV Lapko (2043_CR15) 2017; 6 DW Scott (2043_CR23) 2015 AW Bowman (2043_CR9) 1985; 21 Q Li (2043_CR14) 2007 EA Trofimova (2043_CR2) 2018 P Hall (2043_CR10) 1983; 11 RPW Duin (2043_CR16) 1976; 25 ZI Botev (2043_CR19) 2010; 38 S Dutta (2043_CR12) 2016; 45 2043_CR22 AS Sharakshane (2043_CR24) 1977 M Jiang (2043_CR11) 2014; 84 AV Dobrovidov (2043_CR20) 2010; 2 VA Epanechnikov (2043_CR7) 1969; 14 2043_CR5 ZI Botev (2043_CR17) 2008; 10 2043_CR8 2043_CR1 E Parzen (2043_CR6) 1962; 33 BW Silverman (2043_CR18) 1986 TA O’Brien (2043_CR21) 2016; 101 2043_CR3 N-B Heidenreich (2043_CR13) 2013; 97 2043_CR4 |
| References_xml | – reference: TrofimovaEAKislyakNVGilevDVProbability Theory and Mathematical Statistics: Textbook2018EkaterinburgUral Federal University Press – reference: A. V. Lapko and V. A. Lapko, “Testing the hypothesis about the independence of two-dimensional random variables using a nonparametric pattern recognition algorithm,” Avtometriya, 57, No. 2, 41–48 (2021), https://doi.org/10.15372/AUT20210205. – reference: O’BrienTAKashinathKCavanaughNRComp. Stat. Data Anal.201610114816010.1016/j.csda.2016.02.014 – reference: DuinRPWIEEE T. Comp.197625111175117910.1109/TC.1976.1674577 – reference: ParzenEAnn. Math. Stat.19623331065107610.1214/aoms/1177704472 – reference: LiQRacineJSNonparametric Econometrics: Theory and Practice2007PrincetonPrinceton University Press1183.62200 – reference: S. Chen, J. Probab. Stat., 2015, 242683 (2015), https://doi.org/10.1155/2015/242683. – reference: HeidenreichN-BSchindlerASperlichSAStA Adv. Stat. Anal.2013974403433310559010.1007/s10182-013-0216-y – reference: I. V. Zenkov, A. V. Lapko, V. A. Lapko, et al., “Nonparametric algorithm for automatic classification of large volume multidimensional statistical data and its application,” Comp. Opt., 45, No. 2, 253–260 (2021), 10.18287/2412-6179-CO-801. – reference: EpanechnikovVANonparametric estimation of multidimensional probability densityTeor. Veroyatn. Primen.19691411561612504220175.17101 – reference: M. Rudemo, “Empirical choice of histograms and kernel density estimators,” Scand. J. Stat., 9, No. 2, 65–78 (1982). – reference: DobrovidovAVRudkoIMChoosing the width of the window of the kernel function in the nonparametric estimation of the density derivative by the method of smoothed cross-validationAvtomat. Telemekh., No.201024258 – reference: SharakshaneASZheleznovIGIvnitskiiVAComplex Systems1977MoscowVyssh. Shk – reference: ScottDWMultivariate Density Estimation: Theory, Practice, and Visualization2015New YorkWiley1311.62004 – reference: DuttaSComm. Stat.-Simul. Comp.201645247249010.1080/03610918.2013.862275 – reference: HallPAnn. Stat.19831141156117410.1214/aos/1176346329 – reference: JiangMProvostSBJ. Stat. Comp. Simul.201484361462710.1080/009 – reference: I. V. Zenkov, A. V. Lapko, V. A. Lapko, et al., “Nonparametric pattern recognition algorithm in the problem testing the hypothesis of the independence of random variables,” Comp. Opt., 45, No. 5, 767–772 (2021), https://doi.org/10.18287/2412-6179-CO-871. – reference: A. V. Lapko and V. A. Lapko, “Analysis of the ratio of standard deviations of the kernel estimate of the probability density under conditions of independent and dependent random variables,” Izmer. Tekhn., No. 3, 9–14 (2021), 10.32446/0368-1025it.2021-3-9-14. – reference: BotevZIKroeseDPMethod. Comp. Appl. Probab.200810343545110.1007/s11009-007-9057-z – reference: BowmanAWJ. Stat. Comp. Simul.19852131332710.1080/00949658508810822 – reference: BotevZIGrotowskiJFKroeseDPAnn. Stat.20103852916295710.1214/10-AOS799 – reference: LapkoAVLapkoVAAnalysis of methods for optimizing nonparametric estimation of the probability density using a kernel function blur coefficientIzmer. Tekhn., No.2017638 – reference: SilvermanBWDensity Estimation for Statistics and Data Analysis1986LondonChapman & Hall0617.62042 – volume: 6 start-page: 3 year: 2017 ident: 2043_CR15 publication-title: Izmer. Tekhn., No. – volume-title: Density Estimation for Statistics and Data Analysis year: 1986 ident: 2043_CR18 – volume-title: Probability Theory and Mathematical Statistics: Textbook year: 2018 ident: 2043_CR2 – ident: 2043_CR22 doi: 10.1155/2015/242683 – volume: 21 start-page: 313 year: 1985 ident: 2043_CR9 publication-title: J. Stat. Comp. Simul. doi: 10.1080/00949658508810822 – ident: 2043_CR5 doi: 10.32446/0368-1025it.2021-3-9-14 – volume: 33 start-page: 1065 issue: 3 year: 1962 ident: 2043_CR6 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177704472 – volume: 97 start-page: 403 issue: 4 year: 2013 ident: 2043_CR13 publication-title: AStA Adv. Stat. Anal. doi: 10.1007/s10182-013-0216-y – ident: 2043_CR3 doi: 10.15372/AUT20210205 – volume: 10 start-page: 435 issue: 3 year: 2008 ident: 2043_CR17 publication-title: Method. Comp. Appl. Probab. doi: 10.1007/s11009-007-9057-z – volume: 101 start-page: 148 year: 2016 ident: 2043_CR21 publication-title: Comp. Stat. Data Anal. doi: 10.1016/j.csda.2016.02.014 – ident: 2043_CR4 doi: 10.18287/2412-6179-CO-871 – volume-title: Nonparametric Econometrics: Theory and Practice year: 2007 ident: 2043_CR14 – volume-title: Multivariate Density Estimation: Theory, Practice, and Visualization year: 2015 ident: 2043_CR23 doi: 10.1002/9781118575574 – ident: 2043_CR1 doi: 10.18287/2412-6179-CO-801 – volume: 45 start-page: 472 issue: 2 year: 2016 ident: 2043_CR12 publication-title: Comm. Stat.-Simul. Comp. doi: 10.1080/03610918.2013.862275 – volume-title: Complex Systems year: 1977 ident: 2043_CR24 – volume: 2 start-page: 42 year: 2010 ident: 2043_CR20 publication-title: Avtomat. Telemekh., No. – volume: 38 start-page: 2916 issue: 5 year: 2010 ident: 2043_CR19 publication-title: Ann. Stat. doi: 10.1214/10-AOS799 – volume: 84 start-page: 614 issue: 3 year: 2014 ident: 2043_CR11 publication-title: J. Stat. Comp. Simul. doi: 10.1080/009 – volume: 25 start-page: 1175 issue: 11 year: 1976 ident: 2043_CR16 publication-title: IEEE T. Comp. doi: 10.1109/TC.1976.1674577 – ident: 2043_CR8 – volume: 11 start-page: 1156 issue: 4 year: 1983 ident: 2043_CR10 publication-title: Ann. Stat. doi: 10.1214/aos/1176346329 – volume: 14 start-page: 156 issue: 1 year: 1969 ident: 2043_CR7 publication-title: Teor. Veroyatn. Primen. |
| SSID | ssj0003769 |
| Score | 2.2328358 |
| Snippet | The problem of hypothesis testing for the independence of two-dimensional random variables in the analysis of variables of multi-valued functions is... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 17 |
| SubjectTerms | Algorithms Analytical Chemistry Characterization and Evaluation of Materials Hypotheses Measurement Science and Instrumentation Nonparametric statistics Object recognition Pattern recognition Physical Chemistry Physics Physics and Astronomy Random noise Random variables Remote sensing Two dimensional analysis |
| Title | Application of a Nonparametric Pattern Recognition Algorithm to the Problem of Testing the Hypothesis of the Independence of Variables of Multi-Valued Functions |
| URI | https://link.springer.com/article/10.1007/s11018-022-02043-2 https://www.proquest.com/docview/2690237513 |
| Volume | 65 |
| WOSCitedRecordID | wos000819895500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-8906 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003769 issn: 0543-1972 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9Gt0H3sI9-sGzdEGPQh1VQy45lP4ax0L6EkHahb0KSpTSQ2iV2Bvtv9qfuTrGTdesK26t0smXudB_W3e8APtrceuH7hktfOJ64KOF5Ekved6kV6M1pIYrQbEKORtnVVT5ui8LqLtu9u5IMmnpb7EbgUpyyz0NBJ0fF-xjNnaREvsnFdKN_8cgEp7dP4Ju5FG2pzP3PuGOOflfKf9yOBqMzfPF_230Jz1snkw3WUvEKHrlyD579Aj24B09D6qet9-HHYHuHzSrPNBtVJSGC31CzLcvGAYGzZJMu1QjJBotZtZw31zesqRi6kGy87ktD6y8Jt6OcheGz77dU4VXPa5qhkfNN213raGyKsTpVbwWCUA3Mp3qxcgUbosUNh-IAvg6_XH4-423fBm7R22p4YqXzQmgtXSKtduixWRHHhS-8z4yjiCn1iXNOR8JgeFikIjvVlsLjxJxmJj6EnbIq3WtgKDdRZlDJYFSJkaDJYl1oYTJjUomayPYg6tinbAtqTr01FmoLx0x8UMgHFfigRA8-bdbcriE9HqT-QFKhCCujpGScmV7VtTq_mKgBemcJ_efKenDcEvkKX291W9uAH0HwWncojzrpUq22qJVIc3SdZD-Ke3DSSdN2-u-be_Nv5G9hVwSBpMSjI9hpliv3Dp7Yb828Xr4Pp-gnnFIWQw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQBgIe-BibKAywEBIPYGlx3Dh5rBBVK0ZVbaXam2U7dlepS6YmRdp_sz91d27SMr4keLXPiSOfz7-L735HyDubWc991zDpc8eEiwTLRCxZ1yWWA5rTnOeh2IQcjdKzs2zcJIVVbbR7eyUZLPU22Q3JpRhGn4eETgaGd1dwQPjoo59ON_YXtkwAvV0k38wkb1Jlfv-MW8fRz0b5l9vRcOj0H__fdJ-QRw3IpL21Vjwld1yxRx7-QD24R-6F0E9bPSPXve0dNi091XRUFsgIfoHFtiwdBwbOgp60oUYg1lvMyuW8Pr-gdUkBQtLxui4Njp8gb0cxC82Dq0vM8KrmFfZgy3BTdtc6bJuCr47ZW0EgZAOzqV6sXE77cOKGTbFPvvU_Tz4NWFO3gVlAWzUTVjrPudbSCWm1A8RmeRznPvc-NQ49psQL55yOuAH3ME94eqQtusfCHKUmPiA7RVm454SC3kSpASMDXiV4giaNda65SY1JJFgi2yFRu3zKNqTmWFtjobZ0zLgOCtZBhXVQvEM-bMZcrik9_ir9FrVCIVdGgcE4M72qKjU8PVE9QGcC_3OlHfK-EfIlvN7qJrcBPgLptW5JHrbapRprUSmeZACdZDeKO-Rjq03b7j9P7sW_ib8h9weTr8fqeDj68pI84EE5MQjpkOzUy5V7Re7a7_W8Wr4OO-oGq9IZJw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbQBog9DBhDFAZYCIkHsLY4bpw8VtuqVaCq2ka1N8t27FKpS6omReK_4U_lzk3ajV8S4tU-J458Pt_F931HyFubWc991zDpc8eEiwTLRCxZ1yWWgzenOc9DsQk5HKZXV9noBoo_ZLu3V5IrTAOyNBX14Tz3hxvgGxJNMcxED-BOBkZ4W2C6HMbrF-O1LYbtExzgLhJxZpI3sJnfP-PW0fSzgf7lpjQcQP2H_z_1R2S3cT5pb6Utj8kdV-yRnRuUhHvkXkgJtdUT8r23udumpaeaDssCmcKvsQiXpaPAzFnQ8zYFCcR6s0m5mNZfrmldUnAt6WhVrwbHXyKfRzEJzWff5oj8qqYV9mDLYF2O1zpsG0MMj6iuIBBQwmysZ0uX0z6cxGGz7JPP_dPL4zPW1HNgFrywmgkrnedca-mEtNqBJ2d5HOc-9z41DiOpxAvnnI64gbAxT3h6pC2GzcIcpSZ-SraKsnDPCAV9ilIDxgeiTYgQTRrrXHOTGpNIsFC2Q6J2KZVtyM6x5sZMbWiacR0UrIMK66B4h7xfj5mvqD7-Kv0GNUQhh0aBSToTvawqNbg4Vz3w2gT-_0o75F0j5Et4vdUN5gE-Amm3bkketJqmGitSKZ5k4FLJbhR3yIdWszbdf57c838Tf03uj0766tNg-PEFecCDbmJu0gHZqhdL95LctV_rabV4FTbXD-ReIgI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+a+Nonparametric+Pattern+Recognition+Algorithm+to+the+Problem+of+Testing+the+Hypothesis+of+the+Independence+of+Variables+of+Multi-Valued+Functions&rft.jtitle=Measurement+techniques&rft.au=Lapko%2C+A.+V&rft.au=Lapko%2C+V.+A&rft.au=Bakhtina%2C+A.+V&rft.date=2022-04-01&rft.pub=Springer&rft.issn=0543-1972&rft.volume=65&rft.issue=1&rft.spage=17&rft_id=info:doi/10.1007%2Fs11018-022-02043-2&rft.externalDBID=ISR&rft.externalDocID=A710409038 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0543-1972&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0543-1972&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0543-1972&client=summon |