Application of a Nonparametric Pattern Recognition Algorithm to the Problem of Testing the Hypothesis of the Independence of Variables of Multi-Valued Functions

The problem of hypothesis testing for the independence of two-dimensional random variables in the analysis of variables of multi-valued functions is considered. To solve it, we used a technique based on a nonparametric kernel-type pattern recognition algorithm corresponding to the maximum likelihood...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement techniques Jg. 65; H. 1; S. 17 - 23
Hauptverfasser: Lapko, A. V., Lapko, V. A., Bakhtina, A. V.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.04.2022
Springer
Springer Nature B.V
Schlagworte:
ISSN:0543-1972, 1573-8906
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The problem of hypothesis testing for the independence of two-dimensional random variables in the analysis of variables of multi-valued functions is considered. To solve it, we used a technique based on a nonparametric kernel-type pattern recognition algorithm corresponding to the maximum likelihood criterion. The technique made it possible to bypass the problem of decomposing the random variable domain of values into intervals. Based on the results of computational experiments, the effectiveness of the applied technique was estimated depending on the type of multi-valued functions, the level of random noise and the amount of initial statistical data. The results obtained are relevant for solving the problem of detecting natural and technical objects from remote sensing data.
AbstractList The problem of hypothesis testing for the independence of two-dimensional random variables in the analysis of variables of multi-valued functions is considered. To solve it, we used a technique based on a nonparametric kernel-type pattern recognition algorithm corresponding to the maximum likelihood criterion. The technique made it possible to bypass the problem of decomposing the random variable domain of values into intervals. Based on the results of computational experiments, the effectiveness of the applied technique was estimated depending on the type of multi-valued functions, the level of random noise and the amount of initial statistical data. The results obtained are relevant for solving the problem of detecting natural and technical objects from remote sensing data.
Audience Academic
Author Lapko, A. V.
Bakhtina, A. V.
Lapko, V. A.
Author_xml – sequence: 1
  givenname: A. V.
  surname: Lapko
  fullname: Lapko, A. V.
  email: lapko@icm.krasn.ru
  organization: Institute of Computational Modeling, Siberian Branch of the Russian Academy of Sciences, Reshetnev Siberian State University of Science and Technology
– sequence: 2
  givenname: V. A.
  surname: Lapko
  fullname: Lapko, V. A.
  organization: Institute of Computational Modeling, Siberian Branch of the Russian Academy of Sciences, Reshetnev Siberian State University of Science and Technology
– sequence: 3
  givenname: A. V.
  surname: Bakhtina
  fullname: Bakhtina, A. V.
  organization: Reshetnev Siberian State University of Science and Technology
BookMark eNp9kc1u3CAUhVGVSp2kfYGuLHXVhVP-ZrCXo6hJRkraKE2zRRhfHCIbXMBS8zZ91GK7UpQuAoIrHc7HBZ1jdOS8A4Q-EnxKMBZfIiGYVCWmNC_MWUnfoA3ZClZWNd4doQ3eZpHUgr5DxzE-YoyZ2NUb9Gc_jr3VKlnvCm8KVXzzblRBDZCC1cWNSgmCK25B-87ZxbbvOx9sehiK5Iv0AMVN8E0Pw8zfQUzWdYt8-TT6XKON88msHFwLI-TNaZi1exWsyuhiuJ76ZMt71U_QFueT03Oz-B69NaqP8OFfPUE_z7_enV2WV98vDmf7q1KzmqaSawGGUqUEcKEVcMo0Zaw1rTFVA3iXh-EAoAhtOK_aHa2w0oILwhtcNewEfVrvHYP_NeVfyEc_BZdbSrqrMWViS1h2na6uTvUgrTM-BaXzbGGwOmdibNb3gmCOa8yqDHx-AWRPgt-pU1OM8vDj9qWXrl4dfIwBjByDHVR4kgTLOWa5xixzzHKJWdIMVf9B2qYlzvwy27-OshWNuY_rIDx_-RXqL_vNwAY
CitedBy_id crossref_primary_10_1007_s11018_023_02214_9
crossref_primary_10_31772_2712_8970_2025_26_1_48_59
crossref_primary_10_1007_s11018_024_02288_z
crossref_primary_10_3103_S8756699025700116
crossref_primary_10_3103_S875669902302005X
Cites_doi 10.1155/2015/242683
10.1080/00949658508810822
10.32446/0368-1025it.2021-3-9-14
10.1214/aoms/1177704472
10.1007/s10182-013-0216-y
10.15372/AUT20210205
10.1007/s11009-007-9057-z
10.1016/j.csda.2016.02.014
10.18287/2412-6179-CO-871
10.1002/9781118575574
10.18287/2412-6179-CO-801
10.1080/03610918.2013.862275
10.1214/10-AOS799
10.1080/009
10.1109/TC.1976.1674577
10.1214/aos/1176346329
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2022
COPYRIGHT 2022 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: COPYRIGHT 2022 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
ISR
7U5
8FD
JQ2
L7M
DOI 10.1007/s11018-022-02043-2
DatabaseName CrossRef
Gale In Context: Science
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
DatabaseTitleList
Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1573-8906
EndPage 23
ExternalDocumentID A710409038
10_1007_s11018_022_02043_2
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
6TJ
7WY
88I
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GPTSA
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IHE
IJ-
IKXTQ
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9T
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
PQGLB
7U5
8FD
JQ2
L7M
ID FETCH-LOGICAL-c392t-4c7ef22aa7e47cae423c233dfdff8be06666f4eeea12b448d6280ac74714b08b3
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819895500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0543-1972
IngestDate Thu Sep 25 00:45:42 EDT 2025
Sat Nov 29 10:36:18 EST 2025
Mon Nov 24 14:44:02 EST 2025
Sat Nov 29 01:47:07 EST 2025
Tue Nov 18 21:43:04 EST 2025
Fri Feb 21 02:45:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords maximum likelihood test
kernel estimation of probability density
hypothesis testing
multi-valued functional dependencies
dependent random variables
two-dimensional random variables
independent random variables
pattern recognition algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-4c7ef22aa7e47cae423c233dfdff8be06666f4eeea12b448d6280ac74714b08b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2690237513
PQPubID 54071
PageCount 7
ParticipantIDs proquest_journals_2690237513
gale_infotracacademiconefile_A710409038
gale_incontextgauss_ISR_A710409038
crossref_primary_10_1007_s11018_022_02043_2
crossref_citationtrail_10_1007_s11018_022_02043_2
springer_journals_10_1007_s11018_022_02043_2
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Measurement techniques
PublicationTitleAbbrev Meas Tech
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References A. V. Lapko and V. A. Lapko, “Analysis of the ratio of standard deviations of the kernel estimate of the probability density under conditions of independent and dependent random variables,” Izmer. Tekhn., No. 3, 9–14 (2021), 10.32446/0368-1025it.2021-3-9-14.
DuttaSComm. Stat.-Simul. Comp.201645247249010.1080/03610918.2013.862275
LapkoAVLapkoVAAnalysis of methods for optimizing nonparametric estimation of the probability density using a kernel function blur coefficientIzmer. Tekhn., No.2017638
I. V. Zenkov, A. V. Lapko, V. A. Lapko, et al., “Nonparametric algorithm for automatic classification of large volume multidimensional statistical data and its application,” Comp. Opt., 45, No. 2, 253–260 (2021), 10.18287/2412-6179-CO-801.
S. Chen, J. Probab. Stat., 2015, 242683 (2015), https://doi.org/10.1155/2015/242683.
BotevZIGrotowskiJFKroeseDPAnn. Stat.20103852916295710.1214/10-AOS799
BotevZIKroeseDPMethod. Comp. Appl. Probab.200810343545110.1007/s11009-007-9057-z
A. V. Lapko and V. A. Lapko, “Testing the hypothesis about the independence of two-dimensional random variables using a nonparametric pattern recognition algorithm,” Avtometriya, 57, No. 2, 41–48 (2021), https://doi.org/10.15372/AUT20210205.
SilvermanBWDensity Estimation for Statistics and Data Analysis1986LondonChapman & Hall0617.62042
O’BrienTAKashinathKCavanaughNRComp. Stat. Data Anal.201610114816010.1016/j.csda.2016.02.014
SharakshaneASZheleznovIGIvnitskiiVAComplex Systems1977MoscowVyssh. Shk
I. V. Zenkov, A. V. Lapko, V. A. Lapko, et al., “Nonparametric pattern recognition algorithm in the problem testing the hypothesis of the independence of random variables,” Comp. Opt., 45, No. 5, 767–772 (2021), https://doi.org/10.18287/2412-6179-CO-871.
ScottDWMultivariate Density Estimation: Theory, Practice, and Visualization2015New YorkWiley1311.62004
TrofimovaEAKislyakNVGilevDVProbability Theory and Mathematical Statistics: Textbook2018EkaterinburgUral Federal University Press
DobrovidovAVRudkoIMChoosing the width of the window of the kernel function in the nonparametric estimation of the density derivative by the method of smoothed cross-validationAvtomat. Telemekh., No.201024258
M. Rudemo, “Empirical choice of histograms and kernel density estimators,” Scand. J. Stat., 9, No. 2, 65–78 (1982).
LiQRacineJSNonparametric Econometrics: Theory and Practice2007PrincetonPrinceton University Press1183.62200
DuinRPWIEEE T. Comp.197625111175117910.1109/TC.1976.1674577
HallPAnn. Stat.19831141156117410.1214/aos/1176346329
JiangMProvostSBJ. Stat. Comp. Simul.201484361462710.1080/009
EpanechnikovVANonparametric estimation of multidimensional probability densityTeor. Veroyatn. Primen.19691411561612504220175.17101
HeidenreichN-BSchindlerASperlichSAStA Adv. Stat. Anal.2013974403433310559010.1007/s10182-013-0216-y
BowmanAWJ. Stat. Comp. Simul.19852131332710.1080/00949658508810822
ParzenEAnn. Math. Stat.19623331065107610.1214/aoms/1177704472
AV Lapko (2043_CR15) 2017; 6
DW Scott (2043_CR23) 2015
AW Bowman (2043_CR9) 1985; 21
Q Li (2043_CR14) 2007
EA Trofimova (2043_CR2) 2018
P Hall (2043_CR10) 1983; 11
RPW Duin (2043_CR16) 1976; 25
ZI Botev (2043_CR19) 2010; 38
S Dutta (2043_CR12) 2016; 45
2043_CR22
AS Sharakshane (2043_CR24) 1977
M Jiang (2043_CR11) 2014; 84
AV Dobrovidov (2043_CR20) 2010; 2
VA Epanechnikov (2043_CR7) 1969; 14
2043_CR5
ZI Botev (2043_CR17) 2008; 10
2043_CR8
2043_CR1
E Parzen (2043_CR6) 1962; 33
BW Silverman (2043_CR18) 1986
TA O’Brien (2043_CR21) 2016; 101
2043_CR3
N-B Heidenreich (2043_CR13) 2013; 97
2043_CR4
References_xml – reference: TrofimovaEAKislyakNVGilevDVProbability Theory and Mathematical Statistics: Textbook2018EkaterinburgUral Federal University Press
– reference: A. V. Lapko and V. A. Lapko, “Testing the hypothesis about the independence of two-dimensional random variables using a nonparametric pattern recognition algorithm,” Avtometriya, 57, No. 2, 41–48 (2021), https://doi.org/10.15372/AUT20210205.
– reference: O’BrienTAKashinathKCavanaughNRComp. Stat. Data Anal.201610114816010.1016/j.csda.2016.02.014
– reference: DuinRPWIEEE T. Comp.197625111175117910.1109/TC.1976.1674577
– reference: ParzenEAnn. Math. Stat.19623331065107610.1214/aoms/1177704472
– reference: LiQRacineJSNonparametric Econometrics: Theory and Practice2007PrincetonPrinceton University Press1183.62200
– reference: S. Chen, J. Probab. Stat., 2015, 242683 (2015), https://doi.org/10.1155/2015/242683.
– reference: HeidenreichN-BSchindlerASperlichSAStA Adv. Stat. Anal.2013974403433310559010.1007/s10182-013-0216-y
– reference: I. V. Zenkov, A. V. Lapko, V. A. Lapko, et al., “Nonparametric algorithm for automatic classification of large volume multidimensional statistical data and its application,” Comp. Opt., 45, No. 2, 253–260 (2021), 10.18287/2412-6179-CO-801.
– reference: EpanechnikovVANonparametric estimation of multidimensional probability densityTeor. Veroyatn. Primen.19691411561612504220175.17101
– reference: M. Rudemo, “Empirical choice of histograms and kernel density estimators,” Scand. J. Stat., 9, No. 2, 65–78 (1982).
– reference: DobrovidovAVRudkoIMChoosing the width of the window of the kernel function in the nonparametric estimation of the density derivative by the method of smoothed cross-validationAvtomat. Telemekh., No.201024258
– reference: SharakshaneASZheleznovIGIvnitskiiVAComplex Systems1977MoscowVyssh. Shk
– reference: ScottDWMultivariate Density Estimation: Theory, Practice, and Visualization2015New YorkWiley1311.62004
– reference: DuttaSComm. Stat.-Simul. Comp.201645247249010.1080/03610918.2013.862275
– reference: HallPAnn. Stat.19831141156117410.1214/aos/1176346329
– reference: JiangMProvostSBJ. Stat. Comp. Simul.201484361462710.1080/009
– reference: I. V. Zenkov, A. V. Lapko, V. A. Lapko, et al., “Nonparametric pattern recognition algorithm in the problem testing the hypothesis of the independence of random variables,” Comp. Opt., 45, No. 5, 767–772 (2021), https://doi.org/10.18287/2412-6179-CO-871.
– reference: A. V. Lapko and V. A. Lapko, “Analysis of the ratio of standard deviations of the kernel estimate of the probability density under conditions of independent and dependent random variables,” Izmer. Tekhn., No. 3, 9–14 (2021), 10.32446/0368-1025it.2021-3-9-14.
– reference: BotevZIKroeseDPMethod. Comp. Appl. Probab.200810343545110.1007/s11009-007-9057-z
– reference: BowmanAWJ. Stat. Comp. Simul.19852131332710.1080/00949658508810822
– reference: BotevZIGrotowskiJFKroeseDPAnn. Stat.20103852916295710.1214/10-AOS799
– reference: LapkoAVLapkoVAAnalysis of methods for optimizing nonparametric estimation of the probability density using a kernel function blur coefficientIzmer. Tekhn., No.2017638
– reference: SilvermanBWDensity Estimation for Statistics and Data Analysis1986LondonChapman & Hall0617.62042
– volume: 6
  start-page: 3
  year: 2017
  ident: 2043_CR15
  publication-title: Izmer. Tekhn., No.
– volume-title: Density Estimation for Statistics and Data Analysis
  year: 1986
  ident: 2043_CR18
– volume-title: Probability Theory and Mathematical Statistics: Textbook
  year: 2018
  ident: 2043_CR2
– ident: 2043_CR22
  doi: 10.1155/2015/242683
– volume: 21
  start-page: 313
  year: 1985
  ident: 2043_CR9
  publication-title: J. Stat. Comp. Simul.
  doi: 10.1080/00949658508810822
– ident: 2043_CR5
  doi: 10.32446/0368-1025it.2021-3-9-14
– volume: 33
  start-page: 1065
  issue: 3
  year: 1962
  ident: 2043_CR6
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177704472
– volume: 97
  start-page: 403
  issue: 4
  year: 2013
  ident: 2043_CR13
  publication-title: AStA Adv. Stat. Anal.
  doi: 10.1007/s10182-013-0216-y
– ident: 2043_CR3
  doi: 10.15372/AUT20210205
– volume: 10
  start-page: 435
  issue: 3
  year: 2008
  ident: 2043_CR17
  publication-title: Method. Comp. Appl. Probab.
  doi: 10.1007/s11009-007-9057-z
– volume: 101
  start-page: 148
  year: 2016
  ident: 2043_CR21
  publication-title: Comp. Stat. Data Anal.
  doi: 10.1016/j.csda.2016.02.014
– ident: 2043_CR4
  doi: 10.18287/2412-6179-CO-871
– volume-title: Nonparametric Econometrics: Theory and Practice
  year: 2007
  ident: 2043_CR14
– volume-title: Multivariate Density Estimation: Theory, Practice, and Visualization
  year: 2015
  ident: 2043_CR23
  doi: 10.1002/9781118575574
– ident: 2043_CR1
  doi: 10.18287/2412-6179-CO-801
– volume: 45
  start-page: 472
  issue: 2
  year: 2016
  ident: 2043_CR12
  publication-title: Comm. Stat.-Simul. Comp.
  doi: 10.1080/03610918.2013.862275
– volume-title: Complex Systems
  year: 1977
  ident: 2043_CR24
– volume: 2
  start-page: 42
  year: 2010
  ident: 2043_CR20
  publication-title: Avtomat. Telemekh., No.
– volume: 38
  start-page: 2916
  issue: 5
  year: 2010
  ident: 2043_CR19
  publication-title: Ann. Stat.
  doi: 10.1214/10-AOS799
– volume: 84
  start-page: 614
  issue: 3
  year: 2014
  ident: 2043_CR11
  publication-title: J. Stat. Comp. Simul.
  doi: 10.1080/009
– volume: 25
  start-page: 1175
  issue: 11
  year: 1976
  ident: 2043_CR16
  publication-title: IEEE T. Comp.
  doi: 10.1109/TC.1976.1674577
– ident: 2043_CR8
– volume: 11
  start-page: 1156
  issue: 4
  year: 1983
  ident: 2043_CR10
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176346329
– volume: 14
  start-page: 156
  issue: 1
  year: 1969
  ident: 2043_CR7
  publication-title: Teor. Veroyatn. Primen.
SSID ssj0003769
Score 2.2328358
Snippet The problem of hypothesis testing for the independence of two-dimensional random variables in the analysis of variables of multi-valued functions is...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17
SubjectTerms Algorithms
Analytical Chemistry
Characterization and Evaluation of Materials
Hypotheses
Measurement Science and Instrumentation
Nonparametric statistics
Object recognition
Pattern recognition
Physical Chemistry
Physics
Physics and Astronomy
Random noise
Random variables
Remote sensing
Two dimensional analysis
Title Application of a Nonparametric Pattern Recognition Algorithm to the Problem of Testing the Hypothesis of the Independence of Variables of Multi-Valued Functions
URI https://link.springer.com/article/10.1007/s11018-022-02043-2
https://www.proquest.com/docview/2690237513
Volume 65
WOSCitedRecordID wos000819895500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-8906
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003769
  issn: 0543-1972
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9Gt0H3sI9-sGzdEGPQh1VQy45lP4ax0L6EkHahb0KSpTSQ2iV2Bvtv9qfuTrGTdesK26t0smXudB_W3e8APtrceuH7hktfOJ64KOF5Ekved6kV6M1pIYrQbEKORtnVVT5ui8LqLtu9u5IMmnpb7EbgUpyyz0NBJ0fF-xjNnaREvsnFdKN_8cgEp7dP4Ju5FG2pzP3PuGOOflfKf9yOBqMzfPF_230Jz1snkw3WUvEKHrlyD579Aj24B09D6qet9-HHYHuHzSrPNBtVJSGC31CzLcvGAYGzZJMu1QjJBotZtZw31zesqRi6kGy87ktD6y8Jt6OcheGz77dU4VXPa5qhkfNN213raGyKsTpVbwWCUA3Mp3qxcgUbosUNh-IAvg6_XH4-423fBm7R22p4YqXzQmgtXSKtduixWRHHhS-8z4yjiCn1iXNOR8JgeFikIjvVlsLjxJxmJj6EnbIq3WtgKDdRZlDJYFSJkaDJYl1oYTJjUomayPYg6tinbAtqTr01FmoLx0x8UMgHFfigRA8-bdbcriE9HqT-QFKhCCujpGScmV7VtTq_mKgBemcJ_efKenDcEvkKX291W9uAH0HwWncojzrpUq22qJVIc3SdZD-Ke3DSSdN2-u-be_Nv5G9hVwSBpMSjI9hpliv3Dp7Yb828Xr4Pp-gnnFIWQw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQBgIe-BibKAywEBIPYGlx3Dh5rBBVK0ZVbaXam2U7dlepS6YmRdp_sz91d27SMr4keLXPiSOfz7-L735HyDubWc991zDpc8eEiwTLRCxZ1yWWA5rTnOeh2IQcjdKzs2zcJIVVbbR7eyUZLPU22Q3JpRhGn4eETgaGd1dwQPjoo59ON_YXtkwAvV0k38wkb1Jlfv-MW8fRz0b5l9vRcOj0H__fdJ-QRw3IpL21Vjwld1yxRx7-QD24R-6F0E9bPSPXve0dNi091XRUFsgIfoHFtiwdBwbOgp60oUYg1lvMyuW8Pr-gdUkBQtLxui4Njp8gb0cxC82Dq0vM8KrmFfZgy3BTdtc6bJuCr47ZW0EgZAOzqV6sXE77cOKGTbFPvvU_Tz4NWFO3gVlAWzUTVjrPudbSCWm1A8RmeRznPvc-NQ49psQL55yOuAH3ME94eqQtusfCHKUmPiA7RVm454SC3kSpASMDXiV4giaNda65SY1JJFgi2yFRu3zKNqTmWFtjobZ0zLgOCtZBhXVQvEM-bMZcrik9_ir9FrVCIVdGgcE4M72qKjU8PVE9QGcC_3OlHfK-EfIlvN7qJrcBPgLptW5JHrbapRprUSmeZACdZDeKO-Rjq03b7j9P7sW_ib8h9weTr8fqeDj68pI84EE5MQjpkOzUy5V7Re7a7_W8Wr4OO-oGq9IZJw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbQBog9DBhDFAZYCIkHsLY4bpw8VtuqVaCq2ka1N8t27FKpS6omReK_4U_lzk3ajV8S4tU-J458Pt_F931HyFubWc991zDpc8eEiwTLRCxZ1yWWgzenOc9DsQk5HKZXV9noBoo_ZLu3V5IrTAOyNBX14Tz3hxvgGxJNMcxED-BOBkZ4W2C6HMbrF-O1LYbtExzgLhJxZpI3sJnfP-PW0fSzgf7lpjQcQP2H_z_1R2S3cT5pb6Utj8kdV-yRnRuUhHvkXkgJtdUT8r23udumpaeaDssCmcKvsQiXpaPAzFnQ8zYFCcR6s0m5mNZfrmldUnAt6WhVrwbHXyKfRzEJzWff5oj8qqYV9mDLYF2O1zpsG0MMj6iuIBBQwmysZ0uX0z6cxGGz7JPP_dPL4zPW1HNgFrywmgkrnedca-mEtNqBJ2d5HOc-9z41DiOpxAvnnI64gbAxT3h6pC2GzcIcpSZ-SraKsnDPCAV9ilIDxgeiTYgQTRrrXHOTGpNIsFC2Q6J2KZVtyM6x5sZMbWiacR0UrIMK66B4h7xfj5mvqD7-Kv0GNUQhh0aBSToTvawqNbg4Vz3w2gT-_0o75F0j5Et4vdUN5gE-Amm3bkketJqmGitSKZ5k4FLJbhR3yIdWszbdf57c838Tf03uj0766tNg-PEFecCDbmJu0gHZqhdL95LctV_rabV4FTbXD-ReIgI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+a+Nonparametric+Pattern+Recognition+Algorithm+to+the+Problem+of+Testing+the+Hypothesis+of+the+Independence+of+Variables+of+Multi-Valued+Functions&rft.jtitle=Measurement+techniques&rft.au=Lapko%2C+A.+V&rft.au=Lapko%2C+V.+A&rft.au=Bakhtina%2C+A.+V&rft.date=2022-04-01&rft.pub=Springer&rft.issn=0543-1972&rft.volume=65&rft.issue=1&rft.spage=17&rft_id=info:doi/10.1007%2Fs11018-022-02043-2&rft.externalDBID=ISR&rft.externalDocID=A710409038
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0543-1972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0543-1972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0543-1972&client=summon