A Novel Short-Term Event Extraction Algorithm for Biomedical Signals
In this paper, we propose a fast novel nonlinear filtering method named Relative-Energy (Rel-En), for robust short-term event extraction from biomedical signals. We developed an algorithm that extracts short- and long-term energies in a signal and provides a coefficient vector with which the signal...
Uloženo v:
| Vydáno v: | IEEE transactions on biomedical engineering Ročník 65; číslo 4; s. 754 - 762 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.04.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9294, 1558-2531, 1558-2531 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we propose a fast novel nonlinear filtering method named Relative-Energy (Rel-En), for robust short-term event extraction from biomedical signals. We developed an algorithm that extracts short- and long-term energies in a signal and provides a coefficient vector with which the signal is multiplied, heightening events of interest. This algorithm is thoroughly assessed on benchmark datasets in three different biomedical applications, namely ECG QRS-complex detection, EEG K-complex detection, and imaging photoplethysmography (iPPG) peak detection. Rel-En successfully identified the events in these settings. Compared to the state-of-the-art, better or comparable results were obtained on QRS-complex and K-complex detection. For iPPG peak detection, the proposed method was used as a preprocessing step to a fixed threshold algorithm that lead to a significant improvement in overall results. While easily defined and computed, Rel-En robustly extracted short-term events of interest. The proposed algorithm can be implemented by two filters and its parameters can be selected easily and intuitively. Furthermore, Rel-En algorithm can be used in other biomedical signal processing applications where a need of short-term event extraction is present. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0018-9294 1558-2531 1558-2531 |
| DOI: | 10.1109/TBME.2017.2718179 |