Modeling the Optical Properties of a Polyvinyl Alcohol-Based Composite Using a Particle Swarm Optimized Support Vector Regression Algorithm

We developed particle swarm optimization-based support vector regression (PSVR) and ordinary linear regression (OLR) models for estimating the refractive index (n) and energy gap (E) of a polyvinyl alcohol composite. The n-PSVR model, which can estimate the refractive index of a polyvinyl alcohol co...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Polymers Ročník 13; číslo 16; s. 2697
Hlavní autoři: Owolabi, Taoreed O., Abd Rahman, Mohd Amiruddin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 12.08.2021
MDPI
Témata:
ISSN:2073-4360, 2073-4360
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We developed particle swarm optimization-based support vector regression (PSVR) and ordinary linear regression (OLR) models for estimating the refractive index (n) and energy gap (E) of a polyvinyl alcohol composite. The n-PSVR model, which can estimate the refractive index of a polyvinyl alcohol composite using the energy gap as a descriptor, performed better than the n-OLR model in terms of root mean square error (RMSE) and mean absolute error (MAE) metrics. The E-PSVR model, which can predict the energy gap of a polyvinyl alcohol composite using its refractive index descriptor, outperformed the E-OLR model, which uses similar descriptor based on several performance measuring metrics. The n-PSVR and E-PSVR models were used to investigate the influences of sodium-based dysprosium oxide and benzoxazinone derivatives on the energy gaps of a polyvinyl alcohol polymer composite. The results agreed well with the measured values. The models had low mean absolute percentage errors after validation with external data. The precision demonstrated by these predictive models will enhance the tailoring of the optical properties of polyvinyl alcohol composites for the desired applications. Costs and experimental difficulties will be reduced.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym13162697