Modeling the Optical Properties of a Polyvinyl Alcohol-Based Composite Using a Particle Swarm Optimized Support Vector Regression Algorithm
We developed particle swarm optimization-based support vector regression (PSVR) and ordinary linear regression (OLR) models for estimating the refractive index (n) and energy gap (E) of a polyvinyl alcohol composite. The n-PSVR model, which can estimate the refractive index of a polyvinyl alcohol co...
Uloženo v:
| Vydáno v: | Polymers Ročník 13; číslo 16; s. 2697 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
12.08.2021
MDPI |
| Témata: | |
| ISSN: | 2073-4360, 2073-4360 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We developed particle swarm optimization-based support vector regression (PSVR) and ordinary linear regression (OLR) models for estimating the refractive index (n) and energy gap (E) of a polyvinyl alcohol composite. The n-PSVR model, which can estimate the refractive index of a polyvinyl alcohol composite using the energy gap as a descriptor, performed better than the n-OLR model in terms of root mean square error (RMSE) and mean absolute error (MAE) metrics. The E-PSVR model, which can predict the energy gap of a polyvinyl alcohol composite using its refractive index descriptor, outperformed the E-OLR model, which uses similar descriptor based on several performance measuring metrics. The n-PSVR and E-PSVR models were used to investigate the influences of sodium-based dysprosium oxide and benzoxazinone derivatives on the energy gaps of a polyvinyl alcohol polymer composite. The results agreed well with the measured values. The models had low mean absolute percentage errors after validation with external data. The precision demonstrated by these predictive models will enhance the tailoring of the optical properties of polyvinyl alcohol composites for the desired applications. Costs and experimental difficulties will be reduced. |
|---|---|
| AbstractList | We developed particle swarm optimization-based support vector regression (PSVR) and ordinary linear regression (OLR) models for estimating the refractive index (n) and energy gap (E) of a polyvinyl alcohol composite. The n-PSVR model, which can estimate the refractive index of a polyvinyl alcohol composite using the energy gap as a descriptor, performed better than the n-OLR model in terms of root mean square error (RMSE) and mean absolute error (MAE) metrics. The E-PSVR model, which can predict the energy gap of a polyvinyl alcohol composite using its refractive index descriptor, outperformed the E-OLR model, which uses similar descriptor based on several performance measuring metrics. The n-PSVR and E-PSVR models were used to investigate the influences of sodium-based dysprosium oxide and benzoxazinone derivatives on the energy gaps of a polyvinyl alcohol polymer composite. The results agreed well with the measured values. The models had low mean absolute percentage errors after validation with external data. The precision demonstrated by these predictive models will enhance the tailoring of the optical properties of polyvinyl alcohol composites for the desired applications. Costs and experimental difficulties will be reduced. We developed particle swarm optimization-based support vector regression (PSVR) and ordinary linear regression (OLR) models for estimating the refractive index (n) and energy gap (E) of a polyvinyl alcohol composite. The n-PSVR model, which can estimate the refractive index of a polyvinyl alcohol composite using the energy gap as a descriptor, performed better than the n-OLR model in terms of root mean square error (RMSE) and mean absolute error (MAE) metrics. The E-PSVR model, which can predict the energy gap of a polyvinyl alcohol composite using its refractive index descriptor, outperformed the E-OLR model, which uses similar descriptor based on several performance measuring metrics. The n-PSVR and E-PSVR models were used to investigate the influences of sodium-based dysprosium oxide and benzoxazinone derivatives on the energy gaps of a polyvinyl alcohol polymer composite. The results agreed well with the measured values. The models had low mean absolute percentage errors after validation with external data. The precision demonstrated by these predictive models will enhance the tailoring of the optical properties of polyvinyl alcohol composites for the desired applications. Costs and experimental difficulties will be reduced.We developed particle swarm optimization-based support vector regression (PSVR) and ordinary linear regression (OLR) models for estimating the refractive index (n) and energy gap (E) of a polyvinyl alcohol composite. The n-PSVR model, which can estimate the refractive index of a polyvinyl alcohol composite using the energy gap as a descriptor, performed better than the n-OLR model in terms of root mean square error (RMSE) and mean absolute error (MAE) metrics. The E-PSVR model, which can predict the energy gap of a polyvinyl alcohol composite using its refractive index descriptor, outperformed the E-OLR model, which uses similar descriptor based on several performance measuring metrics. The n-PSVR and E-PSVR models were used to investigate the influences of sodium-based dysprosium oxide and benzoxazinone derivatives on the energy gaps of a polyvinyl alcohol polymer composite. The results agreed well with the measured values. The models had low mean absolute percentage errors after validation with external data. The precision demonstrated by these predictive models will enhance the tailoring of the optical properties of polyvinyl alcohol composites for the desired applications. Costs and experimental difficulties will be reduced. |
| Author | Owolabi, Taoreed O. Abd Rahman, Mohd Amiruddin |
| AuthorAffiliation | 1 Physics and Electronics Department, Adekunle Ajasin University, Akungba Akoko, Ondo 342111, Nigeria; taoreed.owolabi@aaua.edu.ng 2 Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia |
| AuthorAffiliation_xml | – name: 2 Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia – name: 1 Physics and Electronics Department, Adekunle Ajasin University, Akungba Akoko, Ondo 342111, Nigeria; taoreed.owolabi@aaua.edu.ng |
| Author_xml | – sequence: 1 givenname: Taoreed O. orcidid: 0000-0002-6666-1755 surname: Owolabi fullname: Owolabi, Taoreed O. – sequence: 2 givenname: Mohd Amiruddin orcidid: 0000-0003-0951-9450 surname: Abd Rahman fullname: Abd Rahman, Mohd Amiruddin |
| BookMark | eNp1kVtrFDEUgINUbK199D3giy9jc5nJzLwIdfFSqLRY62vIJmd3UzJzxiRTWf-Cf9qsLdIWGgIJyXe-nJzzkuyNOAIhrzl7J2XPjicM24FLroTq22fkQLBWVrVUbO_efp8cpXTNyqgbpXj7guzLum64kO0B-fMVHQQ_rmneAD2fsrcm0IuIE8TsIVFcUUMvyjs3ftwGehIsbjBUH0wCRxc4TJh8BnqVdo5CmhJmA9DLXyYO_4SD_13Qy3maMGb6A2zGSL_BOkJKHseiXGP0eTO8Is9XJiQ4ulsPydWnj98XX6qz88-ni5Ozyspe5KoWjRGdVI3qxAqccF3Xt46ZbukUmJZzBlYtRevE0shyKoF3pu2cYr3kVrbykLy_9U7zcgBnYczRBD1FP5i41Wi8fngz-o1e443uaiZ4J4rg7Z0g4s8ZUtaDTxZCMCPgnLQodWal8mqHvnmEXuMcx_K9HdWUqRgrVHVL2YgpRVj9T4Yzveu0ftDpwstHvPXZ5FLNkq8PT0T9BR33sKg |
| CitedBy_id | crossref_primary_10_1016_j_mtcomm_2024_110560 crossref_primary_10_1080_23311916_2023_2257955 crossref_primary_10_3390_cryst12010036 crossref_primary_10_1007_s11082_023_05048_5 crossref_primary_10_1007_s11665_025_11783_5 crossref_primary_10_1016_j_matchemphys_2022_126524 crossref_primary_10_1007_s11082_022_04510_0 crossref_primary_10_1007_s00289_025_05701_x crossref_primary_10_1016_j_conbuildmat_2023_132179 crossref_primary_10_1080_15397734_2024_2332642 crossref_primary_10_15407_nnn_22_03_643 crossref_primary_10_1016_j_physb_2024_415900 crossref_primary_10_1080_23311916_2022_2137936 crossref_primary_10_1080_23311916_2023_2283287 |
| Cites_doi | 10.1016/j.optmat.2020.109857 10.1016/j.saa.2019.04.050 10.1007/978-1-4757-2440-0 10.1016/j.eswa.2021.115078 10.1016/j.physb.2018.03.031 10.1016/j.jobe.2021.102593 10.1016/j.molstruc.2019.04.014 10.1016/j.jallcom.2016.10.004 10.1016/j.coco.2021.100662 10.1016/j.gsf.2020.10.009 10.1016/j.jmrt.2020.06.077 10.1016/j.physb.2018.12.031 10.1016/j.sab.2021.106077 10.3390/sym13030411 10.3390/polym13081316 10.1016/j.physb.2011.01.021 10.1016/j.jhydrol.2020.125423 10.1016/j.cjph.2020.10.002 10.1016/j.commatsci.2021.110392 10.1016/j.molstruc.2018.09.080 10.1016/j.matchemphys.2013.02.035 10.1016/j.physb.2021.412989 10.1016/j.physb.2019.05.050 10.1016/j.uclim.2019.100473 10.1016/j.jnoncrysol.2019.05.028 10.1016/S0167-577X(02)00434-2 10.1016/j.enconman.2019.06.082 10.1016/j.ijhydene.2020.07.265 10.1016/j.tsf.2020.138317 10.1016/j.ins.2019.10.029 10.1016/j.apsusc.2015.03.074 10.1016/j.jmrt.2020.06.040 10.1016/j.saa.2014.11.074 10.1016/j.optmat.2020.110600 10.1016/j.petrol.2019.06.014 10.1016/j.saa.2017.12.059 10.1155/2013/897043 10.1016/j.optlastec.2020.106600 10.3390/cryst11030246 10.1016/j.coco.2021.100678 10.1016/j.cap.2018.05.023 10.1016/j.petrol.2016.11.033 10.1002/cjce.23436 10.1016/j.cjph.2021.04.022 10.1088/1674-4926/40/2/022803 10.1016/j.jmrt.2019.01.011 10.1016/j.infrared.2006.04.001 10.1016/j.ijleo.2020.166008 10.1016/j.optmat.2020.110648 10.1016/j.molstruc.2015.10.039 10.1016/j.molstruc.2017.02.020 10.1016/j.ijleo.2020.166129 10.1016/j.tsf.2015.10.039 10.1016/j.ces.2020.116325 10.1155/2021/9978384 10.1016/j.optmat.2020.110204 10.1016/j.chemolab.2014.11.008 10.1016/j.future.2021.03.022 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
| DOI | 10.3390/polym13162697 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) ProQuest Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Collection (ProQuest) Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2073-4360 |
| ExternalDocumentID | PMC8402182 10_3390_polym13162697 |
| GroupedDBID | 53G 5VS 8FE 8FG A8Z AADQD AAFWJ AAYXX ABDBF ABJCF ACGFO ACIWK ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I ESX F5P GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 ML~ MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RNS RPM TR2 TUS 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 ESTFP 5PM |
| ID | FETCH-LOGICAL-c392t-425a28365682fed2d8897d0a8bd6ea7110ec6b27d2ba3a8b3e18a78d60931c373 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000690047900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-4360 |
| IngestDate | Tue Nov 04 02:00:52 EST 2025 Sun Nov 09 12:54:39 EST 2025 Sun Jul 13 03:11:10 EDT 2025 Sat Nov 29 07:15:25 EST 2025 Tue Nov 18 22:17:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c392t-425a28365682fed2d8897d0a8bd6ea7110ec6b27d2ba3a8b3e18a78d60931c373 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6666-1755 0000-0003-0951-9450 |
| OpenAccessLink | https://www.proquest.com/docview/2565565600?pq-origsite=%requestingapplication% |
| PMID | 34451237 |
| PQID | 2565565600 |
| PQPubID | 2032345 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8402182 proquest_miscellaneous_2566036062 proquest_journals_2565565600 crossref_primary_10_3390_polym13162697 crossref_citationtrail_10_3390_polym13162697 |
| PublicationCentury | 2000 |
| PublicationDate | 20210812 |
| PublicationDateYYYYMMDD | 2021-08-12 |
| PublicationDate_xml | – month: 8 year: 2021 text: 20210812 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Polymers |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Imam (ref_51) 2016; 1105 Rashad (ref_5) 2020; 105 Adewunmi (ref_25) 2019; 97 Basak (ref_16) 2007; 11 Correa (ref_31) 2019; 29 Alibwaini (ref_43) 2020; 111 Ghanipour (ref_46) 2013; 2013 ref_14 Devi (ref_4) 2002; 56 Tamgadge (ref_2) 2015; 595 ref_18 Shilpa (ref_44) 2017; 694 Ravindra (ref_13) 2007; 50 ref_17 ref_15 Tokuyama (ref_20) 2021; 231 Ismail (ref_40) 2020; 134 Wang (ref_24) 2020; 177 Mahmoud (ref_6) 2019; 219 Soliman (ref_1) 2019; 519 Ali (ref_39) 2019; 1189 Duchowicz (ref_10) 2015; 140 Mahmoud (ref_42) 2015; 138 Awwad (ref_52) 2020; 24 Khairy (ref_3) 2020; 228 Dodangeh (ref_22) 2020; 590 Ali (ref_45) 2019; 570 Owolabi (ref_34) 2019; 40 Ali (ref_41) 2018; 538 Mahmoud (ref_7) 2018; 193 Chahal (ref_56) 2015; 343 Soliman (ref_57) 2020; 111 Demir (ref_21) 2020; 45 Shamsah (ref_28) 2020; 68 Beheshti (ref_23) 2020; 512 Nangia (ref_12) 2019; 1177 Ju (ref_26) 2019; 196 Kavya (ref_55) 2020; 227 Dhatarwal (ref_38) 2021; 613 Abdelaziz (ref_11) 2011; 406 Menazea (ref_54) 2020; 9 Morsi (ref_48) 2021; 24 Choudhary (ref_58) 2018; 18 Donya (ref_49) 2020; 9 Olatunji (ref_30) 2021; 20 Olatunji (ref_19) 2021; 192 ref_37 Parsa (ref_27) 2021; 44 Saini (ref_9) 2013; 139 Chandrappa (ref_59) 2020; 109 Heiba (ref_53) 2017; 1136 Yahia (ref_47) 2019; 556 Arandhara (ref_50) 2020; 712 Ali (ref_8) 2021; 72 Zhang (ref_35) 2021; 122 Elashmawi (ref_60) 2019; 8 Balogun (ref_29) 2021; 12 Rui (ref_32) 2019; 180 Akande (ref_36) 2016; 150 Liu (ref_33) 2021; 179 |
| References_xml | – volume: 105 start-page: 109857 year: 2020 ident: ref_5 article-title: Tuning optical properties of polyvinyl alcohol doped with different metal oxide nanoparticles publication-title: Opt. Mater. doi: 10.1016/j.optmat.2020.109857 – volume: 219 start-page: 307 year: 2019 ident: ref_6 article-title: Molecular and Biomolecular Spectroscopy Optical study of a static benzoxazinone derivative doped poly (vinyl) pyrrolidone—Poly (vinyl) alcohol blend system publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2019.04.050 – ident: ref_15 doi: 10.1007/978-1-4757-2440-0 – volume: 179 start-page: 115078 year: 2021 ident: ref_33 article-title: A stock selection algorithm hybridizing grey wolf optimizer and support vector regression publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115078 – volume: 538 start-page: 160 year: 2018 ident: ref_41 article-title: Physica B: Condensed Matter Evaluation of structural and optical properties of Ce 3 þ ions doped (PVA/PVP) composite fi lms for new organic semiconductors publication-title: Phys. B Phys. Condens. Matter. doi: 10.1016/j.physb.2018.03.031 – volume: 44 start-page: 102593 year: 2021 ident: ref_27 article-title: Shear strength estimation of reinforced concrete walls using support vector regression improved by Teaching—Learning-based optimization, Particle Swarm optimization, and Harris Hawks Optimization algorithms publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2021.102593 – volume: 1189 start-page: 352 year: 2019 ident: ref_39 article-title: Structural and optical characterization of [(PVA:PVP)-Cu2+] composite films for promising semiconducting polymer devices publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2019.04.014 – volume: 694 start-page: 884 year: 2017 ident: ref_44 article-title: Visibly transparent PVA/sodium doped dysprosia (Na 2 Dy 2 O 4) nano composite films, with high refractive index: An optical study publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.10.004 – volume: 24 start-page: 17 year: 2021 ident: ref_48 article-title: Nd:YAG nanosecond laser induced growth of Au nanoparticles within CMC/PVA matrix: Multifunctional nanocomposites with tunable optical and electrical properties publication-title: Compos. Commun. doi: 10.1016/j.coco.2021.100662 – volume: 12 start-page: 101104 year: 2021 ident: ref_29 article-title: Spatial prediction of landslide susceptibility in western Serbia using hybrid support vector regression (SVR) with GWO, BAT and COA algorithms publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.10.009 – volume: 9 start-page: 9598 year: 2020 ident: ref_54 article-title: Physical characterization and antibacterial activity of PVA/Chitosan matrix doped by selenium nanoparticles prepared via one-pot laser ablation route publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2020.06.077 – volume: 556 start-page: 48 year: 2019 ident: ref_47 article-title: Multifunction applications of TiO2/poly(vinyl alcohol) nanocomposites for laser attenuation applications publication-title: Phys. B Condens. Matter. doi: 10.1016/j.physb.2018.12.031 – volume: 177 start-page: 106077 year: 2020 ident: ref_24 article-title: Accurate elemental analysis of alloy samples with high repetition rate laser-ablation spark-induced breakdown spectroscopy coupled with particle swarm optimization-extreme learning machine publication-title: Spectrochim. Acta Part B At. Spectrosc. doi: 10.1016/j.sab.2021.106077 – ident: ref_17 doi: 10.3390/sym13030411 – ident: ref_37 doi: 10.3390/polym13081316 – volume: 406 start-page: 1300 year: 2011 ident: ref_11 article-title: Cerium (III) doping effects on optical and thermal properties of PVA films publication-title: Phys. B Phys. Condens. Matter. doi: 10.1016/j.physb.2011.01.021 – volume: 590 start-page: 125423 year: 2020 ident: ref_22 article-title: Novel hybrid intelligence models for flood-susceptibility prediction: Meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125423 – volume: 68 start-page: 493 year: 2020 ident: ref_28 article-title: Newtonian mechanics based hybrid machine learning method of characterizing energy band gap of doped zno semiconductor publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2020.10.002 – volume: 192 start-page: 110392 year: 2021 ident: ref_19 article-title: Modeling superconducting transition temperature of doped MgB 2 superconductor from structural distortion and ambient temperature resistivity measurement using hybrid intelligent approach publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2021.110392 – volume: 1177 start-page: 323 year: 2019 ident: ref_12 article-title: Optical and structural properties of Se 80 Te 15 Bi 5/PVA nanocomposite films publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2018.09.080 – volume: 139 start-page: 802 year: 2013 ident: ref_9 article-title: Tailoring of electrical, optical and structural properties of PVA by addition of Ag nanoparticles publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2013.02.035 – volume: 613 start-page: 412989 year: 2021 ident: ref_38 article-title: Investigation on the optical properties of (PVP/PVA)/Al2O3 nanocomposite films for green disposable optoelectronics publication-title: Phys. B Condens. Matter. doi: 10.1016/j.physb.2021.412989 – volume: 570 start-page: 41 year: 2019 ident: ref_45 article-title: Condensed Matter Microstructure and optical properties of Ni2 + doped PVA for optoelectronic devices publication-title: Phys. B Phys. Condens. Matter. doi: 10.1016/j.physb.2019.05.050 – volume: 29 start-page: 100473 year: 2019 ident: ref_31 article-title: Urban Climate Forecasting concentrations of air pollutants using support vector regression improved with particle swarm optimization: Case study in Aburrá Valley, Colombia publication-title: Urban Clim. doi: 10.1016/j.uclim.2019.100473 – volume: 519 start-page: 1 year: 2019 ident: ref_1 article-title: Effect of Fe nanoparticles on the structure and optical properties of polyvinyl alcohol nanocomposite films publication-title: J. Non. Cryst. Solids doi: 10.1016/j.jnoncrysol.2019.05.028 – volume: 56 start-page: 167 year: 2002 ident: ref_4 article-title: Electrical and optical properties of pure and silver nitrate-doped polyvinyl alcohol films publication-title: Mat. Lett. doi: 10.1016/S0167-577X(02)00434-2 – volume: 196 start-page: 1267 year: 2019 ident: ref_26 article-title: Wind farm layout optimization based on support vector regression guided genetic algorithm with consideration of participation among landowners publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.06.082 – volume: 45 start-page: 35023 year: 2020 ident: ref_21 article-title: Comparison of support vector regression and random forest algorithms for estimating the SOFC output voltage by considering hydrogen flow rates publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2020.07.265 – volume: 712 start-page: 138317 year: 2020 ident: ref_50 article-title: Influence of thermolysis temperature on the morphology, structural and optical properties of nanocomposite ZnS-polyvinyl alcohol thin films: Fabrication and characterization of indium tin oxide/ZnS-polyvinyl alcohol/Al Schottky diode publication-title: Thin Solid Films doi: 10.1016/j.tsf.2020.138317 – volume: 512 start-page: 1503 year: 2020 ident: ref_23 article-title: A time-varying mirrored S-shaped transfer function for binary particle swarm optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.10.029 – volume: 343 start-page: 160 year: 2015 ident: ref_56 article-title: UV irradiated PVA-Ag nanocomposites for optical applications publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.03.074 – volume: 9 start-page: 9189 year: 2020 ident: ref_49 article-title: Micro-structure and optical spectroscopy of PVA/iron oxide polymer nanocomposites publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2020.06.040 – volume: 138 start-page: 434 year: 2015 ident: ref_42 article-title: Molecular and Biomolecular Spectroscopy Synthesis, characterization, optical and antimicrobial studies of polyvinyl alcohol—Silver nanocomposites publication-title: Spectrochim. ACTA PART A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2014.11.074 – volume: 111 start-page: 110600 year: 2020 ident: ref_43 article-title: Synthesis, characterizations, optical and photoluminescence properties of polymer blend PVA/PEG films doped eosin Y (EY) dye publication-title: Opt. Mater. doi: 10.1016/j.optmat.2020.110600 – volume: 180 start-page: 699 year: 2019 ident: ref_32 article-title: Journal of Petroleum Science and Engineering Total organic carbon content prediction based on support-vector-regression machine with particle swarm optimization publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2019.06.014 – volume: 193 start-page: 518 year: 2018 ident: ref_7 article-title: Molecular and Biomolecular Spectroscopy Optical properties of polyvinyl alcohol film irradiated with Nd: YAG laser publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2017.12.059 – volume: 2013 start-page: 1 year: 2013 ident: ref_46 article-title: Effect of Ag-Nanoparticles Doped in Polyvinyl Alcohol on the Structural and Optical Properties of PVA Films publication-title: J. Nanomater. doi: 10.1155/2013/897043 – volume: 134 start-page: 106600 year: 2020 ident: ref_40 article-title: A facile method to prepare g-carbon nitride/poly (vinyl alcohol) nanocomposite films with remarkable optoelectrical properties: Laser attenuation approach publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2020.106600 – ident: ref_18 doi: 10.3390/cryst11030246 – volume: 24 start-page: 100678 year: 2020 ident: ref_52 article-title: Green synthesis of different ratios from bimetallic gold: Silver nanoparticles core@shell via laser ablation scattered in Chitosan-PVA matrix and its electrical conductivity behavior publication-title: Compos. Commun. doi: 10.1016/j.coco.2021.100678 – volume: 18 start-page: 1041 year: 2018 ident: ref_58 article-title: ZnO nanoparticles dispersed PVA–PVP blend matrix based high performance flexible nanodielectrics for multifunctional microelectronic devices publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2018.05.023 – volume: 150 start-page: 43 year: 2016 ident: ref_36 article-title: A hybrid particle swarm optimization and support vector regression model for modelling permeability prediction of hydrocarbon reservoir publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2016.11.033 – volume: 97 start-page: 2969 year: 2019 ident: ref_25 article-title: Hybrid Intelligent Modelling of the Viscoelastic Moduli of Coal Fly Ash Based Polymer Gel System for Water Shutoff Treatment in Oil and Gas Wells publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.23436 – volume: 72 start-page: 270 year: 2021 ident: ref_8 article-title: Optical absorption and linear/nonlinear parameters of polyvinyl alcohol films doped by fullerene publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2021.04.022 – ident: ref_14 – volume: 40 start-page: 022803 year: 2019 ident: ref_34 article-title: Development of a particle swarm optimization based support vector regression model for titanium dioxide band gap characterization publication-title: J. Semicond. doi: 10.1088/1674-4926/40/2/022803 – volume: 8 start-page: 1944 year: 2019 ident: ref_60 article-title: Different time’s Nd:YAG laser-irradiated PVA/Ag nanocomposites: Structural, optical, and electrical characterization publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2019.01.011 – volume: 50 start-page: 1 year: 2007 ident: ref_13 article-title: Energy gap–refractive index relations in semiconductors—An overview publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2006.04.001 – volume: 227 start-page: 166008 year: 2020 ident: ref_55 article-title: Optical performance appraisal of mechanically flexible and visibly clear PVP-PVA/calcium doped zirconium oxide nanocomposites for UV shielding applications publication-title: Optik doi: 10.1016/j.ijleo.2020.166008 – volume: 111 start-page: 110648 year: 2020 ident: ref_57 article-title: The structure and optical properties of PVA-BaTiO3 nanocomposite films publication-title: Opt. Mater. doi: 10.1016/j.optmat.2020.110648 – volume: 1105 start-page: 80 year: 2016 ident: ref_51 article-title: Environmentally friendly Zn0.75Cd0.25S/PVA heterosystem nanocomposite: UV-stimulated emission and absorption spectra publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2015.10.039 – volume: 1136 start-page: 321 year: 2017 ident: ref_53 article-title: Fine-tune optical absorption and light emitting behavior of the CdS/PVA hybridized film nanocomposite publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2017.02.020 – volume: 228 start-page: 166129 year: 2020 ident: ref_3 article-title: Optical and electrical properties of SnBr 2 -doped polyvinyl alcohol (PVA) polymeric solid electrolyte for electronic and optoelectronic applications publication-title: Optik doi: 10.1016/j.ijleo.2020.166129 – volume: 11 start-page: 203 year: 2007 ident: ref_16 article-title: Support Vector Regression publication-title: Neural Inf. Process. Lett. Rev. – volume: 595 start-page: 48 year: 2015 ident: ref_2 article-title: Studies on nonlocal optical nonlinearity of Sr—CuO—polyvinyl alcohol nanocomposite thin films publication-title: Thin Solid Films doi: 10.1016/j.tsf.2015.10.039 – volume: 231 start-page: 116325 year: 2021 ident: ref_20 article-title: Prediction of the lower critical solution temperature of poly(N-isopropylacrylamide-co-methoxy triethyleneglycol acrylate) in aqueous salt solutions using support vector regression publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2020.116325 – volume: 20 start-page: 1 year: 2021 ident: ref_30 article-title: Barium Titanate Semiconductor Band Gap Characterization through Gravitationally Optimized Support Vector Regression and Extreme Learning Machine Computational Methods publication-title: Math. Probl. Eng. doi: 10.1155/2021/9978384 – volume: 109 start-page: 110204 year: 2020 ident: ref_59 article-title: Simple fabrication of PVA-ATE (Amaranthus tricolor leaves extract) polymer biocomposites: An efficient UV-Shielding material for organisms in terrestrial and aquatic ecosystems publication-title: Opt. Mater. doi: 10.1016/j.optmat.2020.110204 – volume: 140 start-page: 86 year: 2015 ident: ref_10 article-title: QSPR studies on refractive indices of structurally heterogeneous polymers publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2014.11.008 – volume: 122 start-page: 98 year: 2021 ident: ref_35 article-title: High-quality face image generation using particle swarm optimization-based generative adversarial networks publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2021.03.022 |
| SSID | ssj0000456617 |
| Score | 2.373258 |
| Snippet | We developed particle swarm optimization-based support vector regression (PSVR) and ordinary linear regression (OLR) models for estimating the refractive index... |
| SourceID | pubmedcentral proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 2697 |
| SubjectTerms | Algorithms Carbon Dysprosium Energy Energy gap Incorporation Mechanical properties Optical properties Optimization Particle swarm optimization Polymer matrix composites Polymers Polyvinyl alcohol Prediction models Refractivity Regression Regression analysis Root-mean-square errors Support vector machines |
| Title | Modeling the Optical Properties of a Polyvinyl Alcohol-Based Composite Using a Particle Swarm Optimized Support Vector Regression Algorithm |
| URI | https://www.proquest.com/docview/2565565600 https://www.proquest.com/docview/2566036062 https://pubmed.ncbi.nlm.nih.gov/PMC8402182 |
| Volume | 13 |
| WOSCitedRecordID | wos000690047900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: KB. dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7tBxK8jA2Y6DYmT0I8YebEXew8ITptArGVaMBUniLHdrdKa9K13dD4F_inuUvcbn2AFx4dn-xYd_F9Pl--A3htEy8cwgJeOKF5O3WWp_iAS4M9SeHbpr4xPT9R3a7u9dIsBNwmIa1ytifWG7WrLMXI99E1HxD4EOL96JpT1Si6XQ0lNJZhlZjK0M5XO0fd7GweZSHAgj66IdeUeL7fH1VXd8NIRgjkiejpoTO6R5iL-ZEPHM7x0_991XVYC1CTfWhsYwOWfPkMHh_OKrw9h99UCI1-R2eIAtmXUR3WZhmF58fEs8qqPjMsw6XcDso7HKkpp8s76Pkco52EMr48q9MOSDKYIfv604yH9YDDwS8UpdKhCPPZeX1FwM78RZN9W-KQF_jm08vhC_h-fPTt8CMPxRm4RUg15fitG4QmuEwd972LndapcsLowiXeKEQV3iZFrFxcGIlPpY-0UdolIpWRlUpuwkpZlf4lMGUjZyLtnBO27YzWCPFMX_VFIpzw8qAFb2daym1gLqcCGlc5nmBIqfmCUlvwZi4-aig7_ia4M9NfHr7cSX6vvBbszbtRMXSRYkpf3dQyCXp-kcQtUAumMp-QWLsXe8rBZc3ejSdqYs3f-vfk2_AkpuwZIt-Nd2BlOr7xr-CRvZ0OJuNdWFY9vRuMHVufO--wlX06zX78Afx9EeA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VFKlc-K8aWsBIwAmr3vV213uoEBSqRk3DCkpVTovXdtpIzW5I0lbhFXgXnpGZ_UmbA9x64GqPZiX7W883nvEMwEsTOmGRFvDMCsWD2Boe4wCXGmfCzAW6jJgedaNeTx0fx8kS_G7ewlBaZXMmlge1LQzdkW-iad4i8iHE29EPTl2jKLratNCoYLHvZpfosk22Ox9wf1_5_u7Hw509XncV4Aa5wJQjSDXaVFSl_L6zvlUqjqzQKrOh0xGaQ2fCzI-sn2mJo9J5SkfKhuj7e0ZGEvXeguWAwN6C5aRzkHyb3-oQQUJOUBXzlDIWm6PibDb0pIeOAxWWum78rhjtYj7mNQO3e-9_W5r7cLem0uxdhf0HsOTyh7Cy03SwewS_qNEbPbdnyHLZp1F5bc8SCj-MqY4sK_pMswSX7mKQz1BT1S6Yv0fLbhmdlJTR5liZVkGS9W_Gvlzq8bBUOBz8RFFqjYpuDDsqQyDsszupsotzVHmCKzU9HT6GrzeyFqvQyovcrQGLjGe1p6y1wgRWK4UUVvejvgiFFU5uteFNg4rU1JXZqUHIWYoeGoEoXQBRG17PxUdVSZK_CW40eEnrk2mSXoGlDS_m07gxFCjSuSvOS5kQmY0I_TZEC9Ccf5Cqki_O5IPTsjq5CsquAE_-_fHnsLJ3eNBNu53e_jrc8SlTiAoN-xvQmo7P3VO4bS6mg8n4Wf2LMfh-09D9A_ttarI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQIuvBELBYwEnIjWsdPEOSAELStWLUvEoyqn4NhOu1I3WXa3rZa_wD_i1zGTx7Z7gFsPXOPRRHI-ez57JvMBPDOh4xZpgZdZrrwgtsaL8YEnNY6EmQt0lTHd242GQ7W_Hydr8Lv9F4bKKts9sdqobWnojryHoXmTyAfnvbwpi0i2-68nPzxSkKJMayunUUNkxy1O8fg2ezXYxm_9XIj-uy9b771GYcAzyAvmHgJWY3xFt0rkzgqrVBxZrlVmQ6cjDI3OhJmIrMi0xKfS-UpHyoY8lr6RkUS_l2AdKXkgOrCeDD4k35Y3PESWkB_UjT2ljHlvUh4txr708RBBTabOB8Izdrtam3ku2PVv_M_TdBOuNxSbvanXxC1Yc8VtuLrVKtvdgV8kAEe_4TNkv-zjpLrOZwmlJabUX5aVOdMswWk8GRUL9FTLCHtvMeJbRjsoVbo5VpVbkGWz_NjnUz0dVw7Ho59oSpKpeLxhe1VqhH1yB3XVcYEuD3Cm5ofju_D1QubiHnSKsnD3gUXGt9pX1lpuAquVQmqr8yjnIbfcyc0uvGwRkpqmYzsJhxyleHIjQKUrgOrCi6X5pG5V8jfDjRY7abNjzdIz4HTh6XIYPwwlkHThyuPKJkTGw0PRhWgFpssXUrfy1ZFidFh1LVdBpRbw4N8vfwJXEK_p7mC48xCuCSogov7DYgM68-mxewSXzcl8NJs-blYbg-8Xjdw_4DNzcg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+the+Optical+Properties+of+a+Polyvinyl+Alcohol-Based+Composite+Using+a+Particle+Swarm+Optimized+Support+Vector+Regression+Algorithm&rft.jtitle=Polymers&rft.au=Owolabi%2C+Taoreed+O.&rft.au=Abd+Rahman%2C+Mohd+Amiruddin&rft.date=2021-08-12&rft.issn=2073-4360&rft.eissn=2073-4360&rft.volume=13&rft.issue=16&rft.spage=2697&rft_id=info:doi/10.3390%2Fpolym13162697&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_polym13162697 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon |