Modeling the Optical Properties of a Polyvinyl Alcohol-Based Composite Using a Particle Swarm Optimized Support Vector Regression Algorithm

We developed particle swarm optimization-based support vector regression (PSVR) and ordinary linear regression (OLR) models for estimating the refractive index (n) and energy gap (E) of a polyvinyl alcohol composite. The n-PSVR model, which can estimate the refractive index of a polyvinyl alcohol co...

Full description

Saved in:
Bibliographic Details
Published in:Polymers Vol. 13; no. 16; p. 2697
Main Authors: Owolabi, Taoreed O., Abd Rahman, Mohd Amiruddin
Format: Journal Article
Language:English
Published: Basel MDPI AG 12.08.2021
MDPI
Subjects:
ISSN:2073-4360, 2073-4360
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We developed particle swarm optimization-based support vector regression (PSVR) and ordinary linear regression (OLR) models for estimating the refractive index (n) and energy gap (E) of a polyvinyl alcohol composite. The n-PSVR model, which can estimate the refractive index of a polyvinyl alcohol composite using the energy gap as a descriptor, performed better than the n-OLR model in terms of root mean square error (RMSE) and mean absolute error (MAE) metrics. The E-PSVR model, which can predict the energy gap of a polyvinyl alcohol composite using its refractive index descriptor, outperformed the E-OLR model, which uses similar descriptor based on several performance measuring metrics. The n-PSVR and E-PSVR models were used to investigate the influences of sodium-based dysprosium oxide and benzoxazinone derivatives on the energy gaps of a polyvinyl alcohol polymer composite. The results agreed well with the measured values. The models had low mean absolute percentage errors after validation with external data. The precision demonstrated by these predictive models will enhance the tailoring of the optical properties of polyvinyl alcohol composites for the desired applications. Costs and experimental difficulties will be reduced.
AbstractList We developed particle swarm optimization-based support vector regression (PSVR) and ordinary linear regression (OLR) models for estimating the refractive index (n) and energy gap (E) of a polyvinyl alcohol composite. The n-PSVR model, which can estimate the refractive index of a polyvinyl alcohol composite using the energy gap as a descriptor, performed better than the n-OLR model in terms of root mean square error (RMSE) and mean absolute error (MAE) metrics. The E-PSVR model, which can predict the energy gap of a polyvinyl alcohol composite using its refractive index descriptor, outperformed the E-OLR model, which uses similar descriptor based on several performance measuring metrics. The n-PSVR and E-PSVR models were used to investigate the influences of sodium-based dysprosium oxide and benzoxazinone derivatives on the energy gaps of a polyvinyl alcohol polymer composite. The results agreed well with the measured values. The models had low mean absolute percentage errors after validation with external data. The precision demonstrated by these predictive models will enhance the tailoring of the optical properties of polyvinyl alcohol composites for the desired applications. Costs and experimental difficulties will be reduced.
We developed particle swarm optimization-based support vector regression (PSVR) and ordinary linear regression (OLR) models for estimating the refractive index (n) and energy gap (E) of a polyvinyl alcohol composite. The n-PSVR model, which can estimate the refractive index of a polyvinyl alcohol composite using the energy gap as a descriptor, performed better than the n-OLR model in terms of root mean square error (RMSE) and mean absolute error (MAE) metrics. The E-PSVR model, which can predict the energy gap of a polyvinyl alcohol composite using its refractive index descriptor, outperformed the E-OLR model, which uses similar descriptor based on several performance measuring metrics. The n-PSVR and E-PSVR models were used to investigate the influences of sodium-based dysprosium oxide and benzoxazinone derivatives on the energy gaps of a polyvinyl alcohol polymer composite. The results agreed well with the measured values. The models had low mean absolute percentage errors after validation with external data. The precision demonstrated by these predictive models will enhance the tailoring of the optical properties of polyvinyl alcohol composites for the desired applications. Costs and experimental difficulties will be reduced.We developed particle swarm optimization-based support vector regression (PSVR) and ordinary linear regression (OLR) models for estimating the refractive index (n) and energy gap (E) of a polyvinyl alcohol composite. The n-PSVR model, which can estimate the refractive index of a polyvinyl alcohol composite using the energy gap as a descriptor, performed better than the n-OLR model in terms of root mean square error (RMSE) and mean absolute error (MAE) metrics. The E-PSVR model, which can predict the energy gap of a polyvinyl alcohol composite using its refractive index descriptor, outperformed the E-OLR model, which uses similar descriptor based on several performance measuring metrics. The n-PSVR and E-PSVR models were used to investigate the influences of sodium-based dysprosium oxide and benzoxazinone derivatives on the energy gaps of a polyvinyl alcohol polymer composite. The results agreed well with the measured values. The models had low mean absolute percentage errors after validation with external data. The precision demonstrated by these predictive models will enhance the tailoring of the optical properties of polyvinyl alcohol composites for the desired applications. Costs and experimental difficulties will be reduced.
Author Owolabi, Taoreed O.
Abd Rahman, Mohd Amiruddin
AuthorAffiliation 1 Physics and Electronics Department, Adekunle Ajasin University, Akungba Akoko, Ondo 342111, Nigeria; taoreed.owolabi@aaua.edu.ng
2 Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
AuthorAffiliation_xml – name: 2 Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
– name: 1 Physics and Electronics Department, Adekunle Ajasin University, Akungba Akoko, Ondo 342111, Nigeria; taoreed.owolabi@aaua.edu.ng
Author_xml – sequence: 1
  givenname: Taoreed O.
  orcidid: 0000-0002-6666-1755
  surname: Owolabi
  fullname: Owolabi, Taoreed O.
– sequence: 2
  givenname: Mohd Amiruddin
  orcidid: 0000-0003-0951-9450
  surname: Abd Rahman
  fullname: Abd Rahman, Mohd Amiruddin
BookMark eNp1kVtrFDEUgINUbK199D3giy9jc5nJzLwIdfFSqLRY62vIJmd3UzJzxiRTWf-Cf9qsLdIWGgIJyXe-nJzzkuyNOAIhrzl7J2XPjicM24FLroTq22fkQLBWVrVUbO_efp8cpXTNyqgbpXj7guzLum64kO0B-fMVHQQ_rmneAD2fsrcm0IuIE8TsIVFcUUMvyjs3ftwGehIsbjBUH0wCRxc4TJh8BnqVdo5CmhJmA9DLXyYO_4SD_13Qy3maMGb6A2zGSL_BOkJKHseiXGP0eTO8Is9XJiQ4ulsPydWnj98XX6qz88-ni5Ozyspe5KoWjRGdVI3qxAqccF3Xt46ZbukUmJZzBlYtRevE0shyKoF3pu2cYr3kVrbykLy_9U7zcgBnYczRBD1FP5i41Wi8fngz-o1e443uaiZ4J4rg7Z0g4s8ZUtaDTxZCMCPgnLQodWal8mqHvnmEXuMcx_K9HdWUqRgrVHVL2YgpRVj9T4Yzveu0ftDpwstHvPXZ5FLNkq8PT0T9BR33sKg
CitedBy_id crossref_primary_10_1016_j_mtcomm_2024_110560
crossref_primary_10_1080_23311916_2023_2257955
crossref_primary_10_3390_cryst12010036
crossref_primary_10_1007_s11082_023_05048_5
crossref_primary_10_1007_s11665_025_11783_5
crossref_primary_10_1016_j_matchemphys_2022_126524
crossref_primary_10_1007_s11082_022_04510_0
crossref_primary_10_1007_s00289_025_05701_x
crossref_primary_10_1016_j_conbuildmat_2023_132179
crossref_primary_10_1080_15397734_2024_2332642
crossref_primary_10_15407_nnn_22_03_643
crossref_primary_10_1016_j_physb_2024_415900
crossref_primary_10_1080_23311916_2022_2137936
crossref_primary_10_1080_23311916_2023_2283287
Cites_doi 10.1016/j.optmat.2020.109857
10.1016/j.saa.2019.04.050
10.1007/978-1-4757-2440-0
10.1016/j.eswa.2021.115078
10.1016/j.physb.2018.03.031
10.1016/j.jobe.2021.102593
10.1016/j.molstruc.2019.04.014
10.1016/j.jallcom.2016.10.004
10.1016/j.coco.2021.100662
10.1016/j.gsf.2020.10.009
10.1016/j.jmrt.2020.06.077
10.1016/j.physb.2018.12.031
10.1016/j.sab.2021.106077
10.3390/sym13030411
10.3390/polym13081316
10.1016/j.physb.2011.01.021
10.1016/j.jhydrol.2020.125423
10.1016/j.cjph.2020.10.002
10.1016/j.commatsci.2021.110392
10.1016/j.molstruc.2018.09.080
10.1016/j.matchemphys.2013.02.035
10.1016/j.physb.2021.412989
10.1016/j.physb.2019.05.050
10.1016/j.uclim.2019.100473
10.1016/j.jnoncrysol.2019.05.028
10.1016/S0167-577X(02)00434-2
10.1016/j.enconman.2019.06.082
10.1016/j.ijhydene.2020.07.265
10.1016/j.tsf.2020.138317
10.1016/j.ins.2019.10.029
10.1016/j.apsusc.2015.03.074
10.1016/j.jmrt.2020.06.040
10.1016/j.saa.2014.11.074
10.1016/j.optmat.2020.110600
10.1016/j.petrol.2019.06.014
10.1016/j.saa.2017.12.059
10.1155/2013/897043
10.1016/j.optlastec.2020.106600
10.3390/cryst11030246
10.1016/j.coco.2021.100678
10.1016/j.cap.2018.05.023
10.1016/j.petrol.2016.11.033
10.1002/cjce.23436
10.1016/j.cjph.2021.04.022
10.1088/1674-4926/40/2/022803
10.1016/j.jmrt.2019.01.011
10.1016/j.infrared.2006.04.001
10.1016/j.ijleo.2020.166008
10.1016/j.optmat.2020.110648
10.1016/j.molstruc.2015.10.039
10.1016/j.molstruc.2017.02.020
10.1016/j.ijleo.2020.166129
10.1016/j.tsf.2015.10.039
10.1016/j.ces.2020.116325
10.1155/2021/9978384
10.1016/j.optmat.2020.110204
10.1016/j.chemolab.2014.11.008
10.1016/j.future.2021.03.022
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/polym13162697
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2073-4360
ExternalDocumentID PMC8402182
10_3390_polym13162697
GroupedDBID 53G
5VS
8FE
8FG
A8Z
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACGFO
ACIWK
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
ESX
F5P
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
ML~
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RNS
RPM
TR2
TUS
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
ESTFP
5PM
ID FETCH-LOGICAL-c392t-425a28365682fed2d8897d0a8bd6ea7110ec6b27d2ba3a8b3e18a78d60931c373
IEDL.DBID BENPR
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000690047900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-4360
IngestDate Tue Nov 04 02:00:52 EST 2025
Sun Nov 09 12:54:39 EST 2025
Sun Jul 13 03:11:10 EDT 2025
Sat Nov 29 07:15:25 EST 2025
Tue Nov 18 22:17:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-425a28365682fed2d8897d0a8bd6ea7110ec6b27d2ba3a8b3e18a78d60931c373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6666-1755
0000-0003-0951-9450
OpenAccessLink https://www.proquest.com/docview/2565565600?pq-origsite=%requestingapplication%
PMID 34451237
PQID 2565565600
PQPubID 2032345
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8402182
proquest_miscellaneous_2566036062
proquest_journals_2565565600
crossref_primary_10_3390_polym13162697
crossref_citationtrail_10_3390_polym13162697
PublicationCentury 2000
PublicationDate 20210812
PublicationDateYYYYMMDD 2021-08-12
PublicationDate_xml – month: 8
  year: 2021
  text: 20210812
  day: 12
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Polymers
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Imam (ref_51) 2016; 1105
Rashad (ref_5) 2020; 105
Adewunmi (ref_25) 2019; 97
Basak (ref_16) 2007; 11
Correa (ref_31) 2019; 29
Alibwaini (ref_43) 2020; 111
Ghanipour (ref_46) 2013; 2013
ref_14
Devi (ref_4) 2002; 56
Tamgadge (ref_2) 2015; 595
ref_18
Shilpa (ref_44) 2017; 694
Ravindra (ref_13) 2007; 50
ref_17
ref_15
Tokuyama (ref_20) 2021; 231
Ismail (ref_40) 2020; 134
Wang (ref_24) 2020; 177
Mahmoud (ref_6) 2019; 219
Soliman (ref_1) 2019; 519
Ali (ref_39) 2019; 1189
Duchowicz (ref_10) 2015; 140
Mahmoud (ref_42) 2015; 138
Awwad (ref_52) 2020; 24
Khairy (ref_3) 2020; 228
Dodangeh (ref_22) 2020; 590
Ali (ref_45) 2019; 570
Owolabi (ref_34) 2019; 40
Ali (ref_41) 2018; 538
Mahmoud (ref_7) 2018; 193
Chahal (ref_56) 2015; 343
Soliman (ref_57) 2020; 111
Demir (ref_21) 2020; 45
Shamsah (ref_28) 2020; 68
Beheshti (ref_23) 2020; 512
Nangia (ref_12) 2019; 1177
Ju (ref_26) 2019; 196
Kavya (ref_55) 2020; 227
Dhatarwal (ref_38) 2021; 613
Abdelaziz (ref_11) 2011; 406
Menazea (ref_54) 2020; 9
Morsi (ref_48) 2021; 24
Choudhary (ref_58) 2018; 18
Donya (ref_49) 2020; 9
Olatunji (ref_30) 2021; 20
Olatunji (ref_19) 2021; 192
ref_37
Parsa (ref_27) 2021; 44
Saini (ref_9) 2013; 139
Chandrappa (ref_59) 2020; 109
Heiba (ref_53) 2017; 1136
Yahia (ref_47) 2019; 556
Arandhara (ref_50) 2020; 712
Ali (ref_8) 2021; 72
Zhang (ref_35) 2021; 122
Elashmawi (ref_60) 2019; 8
Balogun (ref_29) 2021; 12
Rui (ref_32) 2019; 180
Akande (ref_36) 2016; 150
Liu (ref_33) 2021; 179
References_xml – volume: 105
  start-page: 109857
  year: 2020
  ident: ref_5
  article-title: Tuning optical properties of polyvinyl alcohol doped with different metal oxide nanoparticles
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2020.109857
– volume: 219
  start-page: 307
  year: 2019
  ident: ref_6
  article-title: Molecular and Biomolecular Spectroscopy Optical study of a static benzoxazinone derivative doped poly (vinyl) pyrrolidone—Poly (vinyl) alcohol blend system
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2019.04.050
– ident: ref_15
  doi: 10.1007/978-1-4757-2440-0
– volume: 179
  start-page: 115078
  year: 2021
  ident: ref_33
  article-title: A stock selection algorithm hybridizing grey wolf optimizer and support vector regression
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115078
– volume: 538
  start-page: 160
  year: 2018
  ident: ref_41
  article-title: Physica B: Condensed Matter Evaluation of structural and optical properties of Ce 3 þ ions doped (PVA/PVP) composite fi lms for new organic semiconductors
  publication-title: Phys. B Phys. Condens. Matter.
  doi: 10.1016/j.physb.2018.03.031
– volume: 44
  start-page: 102593
  year: 2021
  ident: ref_27
  article-title: Shear strength estimation of reinforced concrete walls using support vector regression improved by Teaching—Learning-based optimization, Particle Swarm optimization, and Harris Hawks Optimization algorithms
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2021.102593
– volume: 1189
  start-page: 352
  year: 2019
  ident: ref_39
  article-title: Structural and optical characterization of [(PVA:PVP)-Cu2+] composite films for promising semiconducting polymer devices
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2019.04.014
– volume: 694
  start-page: 884
  year: 2017
  ident: ref_44
  article-title: Visibly transparent PVA/sodium doped dysprosia (Na 2 Dy 2 O 4) nano composite films, with high refractive index: An optical study
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.10.004
– volume: 24
  start-page: 17
  year: 2021
  ident: ref_48
  article-title: Nd:YAG nanosecond laser induced growth of Au nanoparticles within CMC/PVA matrix: Multifunctional nanocomposites with tunable optical and electrical properties
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2021.100662
– volume: 12
  start-page: 101104
  year: 2021
  ident: ref_29
  article-title: Spatial prediction of landslide susceptibility in western Serbia using hybrid support vector regression (SVR) with GWO, BAT and COA algorithms
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.10.009
– volume: 9
  start-page: 9598
  year: 2020
  ident: ref_54
  article-title: Physical characterization and antibacterial activity of PVA/Chitosan matrix doped by selenium nanoparticles prepared via one-pot laser ablation route
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2020.06.077
– volume: 556
  start-page: 48
  year: 2019
  ident: ref_47
  article-title: Multifunction applications of TiO2/poly(vinyl alcohol) nanocomposites for laser attenuation applications
  publication-title: Phys. B Condens. Matter.
  doi: 10.1016/j.physb.2018.12.031
– volume: 177
  start-page: 106077
  year: 2020
  ident: ref_24
  article-title: Accurate elemental analysis of alloy samples with high repetition rate laser-ablation spark-induced breakdown spectroscopy coupled with particle swarm optimization-extreme learning machine
  publication-title: Spectrochim. Acta Part B At. Spectrosc.
  doi: 10.1016/j.sab.2021.106077
– ident: ref_17
  doi: 10.3390/sym13030411
– ident: ref_37
  doi: 10.3390/polym13081316
– volume: 406
  start-page: 1300
  year: 2011
  ident: ref_11
  article-title: Cerium (III) doping effects on optical and thermal properties of PVA films
  publication-title: Phys. B Phys. Condens. Matter.
  doi: 10.1016/j.physb.2011.01.021
– volume: 590
  start-page: 125423
  year: 2020
  ident: ref_22
  article-title: Novel hybrid intelligence models for flood-susceptibility prediction: Meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125423
– volume: 68
  start-page: 493
  year: 2020
  ident: ref_28
  article-title: Newtonian mechanics based hybrid machine learning method of characterizing energy band gap of doped zno semiconductor
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2020.10.002
– volume: 192
  start-page: 110392
  year: 2021
  ident: ref_19
  article-title: Modeling superconducting transition temperature of doped MgB 2 superconductor from structural distortion and ambient temperature resistivity measurement using hybrid intelligent approach
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2021.110392
– volume: 1177
  start-page: 323
  year: 2019
  ident: ref_12
  article-title: Optical and structural properties of Se 80 Te 15 Bi 5/PVA nanocomposite films
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2018.09.080
– volume: 139
  start-page: 802
  year: 2013
  ident: ref_9
  article-title: Tailoring of electrical, optical and structural properties of PVA by addition of Ag nanoparticles
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2013.02.035
– volume: 613
  start-page: 412989
  year: 2021
  ident: ref_38
  article-title: Investigation on the optical properties of (PVP/PVA)/Al2O3 nanocomposite films for green disposable optoelectronics
  publication-title: Phys. B Condens. Matter.
  doi: 10.1016/j.physb.2021.412989
– volume: 570
  start-page: 41
  year: 2019
  ident: ref_45
  article-title: Condensed Matter Microstructure and optical properties of Ni2 + doped PVA for optoelectronic devices
  publication-title: Phys. B Phys. Condens. Matter.
  doi: 10.1016/j.physb.2019.05.050
– volume: 29
  start-page: 100473
  year: 2019
  ident: ref_31
  article-title: Urban Climate Forecasting concentrations of air pollutants using support vector regression improved with particle swarm optimization: Case study in Aburrá Valley, Colombia
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2019.100473
– volume: 519
  start-page: 1
  year: 2019
  ident: ref_1
  article-title: Effect of Fe nanoparticles on the structure and optical properties of polyvinyl alcohol nanocomposite films
  publication-title: J. Non. Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2019.05.028
– volume: 56
  start-page: 167
  year: 2002
  ident: ref_4
  article-title: Electrical and optical properties of pure and silver nitrate-doped polyvinyl alcohol films
  publication-title: Mat. Lett.
  doi: 10.1016/S0167-577X(02)00434-2
– volume: 196
  start-page: 1267
  year: 2019
  ident: ref_26
  article-title: Wind farm layout optimization based on support vector regression guided genetic algorithm with consideration of participation among landowners
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.06.082
– volume: 45
  start-page: 35023
  year: 2020
  ident: ref_21
  article-title: Comparison of support vector regression and random forest algorithms for estimating the SOFC output voltage by considering hydrogen flow rates
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2020.07.265
– volume: 712
  start-page: 138317
  year: 2020
  ident: ref_50
  article-title: Influence of thermolysis temperature on the morphology, structural and optical properties of nanocomposite ZnS-polyvinyl alcohol thin films: Fabrication and characterization of indium tin oxide/ZnS-polyvinyl alcohol/Al Schottky diode
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2020.138317
– volume: 512
  start-page: 1503
  year: 2020
  ident: ref_23
  article-title: A time-varying mirrored S-shaped transfer function for binary particle swarm optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.10.029
– volume: 343
  start-page: 160
  year: 2015
  ident: ref_56
  article-title: UV irradiated PVA-Ag nanocomposites for optical applications
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.03.074
– volume: 9
  start-page: 9189
  year: 2020
  ident: ref_49
  article-title: Micro-structure and optical spectroscopy of PVA/iron oxide polymer nanocomposites
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2020.06.040
– volume: 138
  start-page: 434
  year: 2015
  ident: ref_42
  article-title: Molecular and Biomolecular Spectroscopy Synthesis, characterization, optical and antimicrobial studies of polyvinyl alcohol—Silver nanocomposites
  publication-title: Spectrochim. ACTA PART A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2014.11.074
– volume: 111
  start-page: 110600
  year: 2020
  ident: ref_43
  article-title: Synthesis, characterizations, optical and photoluminescence properties of polymer blend PVA/PEG films doped eosin Y (EY) dye
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2020.110600
– volume: 180
  start-page: 699
  year: 2019
  ident: ref_32
  article-title: Journal of Petroleum Science and Engineering Total organic carbon content prediction based on support-vector-regression machine with particle swarm optimization
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2019.06.014
– volume: 193
  start-page: 518
  year: 2018
  ident: ref_7
  article-title: Molecular and Biomolecular Spectroscopy Optical properties of polyvinyl alcohol film irradiated with Nd: YAG laser
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2017.12.059
– volume: 2013
  start-page: 1
  year: 2013
  ident: ref_46
  article-title: Effect of Ag-Nanoparticles Doped in Polyvinyl Alcohol on the Structural and Optical Properties of PVA Films
  publication-title: J. Nanomater.
  doi: 10.1155/2013/897043
– volume: 134
  start-page: 106600
  year: 2020
  ident: ref_40
  article-title: A facile method to prepare g-carbon nitride/poly (vinyl alcohol) nanocomposite films with remarkable optoelectrical properties: Laser attenuation approach
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2020.106600
– ident: ref_18
  doi: 10.3390/cryst11030246
– volume: 24
  start-page: 100678
  year: 2020
  ident: ref_52
  article-title: Green synthesis of different ratios from bimetallic gold: Silver nanoparticles core@shell via laser ablation scattered in Chitosan-PVA matrix and its electrical conductivity behavior
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2021.100678
– volume: 18
  start-page: 1041
  year: 2018
  ident: ref_58
  article-title: ZnO nanoparticles dispersed PVA–PVP blend matrix based high performance flexible nanodielectrics for multifunctional microelectronic devices
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2018.05.023
– volume: 150
  start-page: 43
  year: 2016
  ident: ref_36
  article-title: A hybrid particle swarm optimization and support vector regression model for modelling permeability prediction of hydrocarbon reservoir
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2016.11.033
– volume: 97
  start-page: 2969
  year: 2019
  ident: ref_25
  article-title: Hybrid Intelligent Modelling of the Viscoelastic Moduli of Coal Fly Ash Based Polymer Gel System for Water Shutoff Treatment in Oil and Gas Wells
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.23436
– volume: 72
  start-page: 270
  year: 2021
  ident: ref_8
  article-title: Optical absorption and linear/nonlinear parameters of polyvinyl alcohol films doped by fullerene
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2021.04.022
– ident: ref_14
– volume: 40
  start-page: 022803
  year: 2019
  ident: ref_34
  article-title: Development of a particle swarm optimization based support vector regression model for titanium dioxide band gap characterization
  publication-title: J. Semicond.
  doi: 10.1088/1674-4926/40/2/022803
– volume: 8
  start-page: 1944
  year: 2019
  ident: ref_60
  article-title: Different time’s Nd:YAG laser-irradiated PVA/Ag nanocomposites: Structural, optical, and electrical characterization
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2019.01.011
– volume: 50
  start-page: 1
  year: 2007
  ident: ref_13
  article-title: Energy gap–refractive index relations in semiconductors—An overview
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2006.04.001
– volume: 227
  start-page: 166008
  year: 2020
  ident: ref_55
  article-title: Optical performance appraisal of mechanically flexible and visibly clear PVP-PVA/calcium doped zirconium oxide nanocomposites for UV shielding applications
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.166008
– volume: 111
  start-page: 110648
  year: 2020
  ident: ref_57
  article-title: The structure and optical properties of PVA-BaTiO3 nanocomposite films
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2020.110648
– volume: 1105
  start-page: 80
  year: 2016
  ident: ref_51
  article-title: Environmentally friendly Zn0.75Cd0.25S/PVA heterosystem nanocomposite: UV-stimulated emission and absorption spectra
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2015.10.039
– volume: 1136
  start-page: 321
  year: 2017
  ident: ref_53
  article-title: Fine-tune optical absorption and light emitting behavior of the CdS/PVA hybridized film nanocomposite
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2017.02.020
– volume: 228
  start-page: 166129
  year: 2020
  ident: ref_3
  article-title: Optical and electrical properties of SnBr 2 -doped polyvinyl alcohol (PVA) polymeric solid electrolyte for electronic and optoelectronic applications
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.166129
– volume: 11
  start-page: 203
  year: 2007
  ident: ref_16
  article-title: Support Vector Regression
  publication-title: Neural Inf. Process. Lett. Rev.
– volume: 595
  start-page: 48
  year: 2015
  ident: ref_2
  article-title: Studies on nonlocal optical nonlinearity of Sr—CuO—polyvinyl alcohol nanocomposite thin films
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2015.10.039
– volume: 231
  start-page: 116325
  year: 2021
  ident: ref_20
  article-title: Prediction of the lower critical solution temperature of poly(N-isopropylacrylamide-co-methoxy triethyleneglycol acrylate) in aqueous salt solutions using support vector regression
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2020.116325
– volume: 20
  start-page: 1
  year: 2021
  ident: ref_30
  article-title: Barium Titanate Semiconductor Band Gap Characterization through Gravitationally Optimized Support Vector Regression and Extreme Learning Machine Computational Methods
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2021/9978384
– volume: 109
  start-page: 110204
  year: 2020
  ident: ref_59
  article-title: Simple fabrication of PVA-ATE (Amaranthus tricolor leaves extract) polymer biocomposites: An efficient UV-Shielding material for organisms in terrestrial and aquatic ecosystems
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2020.110204
– volume: 140
  start-page: 86
  year: 2015
  ident: ref_10
  article-title: QSPR studies on refractive indices of structurally heterogeneous polymers
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2014.11.008
– volume: 122
  start-page: 98
  year: 2021
  ident: ref_35
  article-title: High-quality face image generation using particle swarm optimization-based generative adversarial networks
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2021.03.022
SSID ssj0000456617
Score 2.3731694
Snippet We developed particle swarm optimization-based support vector regression (PSVR) and ordinary linear regression (OLR) models for estimating the refractive index...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2697
SubjectTerms Algorithms
Carbon
Dysprosium
Energy
Energy gap
Incorporation
Mechanical properties
Optical properties
Optimization
Particle swarm optimization
Polymer matrix composites
Polymers
Polyvinyl alcohol
Prediction models
Refractivity
Regression
Regression analysis
Root-mean-square errors
Support vector machines
Title Modeling the Optical Properties of a Polyvinyl Alcohol-Based Composite Using a Particle Swarm Optimized Support Vector Regression Algorithm
URI https://www.proquest.com/docview/2565565600
https://www.proquest.com/docview/2566036062
https://pubmed.ncbi.nlm.nih.gov/PMC8402182
Volume 13
WOSCitedRecordID wos000690047900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: KB.
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-NDwle2GAgyhgy0rQnAqnzYfdpoggEQpSIjal7ilzbKZVoUtoCYv_C_mnuErfQh_HCY5KLY-vOvp_Pl98BfOOBjqywHDUQ-l6Ic9GTqhF7NuN-B98gTvSy2IRotWS73UhcwG3k0iona2K5UJtCU4z8AF1zRODD938M7jyqGkWnq66ExhwsEFMZ2vlC87iVXE2jLARY0EdX5JoB7u8PBsXtU78e1BHIE9HTa2f0gjBn8yNfOZyTj-_t6idYcVCTHVa2sQofbL4GS0eTCm-f4R8VQqPf0RmiQHY5KMPaLKHw_JB4VlmRMcUSHMpDL3_Clqpyul4TPZ9htJJQxpdlZdoBSTozZD8f1bBfNtjv_UVRKh2KMJ_9Lo8I2JXtVtm3OTbZxZ6Pb_rrcH1y_Ovo1HPFGTyNkGrs4VxXCE1wmJJn1nAjZUMYX8mOia0SiCqsjjtcGN5RAd4NbF0qIU3sN4K6DkSwAfN5kdtNYFqHQoY81FFmwijK0GFqGSmpI6NCYWUN9iZaSrVjLqcCGrcp7mBIqemMUmvwfSo-qCg7_ie4PdFf6mbuKH1RXg12p49RMXSQonJb3JcyMXp-P-Y1EDOmMv0gsXbPPsl7NyV7N-6oiTV_6-2Pf4FlTtkzRL7Lt2F-PLy3X2FRP4x7o-EOzIm23HHGjlfnzX28Ss4ukj_PywQQzg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDmm88BtRGGAk4IloqePE7gNCMJhWbSsRDLQ9Bdd2tkprUtpuU_kX-F_4G7lzkm59gLc98NpcL5L92XdnX74P4AWPTOyk4zgDIgwErsVA6W4SuJyHA_wHcaJ7sQnZ76uDg266Ar-bb2GorbLZE_1GbUtDZ-QbGJpjSj7C8O34R0CqUXS72khoVLDYcfNzLNmmb3ofcH5fcr71cX9zO6hVBQKDucAsQJBqjKnoSvHcWW6V6kobajWwidMSw6EzyYBLywc6wl8j11FaKptg7d8xkYzQ7zVYFQT2Fqymvb30cHGqQwkS5gQVmWcUdcONcXkyH3WiDhYORCx1OfhdZLTL_ZiXAtzWrf9taG7DzTqVZu8q7N-BFVfchbXNRsHuHvwioTf63J5hlss-jf2xPUvp-mFCPLKszJlmKQ7d2bCYo6dKLjh4j5HdMtopqaPNMd9WQZb1MmNfzvVk5B2Ohj_RlKRRsYxh3_wVCPvsjqru4gJdHuFIzY5H9-HrlYzFA2gVZeEeAjNGSCW4MHFuRRznmBAYFWtlYquFdKoNrxtUZKZmZieBkJMMKzQCUbYEoja8WpiPK0qSvxmuN3jJ6p1pml2ApQ3PF49xYuiiSBeuPPU2CWY2YcLbIJeguXghsZIvPymGx56dXAmvCvDo3y9_Bmvb-3u72W6vv_MYbnDqFCKiYb4Ordnk1D2B6-ZsNpxOntZLjMH3q4buH6xfaaA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAEXnkUEChgJOLHKxt5dew8I0ZaIqBBWvFROW8f2tpGa3ZCkrcJf4B_x6zqzj7Q5wK0Hrruzs5L92fPZHs8H8JwLEzrpOPZA4HsBjkVP6TjyXMb9IX5BNdFLsQk5GKi9vThZgz_NXRhKq2zmxHKitoWhPfIOhuaQyIfvd7I6LSLZ6b2Z_PRIQYpOWhs5jQoiu25xisu32ev-Dvb1C857775uv_dqhQHPIC-YewhYjfEV3SqeOcutUrG0vlZDGzktMTQ6Ew25tHyoBT4Vrqu0VDbyY9E1Qgr0ewXWkZIHvAXrSf9j8mO5w0NkCflBVdhTiNjvTIqjxbgruriIoCJTFwPhObtdzc28EOx6t_7nZroNN2uKzd5WY-IOrLn8LlzfbpTt7sFvEoCja_gM2S_7NCm381lCxxJTqi_LioxplmAznozyBXqqZIS9LYz4ltEMSplujpXpFmRZDz_25VRPx6XD8egXmpJkKi5v2PfyaIR9dgdV1nGOLg-wpeaH4w34diltcR9aeZG7B8CMCaQKeGDCzAZhmCFRMCrUyoRWB9KpNrxqEJKaumI7CYccpbhyI0ClK4Bqw8ul-aQqVfI3w80GO2k9Y83Sc-C04dnyNXYMHSDp3BXHpU2EjMePeBvkCkyXP6Rq5atv8tFhWbVcBaVawMN___wpXEO8ph_6g91HcINTAhHVH-ab0JpPj91juGpO5qPZ9Ek92hjsXzZyzwB-D3Jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+the+Optical+Properties+of+a+Polyvinyl+Alcohol-Based+Composite+Using+a+Particle+Swarm+Optimized+Support+Vector+Regression+Algorithm&rft.jtitle=Polymers&rft.au=Owolabi%2C+Taoreed+O&rft.au=Abd+Rahman%2C+Mohd+Amiruddin&rft.date=2021-08-12&rft.pub=MDPI+AG&rft.eissn=2073-4360&rft.volume=13&rft.issue=16&rft.spage=2697&rft_id=info:doi/10.3390%2Fpolym13162697&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon