Scalable Contour Tree Computation by Data Parallel Peak Pruning

As data sets grow to exascale, automated data analysis and visualization are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make ef...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on visualization and computer graphics Ročník 27; číslo 4; s. 2437 - 2454
Hlavní autori: Carr, Hamish A., Weber, Gunther H., Sewell, Christopher M., Rubel, Oliver, Fasel, Patricia, Ahrens, James P.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1077-2626, 1941-0506, 1941-0506
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract As data sets grow to exascale, automated data analysis and visualization are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features of more than local importance. Unfortunately, the predominant algorithms for computing the contour tree are explicitly serial, and founded on serial metaphors, which has limited the scalability of this form of analysis. While there is some work on distributed contour tree computation, and separately on hybrid GPU-CPU computation, there is no efficient algorithm with strong formal guarantees on performance allied with fast practical performance. We report the first shared SMP algorithm for fully parallel contour tree computation, with formal guarantees of O(lg V lgt) parallel steps and O(V lg V) work for data with V samples and t contour tree supernodes, and implementations with more than 30× parallel speed up on both CPU using TBB and GPU using Thrust and up 70× speed up compared to the serial sweep and merge algorithm.
AbstractList As data sets grow to exascale, automated data analysis and visualization are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features of more than local importance. Unfortunately, the predominant algorithms for computing the contour tree are explicitly serial, and founded on serial metaphors, which has limited the scalability of this form of analysis. While there is some work on distributed contour tree computation, and separately on hybrid GPU-CPU computation, there is no efficient algorithm with strong formal guarantees on performance allied with fast practical performance. We report the first shared SMP algorithm for fully parallel contour tree computation, with formal guarantees of [Formula Omitted] parallel steps and [Formula Omitted] work for data with [Formula Omitted] samples and [Formula Omitted] contour tree supernodes, and implementations with more than [Formula Omitted] parallel speed up on both CPU using TBB and GPU using Thrust and up [Formula Omitted] speed up compared to the serial sweep and merge algorithm.
As data sets grow to exascale, automated data analysis and visualization are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features of more than local importance. Unfortunately, the predominant algorithms for computing the contour tree are explicitly serial, and founded on serial metaphors, which has limited the scalability of this form of analysis. While there is some work on distributed contour tree computation, and separately on hybrid GPU-CPU computation, there is no efficient algorithm with strong formal guarantees on performance allied with fast practical performance. We report the first shared SMP algorithm for fully parallel contour tree computation, with formal guarantees of O(lg V lg t) parallel steps and O(V lg V) work for data with V samples and t contour tree supernodes, and implementations with more than 30× parallel speed up on both CPU using TBB and GPU using Thrust and up 70× speed up compared to the serial sweep and merge algorithm.
As data sets grow to exascale, automated data analysis and visualization are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features of more than local importance. Unfortunately, the predominant algorithms for computing the contour tree are explicitly serial, and founded on serial metaphors, which has limited the scalability of this form of analysis. While there is some work on distributed contour tree computation, and separately on hybrid GPU-CPU computation, there is no efficient algorithm with strong formal guarantees on performance allied with fast practical performance. We report the first shared SMP algorithm for fully parallel contour tree computation, with formal guarantees of O(lg V lgt) parallel steps and O(V lg V) work for data with V samples and t contour tree supernodes, and implementations with more than 30× parallel speed up on both CPU using TBB and GPU using Thrust and up 70× speed up compared to the serial sweep and merge algorithm.
As data sets grow to exascale, automated data analysis and visualization are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features of more than local importance. Unfortunately, the predominant algorithms for computing the contour tree are explicitly serial, and founded on serial metaphors, which has limited the scalability of this form of analysis. While there is some work on distributed contour tree computation, and separately on hybrid GPU-CPU computation, there is no efficient algorithm with strong formal guarantees on performance allied with fast practical performance. We report the first shared SMP algorithm for fully parallel contour tree computation, with formal guarantees of O(lg V lg t) parallel steps and O(V lg V) work for data with V samples and t contour tree supernodes, and implementations with more than 30× parallel speed up on both CPU using TBB and GPU using Thrust and up 70× speed up compared to the serial sweep and merge algorithm.As data sets grow to exascale, automated data analysis and visualization are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features of more than local importance. Unfortunately, the predominant algorithms for computing the contour tree are explicitly serial, and founded on serial metaphors, which has limited the scalability of this form of analysis. While there is some work on distributed contour tree computation, and separately on hybrid GPU-CPU computation, there is no efficient algorithm with strong formal guarantees on performance allied with fast practical performance. We report the first shared SMP algorithm for fully parallel contour tree computation, with formal guarantees of O(lg V lg t) parallel steps and O(V lg V) work for data with V samples and t contour tree supernodes, and implementations with more than 30× parallel speed up on both CPU using TBB and GPU using Thrust and up 70× speed up compared to the serial sweep and merge algorithm.
Author Carr, Hamish A.
Weber, Gunther H.
Fasel, Patricia
Rubel, Oliver
Ahrens, James P.
Sewell, Christopher M.
Author_xml – sequence: 1
  givenname: Hamish A.
  surname: Carr
  fullname: Carr, Hamish A.
  email: H.Carr@leeds.ac.uk
  organization: University of Leeds, Leeds, United Kingdom
– sequence: 2
  givenname: Gunther H.
  orcidid: 0000-0002-1794-1398
  surname: Weber
  fullname: Weber, Gunther H.
  email: GHWeber@lbl.gov
  organization: Lawrence Berkeley National Laboratory, Computational Research Division, Berkeley, CA, USA
– sequence: 3
  givenname: Christopher M.
  surname: Sewell
  fullname: Sewell, Christopher M.
  email: csewell@lanl.gov
  organization: Los Alamos National Laboratory, Los Alamos, NM, USA
– sequence: 4
  givenname: Oliver
  surname: Rubel
  fullname: Rubel, Oliver
  email: ORuebel@lbl.gov
  organization: Lawrence Berkeley National Laboratory, Computational Research Division, Berkeley, CA, USA
– sequence: 5
  givenname: Patricia
  surname: Fasel
  fullname: Fasel, Patricia
  email: pkf@lanl.gov
  organization: Los Alamos National Laboratory, Los Alamos, NM, USA
– sequence: 6
  givenname: James P.
  surname: Ahrens
  fullname: Ahrens, James P.
  email: ahrens@lanl.gov
  organization: Los Alamos National Laboratory, Los Alamos, NM, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31689193$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtL7EAQhRtRfP8AuSABN24ydnUn_ViJjE8QHHB021Q6lUu0Jxk7ycJ_b4YZXbhwVVXwnaLqnAO23bQNMXYCfALA7cX8dXo3ERzsRNjMKFBbbB9sBinPudoee651KpRQe-yg6944hywzdpftSVDGgpX77PLZY8AiUDJtm74dYjKPtBoWy6HHvm6bpPhMrrHHZIYRQ6CQzAjfk1kcmrr5f8R2KgwdHW_qIXu5vZlP79PHp7uH6dVj6qUVfSpKoUtVGl4VQumMfKkIqSgkerAac4-kjaHC2wq88nlVlhaoKgC9JE1aHrLz9d5lbD8G6nq3qDtPIWBD7dA5IUHkuRR5NqJnv9C38a9mvM6JzGbScuBypE431FAsqHTLWC8wfrpva0ZArwEf266LVDlfrx3pI9bBAXerENwqBLcKwW1CGJXwS_m9_C_Nv7WmJqIf3hhjtdDyCxhfkY0
CODEN ITVGEA
CitedBy_id crossref_primary_10_1109_TVCG_2022_3209473
crossref_primary_10_1109_TVCG_2024_3390219
crossref_primary_10_1177_10943420241286521
crossref_primary_10_1109_TVCG_2024_3456322
crossref_primary_10_1109_TVCG_2021_3076875
crossref_primary_10_1109_TVCG_2021_3064385
crossref_primary_10_1109_TVCG_2023_3326526
crossref_primary_10_1111_cgf_14784
crossref_primary_10_1109_TVCG_2024_3456383
crossref_primary_10_1111_cgf_13985
Cites_doi 10.1007/978-3-319-04099-8_6
10.1145/2442516.2442526
10.1109/LDAV.2016.7874312
10.1109/LDAV.2013.6675155
10.1007/s00453-003-1052-3
10.1016/j.comgeo.2004.05.002
10.1145/77635.77639
10.1007/b106657_2
10.1016/j.comgeo.2006.05.009
10.1109/LDAV.2015.7348076
10.1007/BF01900830
10.1109/SC.2014.88
10.1109/SFCS.2000.892133
10.1109/HiPC.2012.6507496
10.1109/LDAV.2012.6378962
10.1109/PACIFICVIS.2015.7156387
10.1016/S0925-7721(02)00093-7
10.1109/TVCG.2013.269
10.1109/LDAV.2016.7874333
10.1109/TVCG.2006.22
10.1007/978-3-540-88606-8_5
10.4310/jdg/1214428092
10.1111/j.1467-8659.1995.cgf143_0181.x
10.1145/321879.321884
10.1109/LDAV.2017.8231846
10.1088/0067-0049/219/2/34
10.1145/37402.37422
10.1103/PhysRevLett.113.155005
10.1145/262839.269238
10.1145/383259.383282
10.1145/1377676.1377720
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TVCG.2019.2948616
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 2454
ExternalDocumentID 31689193
10_1109_TVCG_2019_2948616
8889727
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Exascale Computing Project
  grantid: 17-SC-20-SC
– fundername: Los Alamos National Laboratory
  grantid: 14-017566
  funderid: 10.13039/100008902
– fundername: U.S. Department of Energy
  grantid: DE-AC02-05CH11231
  funderid: 10.13039/100000015
– fundername: U.S. Department of Energy
  funderid: 10.13039/100000015
– fundername: National Nuclear Security Administration
  funderid: 10.13039/100006168
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
AAYXX
CITATION
5VS
AAYOK
AETIX
AGSQL
AI.
AIBXA
ALLEH
H~9
IFJZH
NPM
RIG
RNI
RZB
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c392t-2d27d6d80fb2674ecd6eaebb3ac197a5cae788ebc9f1c6c5fdd91efb1ac3e7e73
IEDL.DBID RIE
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000623420400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1077-2626
1941-0506
IngestDate Thu Oct 02 10:19:21 EDT 2025
Mon Jun 30 05:35:56 EDT 2025
Thu Apr 03 06:56:34 EDT 2025
Tue Nov 18 22:18:28 EST 2025
Sat Nov 29 06:05:42 EST 2025
Wed Aug 27 02:41:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/USG.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-2d27d6d80fb2674ecd6eaebb3ac197a5cae788ebc9f1c6c5fdd91efb1ac3e7e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1794-1398
OpenAccessLink https://www.osti.gov/biblio/1797740
PMID 31689193
PQID 2494390103
PQPubID 75741
PageCount 18
ParticipantIDs proquest_journals_2494390103
crossref_citationtrail_10_1109_TVCG_2019_2948616
ieee_primary_8889727
crossref_primary_10_1109_TVCG_2019_2948616
pubmed_primary_31689193
proquest_miscellaneous_2312553254
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
pascucci (ref31) 2003; 38
ref37
ref15
ref36
ref14
ref30
jájá (ref23) 1992
ref32
reeb (ref34) 1946; 222
ref10
lo (ref25) 2012
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
carr (ref4) 2004
ref24
ref26
ref20
ref41
ref21
ref28
ref27
carr (ref7) 2015
ref29
patchett (ref33) 2017
van kreveld (ref40) 2004
ref8
blelloch (ref3) 1990
ref9
ref6
ref5
carr (ref11) 0
hristov (ref22) 0
References_xml – ident: ref30
  doi: 10.1007/978-3-319-04099-8_6
– ident: ref29
  doi: 10.1145/2442516.2442526
– ident: ref12
  doi: 10.1109/LDAV.2016.7874312
– ident: ref36
  doi: 10.1109/LDAV.2013.6675155
– start-page: 11
  year: 2012
  ident: ref25
  article-title: PISTON: A portable cross-platform framework for data-parallel visualization operators
  publication-title: Proc Eurographics Symp Parallel Graph Vis
– year: 1992
  ident: ref23
  publication-title: An Introduction to Parallel Algorithms
– start-page: 71
  year: 2004
  ident: ref40
  publication-title: Efficient contour tree and minimum seed set construction
– volume: 38
  start-page: 249
  year: 2003
  ident: ref31
  article-title: Parallel computation of the topology of level sets
  publication-title: Algorithmica
  doi: 10.1007/s00453-003-1052-3
– year: 2017
  ident: ref33
  article-title: Deep water impact ensemble data set
– ident: ref13
  doi: 10.1016/j.comgeo.2004.05.002
– ident: ref16
  doi: 10.1145/77635.77639
– ident: ref32
  doi: 10.1007/b106657_2
– ident: ref10
  doi: 10.1016/j.comgeo.2006.05.009
– ident: ref35
  doi: 10.1109/LDAV.2015.7348076
– ident: ref28
  doi: 10.1007/BF01900830
– ident: ref24
  doi: 10.1109/SC.2014.88
– ident: ref15
  doi: 10.1109/SFCS.2000.892133
– ident: ref27
  doi: 10.1109/HiPC.2012.6507496
– ident: ref41
  doi: 10.1109/LDAV.2012.6378962
– ident: ref1
  doi: 10.1109/PACIFICVIS.2015.7156387
– ident: ref9
  doi: 10.1016/S0925-7721(02)00093-7
– ident: ref5
  doi: 10.1109/TVCG.2013.269
– ident: ref17
  doi: 10.1109/LDAV.2016.7874333
– ident: ref6
  doi: 10.1109/TVCG.2006.22
– ident: ref8
  doi: 10.1007/978-3-540-88606-8_5
– year: 1990
  ident: ref3
  publication-title: Vector Models for Data-Parallel Computing
– ident: ref2
  doi: 10.4310/jdg/1214428092
– ident: ref37
  doi: 10.1111/j.1467-8659.1995.cgf143_0181.x
– year: 2015
  ident: ref7
  article-title: Hybrid data-parallel contour tree computation
– ident: ref38
  doi: 10.1145/321879.321884
– ident: ref18
  doi: 10.1109/LDAV.2017.8231846
– ident: ref20
  doi: 10.1088/0067-0049/219/2/34
– ident: ref26
  doi: 10.1145/37402.37422
– ident: ref19
  doi: 10.1103/PhysRevLett.113.155005
– year: 2004
  ident: ref4
  article-title: Topological manipulation of Isosurfaces
– year: 0
  ident: ref22
  article-title: W-structures in contour trees
– ident: ref39
  doi: 10.1145/262839.269238
– ident: ref21
  doi: 10.1145/383259.383282
– ident: ref14
  doi: 10.1145/1377676.1377720
– volume: 222
  start-page: 847
  year: 1946
  ident: ref34
  article-title: Sur les points singuliers d'une forme de Pfaff complètement intégrable ou d'une fonction numérique
  publication-title: Comptes Rendus de l'Acadèmie des Sciences de Paris
– year: 0
  ident: ref11
  article-title: Pathological and test cases for Reeb analysis
  publication-title: Topological Methods Data Anal Visualization V Theory Algorithms Appl
SSID ssj0014489
Score 2.4262054
Snippet As data sets grow to exascale, automated data analysis and visualization are increasingly important, to intermediate human understanding and to reduce demands...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2437
SubjectTerms Algorithms
Central processing units
computational geometry and object modeling
Computational modeling
computer graphics
Computer networks
contour tree
Contours
CPUs
curve
Data analysis
Data models
data parallel algorithms
Graphics processing units
Isosurfaces
merge tree
Metaphor
Parallel processing
simulation and modeling
simulation output analysis
solid and object representations
surface
System effectiveness
Topological analysis
Vegetation
Title Scalable Contour Tree Computation by Data Parallel Peak Pruning
URI https://ieeexplore.ieee.org/document/8889727
https://www.ncbi.nlm.nih.gov/pubmed/31689193
https://www.proquest.com/docview/2494390103
https://www.proquest.com/docview/2312553254
Volume 27
WOSCitedRecordID wos000623420400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1941-0506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014489
  issn: 1077-2626
  databaseCode: RIE
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B6oEegEILKQ-5Uk-ogcRO4vUR8eoJ7WGp9hb5MZFQ0S4Ku5X67zvjZCMOUIlbHrYTzTe2v_GMPQDfSS_ITDaEQKGytJDeplbaPK0CGwOaCErjYrIJfXc3mk7NeA1-DHthEDEGn-EZX0Zffpj7JS-VnZO1Zmi-XYd1ratur9bgMaCWTRdfqFNJLL33YOaZOZ_8urzlIC5zJk0xqnJOW8T5mkx0N7-YjmJ-lbepZpxybrbf97M7sNVTS3HR6cInWMPZLnx8ceDgHlFzgoQ3Swk-lYoqiEmLfMOpHSJGwv0VV3Zhxdi2nGblUdCg-VuM2yUvoHyG-5vryeXPtE-hkHoiPotUBqlDFUYkcVnpAn2o0KJzyvrcaFt6i2QDo_OmyX3lyyYEk2PjcusVatTqC2zM5jM8AEG9u9FlMMo1svDoaGBUxD6Mo2e-zEIC2UqSte_PF-c0F491tDMyUzMONeNQ9zgkcDpUeeoO1_hf4T0W8lCwl28CRyu46r77PddkUxa8mJOpBL4Nr6njsDfEznC-pDKKuF2pyEBOYL-DeWh7pR1fX__mIWxKDm2JATxHsLFol3gMH_yfxcNze0LaOR2dRO38Bzk53d8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VFgk4tEALhLZgJE6ItImdxOtj1QdFlNUeFtRb5MdEqlrtonQXiX_PjJONeoBKveVhO9GMH994xvMBfKR-QWayIQ0UKksL6W1qpc3TKrAxoAmgNC6STejxeHR5aSZr8Hk4C4OIMfgMD_gy-vLD3C95q-yQrDVD6-0j2GDmrLI7rTX4DKht00UY6lQSTu99mHlmDqc_j79wGJc5kKYYVTkTFzFjk4kO5zsLUmRY-T_YjIvO2dbDfvc5bPbgUhx1veEFrOHsJTy7k3Jwm8A5KYWPSwnOS0UVxLRFvmFyh6gl4f6IE7uwYmJbJlq5ETRtXotJu-QtlB34cXY6PT5PexKF1BP0WaQySB2qMCKZy0oX6EOFFp1T1udG29JbJCsYnTdN7itfNiGYHBuXW69Qo1avYH02n-EbEDS-G10Go1wjC4-OpkZF-MM4eubLLCSQrSRZ-z7DOBNd3NTR0shMzXqoWQ91r4cEPg1VfnXpNe4rvM1CHgr28k1gb6Wuuh-AtzVZlQVv52QqgQ_Daxo67A-xM5wvqYwidFcqMpETeN2peWh71Tve_vub7-HJ-fT7RX3xdfxtF55KDnSJ4Tx7sL5ol7gPj_3vxdVt-y720b-6B-BC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Contour+Tree+Computation+by+Data+Parallel+Peak+Pruning&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Carr%2C+Hamish+A&rft.au=Weber%2C+Gunther+H&rft.au=Sewell%2C+Christopher+M&rft.au=Rubel%2C+Oliver&rft.date=2021-04-01&rft.eissn=1941-0506&rft.volume=27&rft.issue=4&rft.spage=2437&rft_id=info:doi/10.1109%2FTVCG.2019.2948616&rft_id=info%3Apmid%2F31689193&rft.externalDocID=31689193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon