Scalable Contour Tree Computation by Data Parallel Peak Pruning
As data sets grow to exascale, automated data analysis and visualization are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make ef...
Uložené v:
| Vydané v: | IEEE transactions on visualization and computer graphics Ročník 27; číslo 4; s. 2437 - 2454 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1077-2626, 1941-0506, 1941-0506 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | As data sets grow to exascale, automated data analysis and visualization are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features of more than local importance. Unfortunately, the predominant algorithms for computing the contour tree are explicitly serial, and founded on serial metaphors, which has limited the scalability of this form of analysis. While there is some work on distributed contour tree computation, and separately on hybrid GPU-CPU computation, there is no efficient algorithm with strong formal guarantees on performance allied with fast practical performance. We report the first shared SMP algorithm for fully parallel contour tree computation, with formal guarantees of O(lg V lgt) parallel steps and O(V lg V) work for data with V samples and t contour tree supernodes, and implementations with more than 30× parallel speed up on both CPU using TBB and GPU using Thrust and up 70× speed up compared to the serial sweep and merge algorithm. |
|---|---|
| AbstractList | As data sets grow to exascale, automated data analysis and visualization are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features of more than local importance. Unfortunately, the predominant algorithms for computing the contour tree are explicitly serial, and founded on serial metaphors, which has limited the scalability of this form of analysis. While there is some work on distributed contour tree computation, and separately on hybrid GPU-CPU computation, there is no efficient algorithm with strong formal guarantees on performance allied with fast practical performance. We report the first shared SMP algorithm for fully parallel contour tree computation, with formal guarantees of [Formula Omitted] parallel steps and [Formula Omitted] work for data with [Formula Omitted] samples and [Formula Omitted] contour tree supernodes, and implementations with more than [Formula Omitted] parallel speed up on both CPU using TBB and GPU using Thrust and up [Formula Omitted] speed up compared to the serial sweep and merge algorithm. As data sets grow to exascale, automated data analysis and visualization are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features of more than local importance. Unfortunately, the predominant algorithms for computing the contour tree are explicitly serial, and founded on serial metaphors, which has limited the scalability of this form of analysis. While there is some work on distributed contour tree computation, and separately on hybrid GPU-CPU computation, there is no efficient algorithm with strong formal guarantees on performance allied with fast practical performance. We report the first shared SMP algorithm for fully parallel contour tree computation, with formal guarantees of O(lg V lg t) parallel steps and O(V lg V) work for data with V samples and t contour tree supernodes, and implementations with more than 30× parallel speed up on both CPU using TBB and GPU using Thrust and up 70× speed up compared to the serial sweep and merge algorithm. As data sets grow to exascale, automated data analysis and visualization are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features of more than local importance. Unfortunately, the predominant algorithms for computing the contour tree are explicitly serial, and founded on serial metaphors, which has limited the scalability of this form of analysis. While there is some work on distributed contour tree computation, and separately on hybrid GPU-CPU computation, there is no efficient algorithm with strong formal guarantees on performance allied with fast practical performance. We report the first shared SMP algorithm for fully parallel contour tree computation, with formal guarantees of O(lg V lgt) parallel steps and O(V lg V) work for data with V samples and t contour tree supernodes, and implementations with more than 30× parallel speed up on both CPU using TBB and GPU using Thrust and up 70× speed up compared to the serial sweep and merge algorithm. As data sets grow to exascale, automated data analysis and visualization are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features of more than local importance. Unfortunately, the predominant algorithms for computing the contour tree are explicitly serial, and founded on serial metaphors, which has limited the scalability of this form of analysis. While there is some work on distributed contour tree computation, and separately on hybrid GPU-CPU computation, there is no efficient algorithm with strong formal guarantees on performance allied with fast practical performance. We report the first shared SMP algorithm for fully parallel contour tree computation, with formal guarantees of O(lg V lg t) parallel steps and O(V lg V) work for data with V samples and t contour tree supernodes, and implementations with more than 30× parallel speed up on both CPU using TBB and GPU using Thrust and up 70× speed up compared to the serial sweep and merge algorithm.As data sets grow to exascale, automated data analysis and visualization are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features of more than local importance. Unfortunately, the predominant algorithms for computing the contour tree are explicitly serial, and founded on serial metaphors, which has limited the scalability of this form of analysis. While there is some work on distributed contour tree computation, and separately on hybrid GPU-CPU computation, there is no efficient algorithm with strong formal guarantees on performance allied with fast practical performance. We report the first shared SMP algorithm for fully parallel contour tree computation, with formal guarantees of O(lg V lg t) parallel steps and O(V lg V) work for data with V samples and t contour tree supernodes, and implementations with more than 30× parallel speed up on both CPU using TBB and GPU using Thrust and up 70× speed up compared to the serial sweep and merge algorithm. |
| Author | Carr, Hamish A. Weber, Gunther H. Fasel, Patricia Rubel, Oliver Ahrens, James P. Sewell, Christopher M. |
| Author_xml | – sequence: 1 givenname: Hamish A. surname: Carr fullname: Carr, Hamish A. email: H.Carr@leeds.ac.uk organization: University of Leeds, Leeds, United Kingdom – sequence: 2 givenname: Gunther H. orcidid: 0000-0002-1794-1398 surname: Weber fullname: Weber, Gunther H. email: GHWeber@lbl.gov organization: Lawrence Berkeley National Laboratory, Computational Research Division, Berkeley, CA, USA – sequence: 3 givenname: Christopher M. surname: Sewell fullname: Sewell, Christopher M. email: csewell@lanl.gov organization: Los Alamos National Laboratory, Los Alamos, NM, USA – sequence: 4 givenname: Oliver surname: Rubel fullname: Rubel, Oliver email: ORuebel@lbl.gov organization: Lawrence Berkeley National Laboratory, Computational Research Division, Berkeley, CA, USA – sequence: 5 givenname: Patricia surname: Fasel fullname: Fasel, Patricia email: pkf@lanl.gov organization: Los Alamos National Laboratory, Los Alamos, NM, USA – sequence: 6 givenname: James P. surname: Ahrens fullname: Ahrens, James P. email: ahrens@lanl.gov organization: Los Alamos National Laboratory, Los Alamos, NM, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31689193$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtL7EAQhRtRfP8AuSABN24ydnUn_ViJjE8QHHB021Q6lUu0Jxk7ycJ_b4YZXbhwVVXwnaLqnAO23bQNMXYCfALA7cX8dXo3ERzsRNjMKFBbbB9sBinPudoee651KpRQe-yg6944hywzdpftSVDGgpX77PLZY8AiUDJtm74dYjKPtBoWy6HHvm6bpPhMrrHHZIYRQ6CQzAjfk1kcmrr5f8R2KgwdHW_qIXu5vZlP79PHp7uH6dVj6qUVfSpKoUtVGl4VQumMfKkIqSgkerAac4-kjaHC2wq88nlVlhaoKgC9JE1aHrLz9d5lbD8G6nq3qDtPIWBD7dA5IUHkuRR5NqJnv9C38a9mvM6JzGbScuBypE431FAsqHTLWC8wfrpva0ZArwEf266LVDlfrx3pI9bBAXerENwqBLcKwW1CGJXwS_m9_C_Nv7WmJqIf3hhjtdDyCxhfkY0 |
| CODEN | ITVGEA |
| CitedBy_id | crossref_primary_10_1109_TVCG_2022_3209473 crossref_primary_10_1109_TVCG_2024_3390219 crossref_primary_10_1177_10943420241286521 crossref_primary_10_1109_TVCG_2024_3456322 crossref_primary_10_1109_TVCG_2021_3076875 crossref_primary_10_1109_TVCG_2021_3064385 crossref_primary_10_1109_TVCG_2023_3326526 crossref_primary_10_1111_cgf_14784 crossref_primary_10_1109_TVCG_2024_3456383 crossref_primary_10_1111_cgf_13985 |
| Cites_doi | 10.1007/978-3-319-04099-8_6 10.1145/2442516.2442526 10.1109/LDAV.2016.7874312 10.1109/LDAV.2013.6675155 10.1007/s00453-003-1052-3 10.1016/j.comgeo.2004.05.002 10.1145/77635.77639 10.1007/b106657_2 10.1016/j.comgeo.2006.05.009 10.1109/LDAV.2015.7348076 10.1007/BF01900830 10.1109/SC.2014.88 10.1109/SFCS.2000.892133 10.1109/HiPC.2012.6507496 10.1109/LDAV.2012.6378962 10.1109/PACIFICVIS.2015.7156387 10.1016/S0925-7721(02)00093-7 10.1109/TVCG.2013.269 10.1109/LDAV.2016.7874333 10.1109/TVCG.2006.22 10.1007/978-3-540-88606-8_5 10.4310/jdg/1214428092 10.1111/j.1467-8659.1995.cgf143_0181.x 10.1145/321879.321884 10.1109/LDAV.2017.8231846 10.1088/0067-0049/219/2/34 10.1145/37402.37422 10.1103/PhysRevLett.113.155005 10.1145/262839.269238 10.1145/383259.383282 10.1145/1377676.1377720 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TVCG.2019.2948616 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0506 |
| EndPage | 2454 |
| ExternalDocumentID | 31689193 10_1109_TVCG_2019_2948616 8889727 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Exascale Computing Project grantid: 17-SC-20-SC – fundername: Los Alamos National Laboratory grantid: 14-017566 funderid: 10.13039/100008902 – fundername: U.S. Department of Energy grantid: DE-AC02-05CH11231 funderid: 10.13039/100000015 – fundername: U.S. Department of Energy funderid: 10.13039/100000015 – fundername: National Nuclear Security Administration funderid: 10.13039/100006168 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 AAYXX CITATION 5VS AAYOK AETIX AGSQL AI. AIBXA ALLEH H~9 IFJZH NPM RIG RNI RZB VH1 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c392t-2d27d6d80fb2674ecd6eaebb3ac197a5cae788ebc9f1c6c5fdd91efb1ac3e7e73 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000623420400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1077-2626 1941-0506 |
| IngestDate | Thu Oct 02 10:19:21 EDT 2025 Mon Jun 30 05:35:56 EDT 2025 Thu Apr 03 06:56:34 EDT 2025 Tue Nov 18 22:18:28 EST 2025 Sat Nov 29 06:05:42 EST 2025 Wed Aug 27 02:41:17 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/USG.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c392t-2d27d6d80fb2674ecd6eaebb3ac197a5cae788ebc9f1c6c5fdd91efb1ac3e7e73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1794-1398 |
| OpenAccessLink | https://www.osti.gov/biblio/1797740 |
| PMID | 31689193 |
| PQID | 2494390103 |
| PQPubID | 75741 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2494390103 crossref_citationtrail_10_1109_TVCG_2019_2948616 ieee_primary_8889727 crossref_primary_10_1109_TVCG_2019_2948616 pubmed_primary_31689193 proquest_miscellaneous_2312553254 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-01 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on visualization and computer graphics |
| PublicationTitleAbbrev | TVCG |
| PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref12 pascucci (ref31) 2003; 38 ref37 ref15 ref36 ref14 ref30 jájá (ref23) 1992 ref32 reeb (ref34) 1946; 222 ref10 lo (ref25) 2012 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 carr (ref4) 2004 ref24 ref26 ref20 ref41 ref21 ref28 ref27 carr (ref7) 2015 ref29 patchett (ref33) 2017 van kreveld (ref40) 2004 ref8 blelloch (ref3) 1990 ref9 ref6 ref5 carr (ref11) 0 hristov (ref22) 0 |
| References_xml | – ident: ref30 doi: 10.1007/978-3-319-04099-8_6 – ident: ref29 doi: 10.1145/2442516.2442526 – ident: ref12 doi: 10.1109/LDAV.2016.7874312 – ident: ref36 doi: 10.1109/LDAV.2013.6675155 – start-page: 11 year: 2012 ident: ref25 article-title: PISTON: A portable cross-platform framework for data-parallel visualization operators publication-title: Proc Eurographics Symp Parallel Graph Vis – year: 1992 ident: ref23 publication-title: An Introduction to Parallel Algorithms – start-page: 71 year: 2004 ident: ref40 publication-title: Efficient contour tree and minimum seed set construction – volume: 38 start-page: 249 year: 2003 ident: ref31 article-title: Parallel computation of the topology of level sets publication-title: Algorithmica doi: 10.1007/s00453-003-1052-3 – year: 2017 ident: ref33 article-title: Deep water impact ensemble data set – ident: ref13 doi: 10.1016/j.comgeo.2004.05.002 – ident: ref16 doi: 10.1145/77635.77639 – ident: ref32 doi: 10.1007/b106657_2 – ident: ref10 doi: 10.1016/j.comgeo.2006.05.009 – ident: ref35 doi: 10.1109/LDAV.2015.7348076 – ident: ref28 doi: 10.1007/BF01900830 – ident: ref24 doi: 10.1109/SC.2014.88 – ident: ref15 doi: 10.1109/SFCS.2000.892133 – ident: ref27 doi: 10.1109/HiPC.2012.6507496 – ident: ref41 doi: 10.1109/LDAV.2012.6378962 – ident: ref1 doi: 10.1109/PACIFICVIS.2015.7156387 – ident: ref9 doi: 10.1016/S0925-7721(02)00093-7 – ident: ref5 doi: 10.1109/TVCG.2013.269 – ident: ref17 doi: 10.1109/LDAV.2016.7874333 – ident: ref6 doi: 10.1109/TVCG.2006.22 – ident: ref8 doi: 10.1007/978-3-540-88606-8_5 – year: 1990 ident: ref3 publication-title: Vector Models for Data-Parallel Computing – ident: ref2 doi: 10.4310/jdg/1214428092 – ident: ref37 doi: 10.1111/j.1467-8659.1995.cgf143_0181.x – year: 2015 ident: ref7 article-title: Hybrid data-parallel contour tree computation – ident: ref38 doi: 10.1145/321879.321884 – ident: ref18 doi: 10.1109/LDAV.2017.8231846 – ident: ref20 doi: 10.1088/0067-0049/219/2/34 – ident: ref26 doi: 10.1145/37402.37422 – ident: ref19 doi: 10.1103/PhysRevLett.113.155005 – year: 2004 ident: ref4 article-title: Topological manipulation of Isosurfaces – year: 0 ident: ref22 article-title: W-structures in contour trees – ident: ref39 doi: 10.1145/262839.269238 – ident: ref21 doi: 10.1145/383259.383282 – ident: ref14 doi: 10.1145/1377676.1377720 – volume: 222 start-page: 847 year: 1946 ident: ref34 article-title: Sur les points singuliers d'une forme de Pfaff complètement intégrable ou d'une fonction numérique publication-title: Comptes Rendus de l'Acadèmie des Sciences de Paris – year: 0 ident: ref11 article-title: Pathological and test cases for Reeb analysis publication-title: Topological Methods Data Anal Visualization V Theory Algorithms Appl |
| SSID | ssj0014489 |
| Score | 2.4262054 |
| Snippet | As data sets grow to exascale, automated data analysis and visualization are increasingly important, to intermediate human understanding and to reduce demands... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2437 |
| SubjectTerms | Algorithms Central processing units computational geometry and object modeling Computational modeling computer graphics Computer networks contour tree Contours CPUs curve Data analysis Data models data parallel algorithms Graphics processing units Isosurfaces merge tree Metaphor Parallel processing simulation and modeling simulation output analysis solid and object representations surface System effectiveness Topological analysis Vegetation |
| Title | Scalable Contour Tree Computation by Data Parallel Peak Pruning |
| URI | https://ieeexplore.ieee.org/document/8889727 https://www.ncbi.nlm.nih.gov/pubmed/31689193 https://www.proquest.com/docview/2494390103 https://www.proquest.com/docview/2312553254 |
| Volume | 27 |
| WOSCitedRecordID | wos000623420400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1941-0506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014489 issn: 1077-2626 databaseCode: RIE dateStart: 19950101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B6oEegEILKQ-5Uk-ogcRO4vUR8eoJ7WGp9hb5MZFQ0S4Ku5X67zvjZCMOUIlbHrYTzTe2v_GMPQDfSS_ITDaEQKGytJDeplbaPK0CGwOaCErjYrIJfXc3mk7NeA1-DHthEDEGn-EZX0Zffpj7JS-VnZO1Zmi-XYd1ratur9bgMaCWTRdfqFNJLL33YOaZOZ_8urzlIC5zJk0xqnJOW8T5mkx0N7-YjmJ-lbepZpxybrbf97M7sNVTS3HR6cInWMPZLnx8ceDgHlFzgoQ3Swk-lYoqiEmLfMOpHSJGwv0VV3Zhxdi2nGblUdCg-VuM2yUvoHyG-5vryeXPtE-hkHoiPotUBqlDFUYkcVnpAn2o0KJzyvrcaFt6i2QDo_OmyX3lyyYEk2PjcusVatTqC2zM5jM8AEG9u9FlMMo1svDoaGBUxD6Mo2e-zEIC2UqSte_PF-c0F491tDMyUzMONeNQ9zgkcDpUeeoO1_hf4T0W8lCwl28CRyu46r77PddkUxa8mJOpBL4Nr6njsDfEznC-pDKKuF2pyEBOYL-DeWh7pR1fX__mIWxKDm2JATxHsLFol3gMH_yfxcNze0LaOR2dRO38Bzk53d8 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VFgk4tEALhLZgJE6ItImdxOtj1QdFlNUeFtRb5MdEqlrtonQXiX_PjJONeoBKveVhO9GMH994xvMBfKR-QWayIQ0UKksL6W1qpc3TKrAxoAmgNC6STejxeHR5aSZr8Hk4C4OIMfgMD_gy-vLD3C95q-yQrDVD6-0j2GDmrLI7rTX4DKht00UY6lQSTu99mHlmDqc_j79wGJc5kKYYVTkTFzFjk4kO5zsLUmRY-T_YjIvO2dbDfvc5bPbgUhx1veEFrOHsJTy7k3Jwm8A5KYWPSwnOS0UVxLRFvmFyh6gl4f6IE7uwYmJbJlq5ETRtXotJu-QtlB34cXY6PT5PexKF1BP0WaQySB2qMCKZy0oX6EOFFp1T1udG29JbJCsYnTdN7itfNiGYHBuXW69Qo1avYH02n-EbEDS-G10Go1wjC4-OpkZF-MM4eubLLCSQrSRZ-z7DOBNd3NTR0shMzXqoWQ91r4cEPg1VfnXpNe4rvM1CHgr28k1gb6Wuuh-AtzVZlQVv52QqgQ_Daxo67A-xM5wvqYwidFcqMpETeN2peWh71Tve_vub7-HJ-fT7RX3xdfxtF55KDnSJ4Tx7sL5ol7gPj_3vxdVt-y720b-6B-BC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Contour+Tree+Computation+by+Data+Parallel+Peak+Pruning&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Carr%2C+Hamish+A&rft.au=Weber%2C+Gunther+H&rft.au=Sewell%2C+Christopher+M&rft.au=Rubel%2C+Oliver&rft.date=2021-04-01&rft.eissn=1941-0506&rft.volume=27&rft.issue=4&rft.spage=2437&rft_id=info:doi/10.1109%2FTVCG.2019.2948616&rft_id=info%3Apmid%2F31689193&rft.externalDocID=31689193 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |