Centralized Charging Strategy and Scheduling Algorithm for Electric Vehicles Under a Battery Swapping Scenario
Centralized charging of electric vehicles (EVs) based on battery swapping is a promising strategy for their large-scale utilization in power systems. The most outstanding feature of this strategy is that EV batteries can be replaced within a short time and can be charged during off-peak periods or o...
Uloženo v:
| Vydáno v: | IEEE transactions on intelligent transportation systems Ročník 17; číslo 3; s. 659 - 669 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.03.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1524-9050, 1558-0016 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Centralized charging of electric vehicles (EVs) based on battery swapping is a promising strategy for their large-scale utilization in power systems. The most outstanding feature of this strategy is that EV batteries can be replaced within a short time and can be charged during off-peak periods or on low electric price and scheduled in any battery swap station. This paper proposes a novel centralized charging strategy of EVs under the battery swapping scenario by considering optimal charging priority and charging location (station or bus node in a power system) based on spot electric price. In this strategy, a population-based heuristic approach is designed to minimize total charging cost, as well as to reduce power loss and voltage deviation of power networks. We introduce a dynamic crossover and adaptive mutation strategy into a hybrid algorithm of particle swarm optimization and genetic algorithm. The resulting algorithm and several others are executed on an IEEE 30-bus test system, and the results suggest that the proposed one is effective and promising for optimal EV centralized charging. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1524-9050 1558-0016 |
| DOI: | 10.1109/TITS.2015.2487323 |