Centralized Charging Strategy and Scheduling Algorithm for Electric Vehicles Under a Battery Swapping Scenario
Centralized charging of electric vehicles (EVs) based on battery swapping is a promising strategy for their large-scale utilization in power systems. The most outstanding feature of this strategy is that EV batteries can be replaced within a short time and can be charged during off-peak periods or o...
Saved in:
| Published in: | IEEE transactions on intelligent transportation systems Vol. 17; no. 3; pp. 659 - 669 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.03.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1524-9050, 1558-0016 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Centralized charging of electric vehicles (EVs) based on battery swapping is a promising strategy for their large-scale utilization in power systems. The most outstanding feature of this strategy is that EV batteries can be replaced within a short time and can be charged during off-peak periods or on low electric price and scheduled in any battery swap station. This paper proposes a novel centralized charging strategy of EVs under the battery swapping scenario by considering optimal charging priority and charging location (station or bus node in a power system) based on spot electric price. In this strategy, a population-based heuristic approach is designed to minimize total charging cost, as well as to reduce power loss and voltage deviation of power networks. We introduce a dynamic crossover and adaptive mutation strategy into a hybrid algorithm of particle swarm optimization and genetic algorithm. The resulting algorithm and several others are executed on an IEEE 30-bus test system, and the results suggest that the proposed one is effective and promising for optimal EV centralized charging. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1524-9050 1558-0016 |
| DOI: | 10.1109/TITS.2015.2487323 |