MSz: An Efficient Parallel Algorithm for Correcting Morse-Smale Segmentations in Error-Bounded Lossy Compressors

This research explores a novel paradigm for preserving topological segmentations in existing error-bounded lossy compressors. Today's lossy compressors rarely consider preserving topologies such as Morse-Smale complexes, and the discrepancies in topology between original and decompressed datase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics Jg. 31; H. 1; S. 130 - 140
Hauptverfasser: Li, Yuxiao, Liang, Xin, Wang, Bei, Qiu, Yongfeng, Yan, Lin, Guo, Hanqi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.01.2025
Schlagworte:
ISSN:1077-2626, 1941-0506, 1941-0506
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This research explores a novel paradigm for preserving topological segmentations in existing error-bounded lossy compressors. Today's lossy compressors rarely consider preserving topologies such as Morse-Smale complexes, and the discrepancies in topology between original and decompressed datasets could potentially result in erroneous interpretations or even incorrect scientific conclusions. In this paper, we focus on preserving Morse-Smale segmentations in 2D/3D piecewise linear scalar fields, targeting the precise reconstruction of minimum/maximum labels induced by the integral line of each vertex. The key is to derive a series of edits during compression time. These edits are applied to the decompressed data, leading to an accurate reconstruction of segmentations while keeping the error within the prescribed error bound. To this end, we develop a workflow to fi x ex trema an d in tegral lines alternatively until convergence within finite iterations. We accelerate each workflow component with shared-memory/GPU parallelism to make the performance practical for coupling with compressors. We demonstrate use cases with fluid dynamics, ocean, and cosmology application datasets with a significant acceleration with an NVIDIA A100 GPU.
AbstractList This research explores a novel paradigm for preserving topological segmentations in existing error-bounded lossy compressors. Today's lossy compressors rarely consider preserving topologies such as Morse-Smale complexes, and the discrepancies in topology between original and decompressed datasets could potentially result in erroneous interpretations or even incorrect scientific conclusions. In this paper, we focus on preserving Morse-Smale segmentations in 2D/3D piecewise linear scalar fields, targeting the precise reconstruction of minimum/maximum labels induced by the integral line of each vertex. The key is to derive a series of edits during compression time. These edits are applied to the decompressed data, leading to an accurate reconstruction of segmentations while keeping the error within the prescribed error bound. To this end, we develop a workflow to fi x ex trema an d in tegral lines alternatively until convergence within finite iterations. We accelerate each workflow component with shared-memory/GPU parallelism to make the performance practical for coupling with compressors. We demonstrate use cases with fluid dynamics, ocean, and cosmology application datasets with a significant acceleration with an NVIDIA A100 GPU.
This research explores a novel paradigm for preserving topological segmentations in existing error-bounded lossy compressors. Today's lossy compressors rarely consider preserving topologies such as Morse-Smale complexes, and the discrepancies in topology between original and decompressed datasets could potentially result in erroneous interpretations or even incorrect scientific conclusions. In this paper, we focus on preserving Morse-Smale segmentations in 2D/3D piecewise linear scalar fields, targeting the precise reconstruction of minimum/maximum labels induced by the integral line of each vertex. The key is to derive a series of edits during compression time. These edits are applied to the decompressed data, leading to an accurate reconstruction of segmentations while keeping the error within the prescribed error bound. To this end, we develop a workflow to fi x ex trema an d in tegral lines alternatively until convergence within finite iterations. We accelerate each workflow component with shared-memory/GPU parallelism to make the performance practical for coupling with compressors. We demonstrate use cases with fluid dynamics, ocean, and cosmology application datasets with a significant acceleration with an NVIDIA A100 GPU.This research explores a novel paradigm for preserving topological segmentations in existing error-bounded lossy compressors. Today's lossy compressors rarely consider preserving topologies such as Morse-Smale complexes, and the discrepancies in topology between original and decompressed datasets could potentially result in erroneous interpretations or even incorrect scientific conclusions. In this paper, we focus on preserving Morse-Smale segmentations in 2D/3D piecewise linear scalar fields, targeting the precise reconstruction of minimum/maximum labels induced by the integral line of each vertex. The key is to derive a series of edits during compression time. These edits are applied to the decompressed data, leading to an accurate reconstruction of segmentations while keeping the error within the prescribed error bound. To this end, we develop a workflow to fi x ex trema an d in tegral lines alternatively until convergence within finite iterations. We accelerate each workflow component with shared-memory/GPU parallelism to make the performance practical for coupling with compressors. We demonstrate use cases with fluid dynamics, ocean, and cosmology application datasets with a significant acceleration with an NVIDIA A100 GPU.
Author Wang, Bei
Liang, Xin
Guo, Hanqi
Qiu, Yongfeng
Yan, Lin
Li, Yuxiao
Author_xml – sequence: 1
  givenname: Yuxiao
  orcidid: 0000-0002-8715-5982
  surname: Li
  fullname: Li, Yuxiao
  email: li.14025@osu.edu
  organization: The Ohio State University, USA
– sequence: 2
  givenname: Xin
  orcidid: 0000-0002-0630-1600
  surname: Liang
  fullname: Liang, Xin
  email: xliang@uky.edu
  organization: University of Kentucky, USA
– sequence: 3
  givenname: Bei
  orcidid: 0000-0002-9240-0700
  surname: Wang
  fullname: Wang, Bei
  email: beiwang@sci.utah.edu
  organization: University of Utah, USA
– sequence: 4
  givenname: Yongfeng
  orcidid: 0009-0004-3827-8814
  surname: Qiu
  fullname: Qiu, Yongfeng
  email: qiu.722@osu.edu
  organization: The Ohio State University, USA
– sequence: 5
  givenname: Lin
  orcidid: 0000-0001-7017-0329
  surname: Yan
  fullname: Yan, Lin
  email: linyan@iastate.edu
  organization: Iowa State University, USA
– sequence: 6
  givenname: Hanqi
  orcidid: 0000-0001-7776-1834
  surname: Guo
  fullname: Guo, Hanqi
  email: guo.2154@osu.edu
  organization: The Ohio State University, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39255146$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vEzEQhi1URD_gByAh5COXDf72Lrc0Ki1SKpBSuK689jgYedfB3hzKr8dRUoQ4cPIcnmfGM-8lOpvSBAi9pmRBKeneP3xb3S4YYWLBhVSc62fognaCNkQSdVZronXDFFPn6LKUH4RQIdruBTrnHZOSCnWBdvebXx_wcsI33gcbYJrxF5NNjBDxMm5TDvP3EfuU8SrlDHYO0xbfp1yg2YwmAt7AdqyWmUOaCg61Uc4pN9dpPzlweJ1KeazuuMtQSvVeoufexAKvTu8V-vrx5mF116w_335aLdeNrZ-bG9oOkg7cWumFtN467jrXEeMGo93ApTDWUKcGy3hrifKko5IxL1wnwHnf8iv07th3l9PPPZS5H0OxEKOZIO1Lzylhrdaq1RV9e0L3wwiu3-UwmvzYP12pAvQI2FzXyeD_IJT0hyT6QxL9IYn-lER19D-ODccrzdmE-F_zzdEMAPDXJKWJ0Ir_Bt5il4o
CODEN ITVGEA
CitedBy_id crossref_primary_10_1109_MCG_2025_3541464
Cites_doi 10.1109/TVCG.2006.143
10.1109/WACV.2018.00069
10.1109/PacificVis48177.2020.6431
10.1109/SC41404.2022.00067
10.1109/ICDE51399.2021.00145
10.1109/ICDE60146.2024.00378
10.1109/TVCG.2008.110
10.1109/TVCG.2023.3326920
10.1109/tvcg.2019.2904063
10.1109/IPDPS.2016.11
10.1109/TVCG.2007.70552
10.1109/tvcg.2010.253
10.1109/TPDS.2017.2749300
10.1109/IPDPS.2012.52
10.1109/PacificVis.2018.00015
10.1111/j.1365-2966.2011.18394.x
10.1109/BigData.2018.8622520
10.1145/3369583.3392688
10.1145/378583.378626
10.1109/ICIP46576.2022.9897372
10.1145/777792.777846
10.1109/tvcg.2009.69
10.1109/IPDPS54959.2023.00104
10.1063/5.0090232
10.1006/aima.1997.1650
10.1016/j.gmod.2019.101023
10.1109/TVCG.2014.2346458
10.1145/77635.77639
10.1109/IPDPS.2017.115
10.1109/TVCG.2022.3214821
10.1109/TBDATA.2022.3201176
10.1109/Cluster48925.2021.00034
10.1109/TVCG.2023.3261981
10.4310/jdg/1214428092
10.1111/cgf.15084
10.1137/S0097539703439088
10.1016/j.cagd.2012.03.012
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TVCG.2024.3456337
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 140
ExternalDocumentID 39255146
10_1109_TVCG_2024_3456337
10670476
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: OAC-2311878; OAC-2313123; OAC-2313124; IIS-1955764; OAC-2330367; OAC-2313122; OIA-2327266
  funderid: 10.13039/100000001
– fundername: U.S. Department of Energy, Office of Advanced Scientific Computing Research
  grantid: DE-SC0022753; DE-SC0021015
  funderid: 10.13039/100000015
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
RIG
7X8
ID FETCH-LOGICAL-c392t-18b51b3cc5f45cfcd3d9d90adba7db354aca1d6bc238c06f091522f4d94edff83
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001367808800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1077-2626
1941-0506
IngestDate Sun Nov 09 13:53:32 EST 2025
Wed Mar 05 02:44:39 EST 2025
Sat Nov 29 03:31:50 EST 2025
Tue Nov 18 21:32:40 EST 2025
Wed Aug 27 03:03:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-18b51b3cc5f45cfcd3d9d90adba7db354aca1d6bc238c06f091522f4d94edff83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9240-0700
0000-0002-8715-5982
0000-0001-7776-1834
0000-0002-0630-1600
0009-0004-3827-8814
0000-0001-7017-0329
PMID 39255146
PQID 3102877687
PQPubID 23479
PageCount 11
ParticipantIDs pubmed_primary_39255146
crossref_citationtrail_10_1109_TVCG_2024_3456337
proquest_miscellaneous_3102877687
crossref_primary_10_1109_TVCG_2024_3456337
ieee_primary_10670476
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
Liu (ref29) 2023
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref32
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref28
ref27
ref8
ref7
Di (ref10) 2024
ref9
ref4
ref3
Beucher (ref5) 1979
ref6
ref40
References_xml – ident: ref28
  doi: 10.1109/TVCG.2006.143
– ident: ref40
  doi: 10.1109/WACV.2018.00069
– ident: ref25
  doi: 10.1109/PacificVis48177.2020.6431
– ident: ref31
  doi: 10.1109/SC41404.2022.00067
– year: 2024
  ident: ref10
  publication-title: A survey on error-bounded lossy compression for scientific datasets
– ident: ref41
  doi: 10.1109/ICDE51399.2021.00145
– start-page: 17
  volume-title: Proceedings of Workshop on Image Processing
  year: 1979
  ident: ref5
  article-title: Use of watersheds in contour detection
– ident: ref38
  doi: 10.1109/ICDE60146.2024.00378
– ident: ref17
  doi: 10.1109/TVCG.2008.110
– ident: ref39
  doi: 10.1109/TVCG.2023.3326920
– ident: ref3
  doi: 10.1109/tvcg.2019.2904063
– ident: ref8
  doi: 10.1109/IPDPS.2016.11
– ident: ref18
  doi: 10.1109/TVCG.2007.70552
– ident: ref7
  doi: 10.1109/tvcg.2010.253
– ident: ref9
  doi: 10.1109/TPDS.2017.2749300
– ident: ref19
  doi: 10.1109/IPDPS.2012.52
– ident: ref35
  doi: 10.1109/PacificVis.2018.00015
– ident: ref36
  doi: 10.1111/j.1365-2966.2011.18394.x
– ident: ref24
  doi: 10.1109/BigData.2018.8622520
– ident: ref42
  doi: 10.1145/3369583.3392688
– ident: ref12
  doi: 10.1145/378583.378626
– ident: ref16
  doi: 10.1109/ICIP46576.2022.9897372
– ident: ref11
  doi: 10.1145/777792.777846
– ident: ref6
  doi: 10.1109/tvcg.2009.69
– ident: ref22
  doi: 10.1109/IPDPS54959.2023.00104
– ident: ref33
  doi: 10.1063/5.0090232
– ident: ref14
  doi: 10.1006/aima.1997.1650
– ident: ref15
  doi: 10.1016/j.gmod.2019.101023
– ident: ref27
  doi: 10.1109/TVCG.2014.2346458
– ident: ref13
  doi: 10.1145/77635.77639
– ident: ref37
  doi: 10.1109/IPDPS.2017.115
– ident: ref23
  doi: 10.1109/TVCG.2022.3214821
– ident: ref26
  doi: 10.1109/TBDATA.2022.3201176
– ident: ref30
  doi: 10.1109/Cluster48925.2021.00034
– ident: ref32
  doi: 10.1109/TVCG.2023.3261981
– ident: ref4
  doi: 10.4310/jdg/1214428092
– year: 2023
  ident: ref29
  publication-title: SRN-SZ: Deep leaning-based scientific error-bounded lossy compression with super-resolution neural networks
– ident: ref20
  doi: 10.1111/cgf.15084
– ident: ref34
  doi: 10.1137/S0097539703439088
– ident: ref21
  doi: 10.1016/j.cagd.2012.03.012
SSID ssj0014489
Score 2.4613366
Snippet This research explores a novel paradigm for preserving topological segmentations in existing error-bounded lossy compressors. Today's lossy compressors rarely...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 130
SubjectTerms Compressors
feature-preserving compression
Lossy compression
Morse-Smale segmentations
Prediction algorithms
Reviews
Scalability
shared-memory parallelism
Topology
Vectors
Watersheds
Title MSz: An Efficient Parallel Algorithm for Correcting Morse-Smale Segmentations in Error-Bounded Lossy Compressors
URI https://ieeexplore.ieee.org/document/10670476
https://www.ncbi.nlm.nih.gov/pubmed/39255146
https://www.proquest.com/docview/3102877687
Volume 31
WOSCitedRecordID wos001367808800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014489
  issn: 1077-2626
  databaseCode: RIE
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoxQEOPAssj8pInJDcJmvnYW5l1cKBVpW2oL1FznjcrtRNquwuEvx6ZpzsqhyKxC0Hj5V4xplvPJ75hPiAeWGg1EZhalGZ4L1yts4UQBogq4uQaYhkE8XZWTmb2fOhWD3WwiBivHyGB_wYc_m-hTUflR1yu7PEFPmO2CmKvC_W2qYMKM6w_QXDQo0Jpg8pzDSxhxc_Jl8oFBybA014QWtm3iNcwGAh_8sfRYKVu7Fm9Dknj__zbZ-IRwO4lEe9NTwV97B5Jh7eajn4XNycTn9_kkeNPI69I2gGee46JlQhuevLtpuvrhaSkKycMG8H8K1oedp2S1TTBTkTOcXLxVCv1CzlnCbqurZTn5meCb38Rh_5S_JfhuN4ktsT30-OLyZf1cC6oIDWZKXSss7SWgNkwWQQwGtvvU2cr13ha50ZBy71eQ3k7CHJAwEOwnDBeGvQh1DqF2K3aRt8JaSzOq1ThCS4YMq8tLn3BEkwYOLS4N1IJJu1r2BoSc7MGNdVDE0SW7HmKtZcNWhuJD5uRW76fhz_GrzHark1sNfISLzfaLii3cQpEtdgu15WmvEW2VZJsi971W-lNxbz-o5Z34gHYyYHjuczb8XuqlvjO3Effq7my26fTHZW7keT_QM7qOg0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELagIEEP5VVoystInJDc2rH3YW5t1FJEElVKQL2tvGO7RGp2q02CBL-esXcTtYcicduDx9rdz7vzjcczHyEfXZopyKViTmjHlLeWGV0mDEB4SMrMJxKi2EQ2HucXF_q8K1aPtTDOuXj4zB2Ey5jLtzWswlbZYWh3xlWW3icPEqX6vC3X2iQNMNLQ7RHDjPWRqHdJTMH14fTH4AsGg311IJExSBm095AZBLqQ3vJIUWLlbrYZvc7pk_-836dkp6OX9KhdD8_IPVc9J9s3mg6-INejyZ_P9KiiJ7F7BM5Az00TJFXQ7uqybmbLn3OKXJYOgnIHhHPRdFQ3C8cmc3QndOIu513FUrWgM5yoaeqGHQeBJmfpEB_yNw3_mRDJo90u-X56Mh2csU53gQG-kyUTeZmIUgIkXiXgwUqrrebGliazpUyUASNsWgK6e-CpR8qBLM4rq5Wz3ufyJdmq6srtEWq0FKVwwL3xKk9znVqLpMR5x43w1vQIX7_7Arqm5EEb46qIwQnXRUCuCMgVHXI98mljct125PjX4N0Ay42BLSI98mGNcIHfU0iSmMrVq0UhA-PKMAhD21ct9Bvr9YrZv2PW9-TR2XQ0LIZfx99ek8f9IBUcd2vekK1ls3JvyUP4tZwtmndx4f4F-z7qkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSz%3A+An+Efficient+Parallel+Algorithm+for+Correcting+Morse-Smale+Segmentations+in+Error-Bounded+Lossy+Compressors&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Li%2C+Yuxiao&rft.au=Liang%2C+Xin&rft.au=Wang%2C+Bei&rft.au=Qiu%2C+Yongfeng&rft.date=2025-01-01&rft.eissn=1941-0506&rft.volume=31&rft.issue=1&rft.spage=130&rft_id=info:doi/10.1109%2FTVCG.2024.3456337&rft_id=info%3Apmid%2F39255146&rft.externalDocID=39255146
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon