MSz: An Efficient Parallel Algorithm for Correcting Morse-Smale Segmentations in Error-Bounded Lossy Compressors
This research explores a novel paradigm for preserving topological segmentations in existing error-bounded lossy compressors. Today's lossy compressors rarely consider preserving topologies such as Morse-Smale complexes, and the discrepancies in topology between original and decompressed datase...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on visualization and computer graphics Jg. 31; H. 1; S. 130 - 140 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.01.2025
|
| Schlagworte: | |
| ISSN: | 1077-2626, 1941-0506, 1941-0506 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This research explores a novel paradigm for preserving topological segmentations in existing error-bounded lossy compressors. Today's lossy compressors rarely consider preserving topologies such as Morse-Smale complexes, and the discrepancies in topology between original and decompressed datasets could potentially result in erroneous interpretations or even incorrect scientific conclusions. In this paper, we focus on preserving Morse-Smale segmentations in 2D/3D piecewise linear scalar fields, targeting the precise reconstruction of minimum/maximum labels induced by the integral line of each vertex. The key is to derive a series of edits during compression time. These edits are applied to the decompressed data, leading to an accurate reconstruction of segmentations while keeping the error within the prescribed error bound. To this end, we develop a workflow to fi x ex trema an d in tegral lines alternatively until convergence within finite iterations. We accelerate each workflow component with shared-memory/GPU parallelism to make the performance practical for coupling with compressors. We demonstrate use cases with fluid dynamics, ocean, and cosmology application datasets with a significant acceleration with an NVIDIA A100 GPU. |
|---|---|
| AbstractList | This research explores a novel paradigm for preserving topological segmentations in existing error-bounded lossy compressors. Today's lossy compressors rarely consider preserving topologies such as Morse-Smale complexes, and the discrepancies in topology between original and decompressed datasets could potentially result in erroneous interpretations or even incorrect scientific conclusions. In this paper, we focus on preserving Morse-Smale segmentations in 2D/3D piecewise linear scalar fields, targeting the precise reconstruction of minimum/maximum labels induced by the integral line of each vertex. The key is to derive a series of edits during compression time. These edits are applied to the decompressed data, leading to an accurate reconstruction of segmentations while keeping the error within the prescribed error bound. To this end, we develop a workflow to fi x ex trema an d in tegral lines alternatively until convergence within finite iterations. We accelerate each workflow component with shared-memory/GPU parallelism to make the performance practical for coupling with compressors. We demonstrate use cases with fluid dynamics, ocean, and cosmology application datasets with a significant acceleration with an NVIDIA A100 GPU. This research explores a novel paradigm for preserving topological segmentations in existing error-bounded lossy compressors. Today's lossy compressors rarely consider preserving topologies such as Morse-Smale complexes, and the discrepancies in topology between original and decompressed datasets could potentially result in erroneous interpretations or even incorrect scientific conclusions. In this paper, we focus on preserving Morse-Smale segmentations in 2D/3D piecewise linear scalar fields, targeting the precise reconstruction of minimum/maximum labels induced by the integral line of each vertex. The key is to derive a series of edits during compression time. These edits are applied to the decompressed data, leading to an accurate reconstruction of segmentations while keeping the error within the prescribed error bound. To this end, we develop a workflow to fi x ex trema an d in tegral lines alternatively until convergence within finite iterations. We accelerate each workflow component with shared-memory/GPU parallelism to make the performance practical for coupling with compressors. We demonstrate use cases with fluid dynamics, ocean, and cosmology application datasets with a significant acceleration with an NVIDIA A100 GPU.This research explores a novel paradigm for preserving topological segmentations in existing error-bounded lossy compressors. Today's lossy compressors rarely consider preserving topologies such as Morse-Smale complexes, and the discrepancies in topology between original and decompressed datasets could potentially result in erroneous interpretations or even incorrect scientific conclusions. In this paper, we focus on preserving Morse-Smale segmentations in 2D/3D piecewise linear scalar fields, targeting the precise reconstruction of minimum/maximum labels induced by the integral line of each vertex. The key is to derive a series of edits during compression time. These edits are applied to the decompressed data, leading to an accurate reconstruction of segmentations while keeping the error within the prescribed error bound. To this end, we develop a workflow to fi x ex trema an d in tegral lines alternatively until convergence within finite iterations. We accelerate each workflow component with shared-memory/GPU parallelism to make the performance practical for coupling with compressors. We demonstrate use cases with fluid dynamics, ocean, and cosmology application datasets with a significant acceleration with an NVIDIA A100 GPU. |
| Author | Wang, Bei Liang, Xin Guo, Hanqi Qiu, Yongfeng Yan, Lin Li, Yuxiao |
| Author_xml | – sequence: 1 givenname: Yuxiao orcidid: 0000-0002-8715-5982 surname: Li fullname: Li, Yuxiao email: li.14025@osu.edu organization: The Ohio State University, USA – sequence: 2 givenname: Xin orcidid: 0000-0002-0630-1600 surname: Liang fullname: Liang, Xin email: xliang@uky.edu organization: University of Kentucky, USA – sequence: 3 givenname: Bei orcidid: 0000-0002-9240-0700 surname: Wang fullname: Wang, Bei email: beiwang@sci.utah.edu organization: University of Utah, USA – sequence: 4 givenname: Yongfeng orcidid: 0009-0004-3827-8814 surname: Qiu fullname: Qiu, Yongfeng email: qiu.722@osu.edu organization: The Ohio State University, USA – sequence: 5 givenname: Lin orcidid: 0000-0001-7017-0329 surname: Yan fullname: Yan, Lin email: linyan@iastate.edu organization: Iowa State University, USA – sequence: 6 givenname: Hanqi orcidid: 0000-0001-7776-1834 surname: Guo fullname: Guo, Hanqi email: guo.2154@osu.edu organization: The Ohio State University, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39255146$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1vEzEQhi1URD_gByAh5COXDf72Lrc0Ki1SKpBSuK689jgYedfB3hzKr8dRUoQ4cPIcnmfGM-8lOpvSBAi9pmRBKeneP3xb3S4YYWLBhVSc62fognaCNkQSdVZronXDFFPn6LKUH4RQIdruBTrnHZOSCnWBdvebXx_wcsI33gcbYJrxF5NNjBDxMm5TDvP3EfuU8SrlDHYO0xbfp1yg2YwmAt7AdqyWmUOaCg61Uc4pN9dpPzlweJ1KeazuuMtQSvVeoufexAKvTu8V-vrx5mF116w_335aLdeNrZ-bG9oOkg7cWumFtN467jrXEeMGo93ApTDWUKcGy3hrifKko5IxL1wnwHnf8iv07th3l9PPPZS5H0OxEKOZIO1Lzylhrdaq1RV9e0L3wwiu3-UwmvzYP12pAvQI2FzXyeD_IJT0hyT6QxL9IYn-lER19D-ODccrzdmE-F_zzdEMAPDXJKWJ0Ir_Bt5il4o |
| CODEN | ITVGEA |
| CitedBy_id | crossref_primary_10_1109_MCG_2025_3541464 |
| Cites_doi | 10.1109/TVCG.2006.143 10.1109/WACV.2018.00069 10.1109/PacificVis48177.2020.6431 10.1109/SC41404.2022.00067 10.1109/ICDE51399.2021.00145 10.1109/ICDE60146.2024.00378 10.1109/TVCG.2008.110 10.1109/TVCG.2023.3326920 10.1109/tvcg.2019.2904063 10.1109/IPDPS.2016.11 10.1109/TVCG.2007.70552 10.1109/tvcg.2010.253 10.1109/TPDS.2017.2749300 10.1109/IPDPS.2012.52 10.1109/PacificVis.2018.00015 10.1111/j.1365-2966.2011.18394.x 10.1109/BigData.2018.8622520 10.1145/3369583.3392688 10.1145/378583.378626 10.1109/ICIP46576.2022.9897372 10.1145/777792.777846 10.1109/tvcg.2009.69 10.1109/IPDPS54959.2023.00104 10.1063/5.0090232 10.1006/aima.1997.1650 10.1016/j.gmod.2019.101023 10.1109/TVCG.2014.2346458 10.1145/77635.77639 10.1109/IPDPS.2017.115 10.1109/TVCG.2022.3214821 10.1109/TBDATA.2022.3201176 10.1109/Cluster48925.2021.00034 10.1109/TVCG.2023.3261981 10.4310/jdg/1214428092 10.1111/cgf.15084 10.1137/S0097539703439088 10.1016/j.cagd.2012.03.012 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TVCG.2024.3456337 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0506 |
| EndPage | 140 |
| ExternalDocumentID | 39255146 10_1109_TVCG_2024_3456337 10670476 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Science Foundation grantid: OAC-2311878; OAC-2313123; OAC-2313124; IIS-1955764; OAC-2330367; OAC-2313122; OIA-2327266 funderid: 10.13039/100000001 – fundername: U.S. Department of Energy, Office of Advanced Scientific Computing Research grantid: DE-SC0022753; DE-SC0021015 funderid: 10.13039/100000015 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 VH1 AAYXX CITATION AAYOK NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c392t-18b51b3cc5f45cfcd3d9d90adba7db354aca1d6bc238c06f091522f4d94edff83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001367808800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1077-2626 1941-0506 |
| IngestDate | Sun Nov 09 13:53:32 EST 2025 Wed Mar 05 02:44:39 EST 2025 Sat Nov 29 03:31:50 EST 2025 Tue Nov 18 21:32:40 EST 2025 Wed Aug 27 03:03:27 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c392t-18b51b3cc5f45cfcd3d9d90adba7db354aca1d6bc238c06f091522f4d94edff83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9240-0700 0000-0002-8715-5982 0000-0001-7776-1834 0000-0002-0630-1600 0009-0004-3827-8814 0000-0001-7017-0329 |
| PMID | 39255146 |
| PQID | 3102877687 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | pubmed_primary_39255146 crossref_citationtrail_10_1109_TVCG_2024_3456337 proquest_miscellaneous_3102877687 crossref_primary_10_1109_TVCG_2024_3456337 ieee_primary_10670476 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on visualization and computer graphics |
| PublicationTitleAbbrev | TVCG |
| PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 Liu (ref29) 2023 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref32 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref28 ref27 ref8 ref7 Di (ref10) 2024 ref9 ref4 ref3 Beucher (ref5) 1979 ref6 ref40 |
| References_xml | – ident: ref28 doi: 10.1109/TVCG.2006.143 – ident: ref40 doi: 10.1109/WACV.2018.00069 – ident: ref25 doi: 10.1109/PacificVis48177.2020.6431 – ident: ref31 doi: 10.1109/SC41404.2022.00067 – year: 2024 ident: ref10 publication-title: A survey on error-bounded lossy compression for scientific datasets – ident: ref41 doi: 10.1109/ICDE51399.2021.00145 – start-page: 17 volume-title: Proceedings of Workshop on Image Processing year: 1979 ident: ref5 article-title: Use of watersheds in contour detection – ident: ref38 doi: 10.1109/ICDE60146.2024.00378 – ident: ref17 doi: 10.1109/TVCG.2008.110 – ident: ref39 doi: 10.1109/TVCG.2023.3326920 – ident: ref3 doi: 10.1109/tvcg.2019.2904063 – ident: ref8 doi: 10.1109/IPDPS.2016.11 – ident: ref18 doi: 10.1109/TVCG.2007.70552 – ident: ref7 doi: 10.1109/tvcg.2010.253 – ident: ref9 doi: 10.1109/TPDS.2017.2749300 – ident: ref19 doi: 10.1109/IPDPS.2012.52 – ident: ref35 doi: 10.1109/PacificVis.2018.00015 – ident: ref36 doi: 10.1111/j.1365-2966.2011.18394.x – ident: ref24 doi: 10.1109/BigData.2018.8622520 – ident: ref42 doi: 10.1145/3369583.3392688 – ident: ref12 doi: 10.1145/378583.378626 – ident: ref16 doi: 10.1109/ICIP46576.2022.9897372 – ident: ref11 doi: 10.1145/777792.777846 – ident: ref6 doi: 10.1109/tvcg.2009.69 – ident: ref22 doi: 10.1109/IPDPS54959.2023.00104 – ident: ref33 doi: 10.1063/5.0090232 – ident: ref14 doi: 10.1006/aima.1997.1650 – ident: ref15 doi: 10.1016/j.gmod.2019.101023 – ident: ref27 doi: 10.1109/TVCG.2014.2346458 – ident: ref13 doi: 10.1145/77635.77639 – ident: ref37 doi: 10.1109/IPDPS.2017.115 – ident: ref23 doi: 10.1109/TVCG.2022.3214821 – ident: ref26 doi: 10.1109/TBDATA.2022.3201176 – ident: ref30 doi: 10.1109/Cluster48925.2021.00034 – ident: ref32 doi: 10.1109/TVCG.2023.3261981 – ident: ref4 doi: 10.4310/jdg/1214428092 – year: 2023 ident: ref29 publication-title: SRN-SZ: Deep leaning-based scientific error-bounded lossy compression with super-resolution neural networks – ident: ref20 doi: 10.1111/cgf.15084 – ident: ref34 doi: 10.1137/S0097539703439088 – ident: ref21 doi: 10.1016/j.cagd.2012.03.012 |
| SSID | ssj0014489 |
| Score | 2.4613366 |
| Snippet | This research explores a novel paradigm for preserving topological segmentations in existing error-bounded lossy compressors. Today's lossy compressors rarely... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 130 |
| SubjectTerms | Compressors feature-preserving compression Lossy compression Morse-Smale segmentations Prediction algorithms Reviews Scalability shared-memory parallelism Topology Vectors Watersheds |
| Title | MSz: An Efficient Parallel Algorithm for Correcting Morse-Smale Segmentations in Error-Bounded Lossy Compressors |
| URI | https://ieeexplore.ieee.org/document/10670476 https://www.ncbi.nlm.nih.gov/pubmed/39255146 https://www.proquest.com/docview/3102877687 |
| Volume | 31 |
| WOSCitedRecordID | wos001367808800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014489 issn: 1077-2626 databaseCode: RIE dateStart: 19950101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoxQEOPAssj8pInJDcJmvnYW5l1cKBVpW2oL1FznjcrtRNquwuEvx6ZpzsqhyKxC0Hj5V4xplvPJ75hPiAeWGg1EZhalGZ4L1yts4UQBogq4uQaYhkE8XZWTmb2fOhWD3WwiBivHyGB_wYc_m-hTUflR1yu7PEFPmO2CmKvC_W2qYMKM6w_QXDQo0Jpg8pzDSxhxc_Jl8oFBybA014QWtm3iNcwGAh_8sfRYKVu7Fm9Dknj__zbZ-IRwO4lEe9NTwV97B5Jh7eajn4XNycTn9_kkeNPI69I2gGee46JlQhuevLtpuvrhaSkKycMG8H8K1oedp2S1TTBTkTOcXLxVCv1CzlnCbqurZTn5meCb38Rh_5S_JfhuN4ktsT30-OLyZf1cC6oIDWZKXSss7SWgNkwWQQwGtvvU2cr13ha50ZBy71eQ3k7CHJAwEOwnDBeGvQh1DqF2K3aRt8JaSzOq1ThCS4YMq8tLn3BEkwYOLS4N1IJJu1r2BoSc7MGNdVDE0SW7HmKtZcNWhuJD5uRW76fhz_GrzHark1sNfISLzfaLii3cQpEtdgu15WmvEW2VZJsi971W-lNxbz-o5Z34gHYyYHjuczb8XuqlvjO3Effq7my26fTHZW7keT_QM7qOg0 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELagIEEP5VVoystInJDc2rH3YW5t1FJEElVKQL2tvGO7RGp2q02CBL-esXcTtYcicduDx9rdz7vzjcczHyEfXZopyKViTmjHlLeWGV0mDEB4SMrMJxKi2EQ2HucXF_q8K1aPtTDOuXj4zB2Ey5jLtzWswlbZYWh3xlWW3icPEqX6vC3X2iQNMNLQ7RHDjPWRqHdJTMH14fTH4AsGg311IJExSBm095AZBLqQ3vJIUWLlbrYZvc7pk_-836dkp6OX9KhdD8_IPVc9J9s3mg6-INejyZ_P9KiiJ7F7BM5Az00TJFXQ7uqybmbLn3OKXJYOgnIHhHPRdFQ3C8cmc3QndOIu513FUrWgM5yoaeqGHQeBJmfpEB_yNw3_mRDJo90u-X56Mh2csU53gQG-kyUTeZmIUgIkXiXgwUqrrebGliazpUyUASNsWgK6e-CpR8qBLM4rq5Wz3ufyJdmq6srtEWq0FKVwwL3xKk9znVqLpMR5x43w1vQIX7_7Arqm5EEb46qIwQnXRUCuCMgVHXI98mljct125PjX4N0Ay42BLSI98mGNcIHfU0iSmMrVq0UhA-PKMAhD21ct9Bvr9YrZv2PW9-TR2XQ0LIZfx99ek8f9IBUcd2vekK1ls3JvyUP4tZwtmndx4f4F-z7qkw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSz%3A+An+Efficient+Parallel+Algorithm+for+Correcting+Morse-Smale+Segmentations+in+Error-Bounded+Lossy+Compressors&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Li%2C+Yuxiao&rft.au=Liang%2C+Xin&rft.au=Wang%2C+Bei&rft.au=Qiu%2C+Yongfeng&rft.date=2025-01-01&rft.eissn=1941-0506&rft.volume=31&rft.issue=1&rft.spage=130&rft_id=info:doi/10.1109%2FTVCG.2024.3456337&rft_id=info%3Apmid%2F39255146&rft.externalDocID=39255146 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |