Iterative methods for solving a class of monotone variational inequality problems with applications

In this paper, we provide a more general regularization method for seeking a solution to a class of monotone variational inequalities in a real Hilbert space, where the regularizer is a hemicontinuous and strongly monotone operator. As a discretization of the regularization method, we propose an ite...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of inequalities and applications Ročník 2015; číslo 1; s. 1 - 17
Hlavní autoři: Zhou, Haiyun, Zhou, Yu, Feng, Guanghui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 24.02.2015
Springer Nature B.V
Témata:
ISSN:1029-242X, 1025-5834, 1029-242X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we provide a more general regularization method for seeking a solution to a class of monotone variational inequalities in a real Hilbert space, where the regularizer is a hemicontinuous and strongly monotone operator. As a discretization of the regularization method, we propose an iterative method. We then prove that the proposed iterative method converges in norm to a solution of the class of monotone variational inequalities. We also apply our results to the constrained minimization problem and the minimum-norm fixed point problem for a generalized Lipschitz continuous and pseudocontractive mapping. The results presented in the paper improve and extend recent ones in the literature.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/s13660-015-0590-y