Automatic Feature Extraction and Construction Using Genetic Programming for Rotating Machinery Fault Diagnosis

Feature extraction is an essential process in the intelligent fault diagnosis of rotating machinery. Although existing feature extraction methods can obtain representative features from the original signal, domain knowledge and expert experience are often required. In this article, a novel diagnosis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics Jg. 51; H. 10; S. 4909 - 4923
Hauptverfasser: Peng, Bo, Wan, Shuting, Bi, Ying, Xue, Bing, Zhang, Mengjie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2267, 2168-2275, 2168-2275
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Feature extraction is an essential process in the intelligent fault diagnosis of rotating machinery. Although existing feature extraction methods can obtain representative features from the original signal, domain knowledge and expert experience are often required. In this article, a novel diagnosis approach based on evolutionary learning, namely, automatic feature extraction and construction using genetic programming (AFECGP), is proposed to automatically generate informative and discriminative features from original vibration signals for identifying different fault types of rotating machinery. To achieve this, a new program structure, a new function set, and a new terminal set are developed in AFECGP to allow it to detect important subband signals and extract and construct informative features, automatically and simultaneously. More important, AFECGP can produce a flexible number of features for classification. Having the generated features, <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-Nearest Neighbors is employed to perform fault diagnosis. The performance of the AFECGP-based fault diagnosis approach is evaluated on four fault diagnosis datasets of varying difficulty and compared with 14 baseline methods. The results show that the proposed approach achieves better fault diagnosis accuracy on all the datasets than the competitive methods and can effectively identify different fault conditions of rolling bearing, gear, and rotor.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2020.3032945