Automatic Feature Extraction and Construction Using Genetic Programming for Rotating Machinery Fault Diagnosis

Feature extraction is an essential process in the intelligent fault diagnosis of rotating machinery. Although existing feature extraction methods can obtain representative features from the original signal, domain knowledge and expert experience are often required. In this article, a novel diagnosis...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics Vol. 51; no. 10; pp. 4909 - 4923
Main Authors: Peng, Bo, Wan, Shuting, Bi, Ying, Xue, Bing, Zhang, Mengjie
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2168-2267, 2168-2275, 2168-2275
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Feature extraction is an essential process in the intelligent fault diagnosis of rotating machinery. Although existing feature extraction methods can obtain representative features from the original signal, domain knowledge and expert experience are often required. In this article, a novel diagnosis approach based on evolutionary learning, namely, automatic feature extraction and construction using genetic programming (AFECGP), is proposed to automatically generate informative and discriminative features from original vibration signals for identifying different fault types of rotating machinery. To achieve this, a new program structure, a new function set, and a new terminal set are developed in AFECGP to allow it to detect important subband signals and extract and construct informative features, automatically and simultaneously. More important, AFECGP can produce a flexible number of features for classification. Having the generated features, <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-Nearest Neighbors is employed to perform fault diagnosis. The performance of the AFECGP-based fault diagnosis approach is evaluated on four fault diagnosis datasets of varying difficulty and compared with 14 baseline methods. The results show that the proposed approach achieves better fault diagnosis accuracy on all the datasets than the competitive methods and can effectively identify different fault conditions of rolling bearing, gear, and rotor.
AbstractList Feature extraction is an essential process in the intelligent fault diagnosis of rotating machinery. Although existing feature extraction methods can obtain representative features from the original signal, domain knowledge and expert experience are often required. In this article, a novel diagnosis approach based on evolutionary learning, namely, automatic feature extraction and construction using genetic programming (AFECGP), is proposed to automatically generate informative and discriminative features from original vibration signals for identifying different fault types of rotating machinery. To achieve this, a new program structure, a new function set, and a new terminal set are developed in AFECGP to allow it to detect important subband signals and extract and construct informative features, automatically and simultaneously. More important, AFECGP can produce a flexible number of features for classification. Having the generated features, [Formula Omitted]-Nearest Neighbors is employed to perform fault diagnosis. The performance of the AFECGP-based fault diagnosis approach is evaluated on four fault diagnosis datasets of varying difficulty and compared with 14 baseline methods. The results show that the proposed approach achieves better fault diagnosis accuracy on all the datasets than the competitive methods and can effectively identify different fault conditions of rolling bearing, gear, and rotor.
Feature extraction is an essential process in the intelligent fault diagnosis of rotating machinery. Although existing feature extraction methods can obtain representative features from the original signal, domain knowledge and expert experience are often required. In this article, a novel diagnosis approach based on evolutionary learning, namely, automatic feature extraction and construction using genetic programming (AFECGP), is proposed to automatically generate informative and discriminative features from original vibration signals for identifying different fault types of rotating machinery. To achieve this, a new program structure, a new function set, and a new terminal set are developed in AFECGP to allow it to detect important subband signals and extract and construct informative features, automatically and simultaneously. More important, AFECGP can produce a flexible number of features for classification. Having the generated features, <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-Nearest Neighbors is employed to perform fault diagnosis. The performance of the AFECGP-based fault diagnosis approach is evaluated on four fault diagnosis datasets of varying difficulty and compared with 14 baseline methods. The results show that the proposed approach achieves better fault diagnosis accuracy on all the datasets than the competitive methods and can effectively identify different fault conditions of rolling bearing, gear, and rotor.
Feature extraction is an essential process in the intelligent fault diagnosis of rotating machinery. Although existing feature extraction methods can obtain representative features from the original signal, domain knowledge and expert experience are often required. In this article, a novel diagnosis approach based on evolutionary learning, namely, automatic feature extraction and construction using genetic programming (AFECGP), is proposed to automatically generate informative and discriminative features from original vibration signals for identifying different fault types of rotating machinery. To achieve this, a new program structure, a new function set, and a new terminal set are developed in AFECGP to allow it to detect important subband signals and extract and construct informative features, automatically and simultaneously. More important, AFECGP can produce a flexible number of features for classification. Having the generated features, k -Nearest Neighbors is employed to perform fault diagnosis. The performance of the AFECGP-based fault diagnosis approach is evaluated on four fault diagnosis datasets of varying difficulty and compared with 14 baseline methods. The results show that the proposed approach achieves better fault diagnosis accuracy on all the datasets than the competitive methods and can effectively identify different fault conditions of rolling bearing, gear, and rotor.Feature extraction is an essential process in the intelligent fault diagnosis of rotating machinery. Although existing feature extraction methods can obtain representative features from the original signal, domain knowledge and expert experience are often required. In this article, a novel diagnosis approach based on evolutionary learning, namely, automatic feature extraction and construction using genetic programming (AFECGP), is proposed to automatically generate informative and discriminative features from original vibration signals for identifying different fault types of rotating machinery. To achieve this, a new program structure, a new function set, and a new terminal set are developed in AFECGP to allow it to detect important subband signals and extract and construct informative features, automatically and simultaneously. More important, AFECGP can produce a flexible number of features for classification. Having the generated features, k -Nearest Neighbors is employed to perform fault diagnosis. The performance of the AFECGP-based fault diagnosis approach is evaluated on four fault diagnosis datasets of varying difficulty and compared with 14 baseline methods. The results show that the proposed approach achieves better fault diagnosis accuracy on all the datasets than the competitive methods and can effectively identify different fault conditions of rolling bearing, gear, and rotor.
Author Xue, Bing
Zhang, Mengjie
Bi, Ying
Wan, Shuting
Peng, Bo
Author_xml – sequence: 1
  givenname: Bo
  orcidid: 0000-0002-4415-4007
  surname: Peng
  fullname: Peng, Bo
  email: ncepupengbo@163.com
  organization: Hebei Key Laboratory of Electric Machinery Health Maintenance and Failure Prevention, North China Electric Power University, Baoding, China
– sequence: 2
  givenname: Shuting
  surname: Wan
  fullname: Wan, Shuting
  email: wanshuting1@sina.com
  organization: Hebei Key Laboratory of Electric Machinery Health Maintenance and Failure Prevention, North China Electric Power University, Baoding, China
– sequence: 3
  givenname: Ying
  orcidid: 0000-0003-2758-6067
  surname: Bi
  fullname: Bi, Ying
  email: ying.bi@ecs.vuw.ac.nz
  organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
– sequence: 4
  givenname: Bing
  orcidid: 0000-0002-4865-8026
  surname: Xue
  fullname: Xue, Bing
  email: bing.xue@ecs.vuw.ac.nz
  organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
– sequence: 5
  givenname: Mengjie
  orcidid: 0000-0003-4463-9538
  surname: Zhang
  fullname: Zhang, Mengjie
  email: mengjie.zhang@ecs.vuw.ac.nz
  organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
BookMark eNp9kUtPxCAUhYnR-P4Bxk0TN25m5FnoUscZNRmjMbpwRSilI6YFBZrov5dmzCxcyAbuyflu7uUcgG3nnQHgBMEpQrC6eJ69Xk0xxHBKIMEVZVtgH6NSTDDmbHvzLvkeOI7xHeYjslSJXbBHCCZccLoP3OWQfK-S1cXCqDQEU8y_UlA6We8K5Zpi5l1MYVgLL9G6VXFjnBmJx-BXQfX9qLU-FE8-5U65uFf6zToTvouFGrpUXFu1cj7aeAR2WtVFc_x7H4KXxfx5djtZPtzczS6XE00qnCaIkrbCgrIasxqJRlCNaM1QWROhoKK41VyRhjaK60Y0kGaZ6ZK2hNclqwU5BOfrvh_Bfw4mJtnbqE3XKWf8ECWmJS0h5Yxk69kf67sfgsvTScwEYmVFKMwuvnbp4GMMppXajst6lz_LdhJBOaYix1TkmIr8TSWT6A_5EWyvwve_zOmascaYjb_CHAlOyA9qQ5hd
CODEN ITCEB8
CitedBy_id crossref_primary_10_3390_app12094749
crossref_primary_10_1109_TIM_2023_3302338
crossref_primary_10_1109_TCYB_2024_3497597
crossref_primary_10_1109_TMECH_2023_3318373
crossref_primary_10_3390_electronics11020257
crossref_primary_10_1088_1361_6501_ad1c49
crossref_primary_10_1016_j_neucom_2022_04_111
crossref_primary_10_1109_TIM_2024_3363791
crossref_primary_10_1016_j_knosys_2023_110345
crossref_primary_10_1088_1361_6501_ad0ca6
crossref_primary_10_1155_2024_4418858
crossref_primary_10_2478_mspe_2024_0044
crossref_primary_10_1109_TSMC_2023_3346398
crossref_primary_10_1002_rob_22124
crossref_primary_10_1016_j_compag_2025_109949
crossref_primary_10_1109_TIM_2023_3280503
crossref_primary_10_1016_j_eswa_2023_119642
crossref_primary_10_1007_s10044_023_01149_9
crossref_primary_10_1109_TCYB_2022_3195355
crossref_primary_10_1109_TCYB_2022_3158697
crossref_primary_10_1016_j_engappai_2024_109550
crossref_primary_10_1177_01423312231198953
crossref_primary_10_1080_0952813X_2023_2183267
crossref_primary_10_1145_3603704
crossref_primary_10_3390_e24050681
crossref_primary_10_1016_j_apacoust_2024_109940
crossref_primary_10_7717_peerj_cs_1061
crossref_primary_10_1177_14759217241295951
crossref_primary_10_1108_ECAM_11_2024_1595
crossref_primary_10_1109_TIM_2023_3335512
crossref_primary_10_3390_pr11071972
crossref_primary_10_1080_03036758_2022_2090966
crossref_primary_10_1109_JIOT_2024_3463718
crossref_primary_10_1109_TCYB_2024_3474651
crossref_primary_10_1016_j_eswa_2024_123839
crossref_primary_10_1016_j_eswa_2025_129054
crossref_primary_10_1016_j_asoc_2023_110412
crossref_primary_10_1109_TCSS_2024_3406377
crossref_primary_10_1109_TCYB_2024_3372070
crossref_primary_10_3390_a15100347
crossref_primary_10_1109_TEVC_2024_3388725
crossref_primary_10_3390_s25164993
crossref_primary_10_1016_j_swevo_2024_101571
crossref_primary_10_1109_TR_2023_3311769
crossref_primary_10_1038_s41598_024_80033_w
crossref_primary_10_1088_2631_8695_adc8ff
crossref_primary_10_1016_j_solener_2025_113554
crossref_primary_10_1109_TCYB_2022_3162957
crossref_primary_10_2478_cait_2022_0045
crossref_primary_10_3390_s22155720
crossref_primary_10_1080_10589759_2024_2398687
crossref_primary_10_1109_TEVC_2021_3097043
crossref_primary_10_3390_electronics14153146
crossref_primary_10_1049_cth2_12783
crossref_primary_10_1109_TCYB_2021_3085476
crossref_primary_10_1177_14759217241290537
crossref_primary_10_1080_0952813X_2023_2165717
Cites_doi 10.1103/PhysRevLett.88.174102
10.1109/TCYB.2015.2404806
10.1109/TIE.2018.2879308
10.1016/j.sigpro.2016.09.004
10.1109/CEC.2011.5949624
10.1016/j.ymssp.2018.10.010
10.1007/978-3-030-58112-1_1
10.1016/j.eswa.2012.02.123
10.1109/ACCESS.2019.2918560
10.1016/j.patcog.2019.05.006
10.1109/TEVC.2020.3002229
10.1109/TSMCB.2004.841426
10.1109/LSP.2016.2542881
10.1016/j.ymssp.2016.09.010
10.1109/ACCESS.2018.2837621
10.1016/j.ymssp.2017.12.034
10.1098/rspa.1998.0193
10.1109/TIE.2015.2509913
10.1109/TSP.2013.2288675
10.1016/j.ymssp.2019.106587
10.1109/TEVC.2011.2166158
10.1109/TKDE.2005.182
10.1109/TCYB.2020.2970198
10.1109/TETCI.2017.2743758
10.1109/SMC.2015.19
10.1016/j.measurement.2018.12.009
10.1152/ajpheart.2000.278.6.H2039
10.1016/j.sigpro.2017.03.019
10.1016/j.ymssp.2015.02.020
10.1080/03036758.2019.1609052
10.1016/j.ymssp.2017.03.035
10.1016/j.neucom.2018.05.002
10.1016/j.jsv.2017.12.028
10.1109/TCYB.2013.2286611
10.1007/s10115-014-0761-z
10.1098/rspa.2006.1761
10.1007/978-1-4615-4329-9_13
10.1109/TNSRE.2007.897025
10.1016/j.ymssp.2015.10.007
10.1016/j.ymssp.2015.11.024
10.1016/j.ymssp.2018.12.034
10.1016/j.mechmachtheory.2013.08.014
10.1103/PhysRevE.71.021906
10.1016/j.neucom.2017.11.016
10.1142/S1793536909000047
10.1109/TIE.2015.2417501
10.1109/MCI.2020.2976186
10.1016/j.asoc.2019.04.039
10.1016/j.knosys.2018.09.004
10.1109/ACCESS.2018.2851966
10.1109/TIE.2014.2327589
10.1109/TEVC.2015.2504420
10.1109/TIE.2016.2582729
10.1162/evco.1995.3.2.199
10.1109/TIE.2018.2844805
10.1109/TCYB.2020.2964566
10.1016/j.ymssp.2018.02.016
10.1109/TEVC.2017.2683489
10.1007/978-3-319-77538-8_29
10.1016/j.ymssp.2016.12.040
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2020.3032945
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 4923
ExternalDocumentID 10_1109_TCYB_2020_3032945
9271873
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Hebei Province
  grantid: E2019502064
  funderid: 10.13039/501100003787
– fundername: Science for Technological Innovation Challenge Fund
  grantid: E3603/2903
– fundername: MBIE Data Science SSIF Fund
  grantid: RTVU1914
– fundername: National Natural Science Foundation of China
  grantid: 61876169
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 51777075
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for Central Universities
  grantid: 2019QN131
  funderid: 10.13039/501100012226
– fundername: Marsden Fund of New Zealand Government
  grantid: VUW1509; VUW1615
  funderid: 10.13039/501100009193
– fundername: Joint Postgraduate Training Program of North China Electric Power University
  funderid: 10.13039/501100007845
– fundername: University Research Fund at Victoria University of Wellington
  grantid: 223805/3986
  funderid: 10.13039/501100001538
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c392t-143f92845b25b18d84c14b516b38a0a42fc7a3d4da7cd8d0438a5c64f37b65b83
IEDL.DBID RIE
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000706832000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Wed Oct 01 14:42:53 EDT 2025
Mon Jun 30 06:18:11 EDT 2025
Tue Nov 18 22:28:57 EST 2025
Sat Nov 29 02:02:32 EST 2025
Wed Aug 27 02:26:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-143f92845b25b18d84c14b516b38a0a42fc7a3d4da7cd8d0438a5c64f37b65b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2758-6067
0000-0002-4865-8026
0000-0002-4415-4007
0000-0003-4463-9538
PMID 33237874
PQID 2581569340
PQPubID 85422
PageCount 15
ParticipantIDs proquest_journals_2581569340
crossref_citationtrail_10_1109_TCYB_2020_3032945
ieee_primary_9271873
crossref_primary_10_1109_TCYB_2020_3032945
proquest_miscellaneous_2464604753
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
fortin (ref65) 2012; 13
ref59
ref15
ref14
ref53
ref52
pedregosa (ref66) 2011; 12
ref55
ref11
ref54
ref10
ref17
xuan (ref45) 2005; 11
ref16
ref19
ref18
ref51
maaten (ref68) 2008; 9
ref50
ref46
narendiranath babu (ref58) 2014; 16
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref34
ref37
ref31
ref30
ref33
ref32
bi (ref36) 2018; 39
ref2
ref1
ref39
ref38
(ref61) 2018
ref24
ref67
ref23
ref26
ref25
ref64
ref20
ref63
ref22
ref21
ref28
ref27
ref29
koza (ref35) 1992
ref60
ref62
References_xml – ident: ref21
  doi: 10.1103/PhysRevLett.88.174102
– ident: ref41
  doi: 10.1109/TCYB.2015.2404806
– ident: ref51
  doi: 10.1109/TIE.2018.2879308
– ident: ref13
  doi: 10.1016/j.sigpro.2016.09.004
– ident: ref48
  doi: 10.1109/CEC.2011.5949624
– ident: ref62
  doi: 10.1016/j.ymssp.2018.10.010
– ident: ref67
  doi: 10.1007/978-3-030-58112-1_1
– ident: ref49
  doi: 10.1016/j.eswa.2012.02.123
– ident: ref25
  doi: 10.1109/ACCESS.2019.2918560
– ident: ref56
  doi: 10.1016/j.patcog.2019.05.006
– ident: ref47
  doi: 10.1109/TEVC.2020.3002229
– ident: ref44
  doi: 10.1109/TSMCB.2004.841426
– ident: ref22
  doi: 10.1109/LSP.2016.2542881
– ident: ref26
  doi: 10.1016/j.ymssp.2016.09.010
– ident: ref63
  doi: 10.1109/ACCESS.2018.2837621
– ident: ref4
  doi: 10.1016/j.ymssp.2017.12.034
– ident: ref5
  doi: 10.1098/rspa.1998.0193
– ident: ref59
  doi: 10.1109/TIE.2015.2509913
– ident: ref11
  doi: 10.1109/TSP.2013.2288675
– ident: ref60
  doi: 10.1016/j.ymssp.2019.106587
– volume: 16
  start-page: 1602
  year: 2014
  ident: ref58
  article-title: Application of butterworth filter for fault diagnosis on journal bearing
  publication-title: J Vibroeng
– ident: ref54
  doi: 10.1109/TEVC.2011.2166158
– ident: ref53
  doi: 10.1109/TKDE.2005.182
– ident: ref52
  doi: 10.1109/TCYB.2020.2970198
– ident: ref38
  doi: 10.1109/TETCI.2017.2743758
– ident: ref32
  doi: 10.1109/SMC.2015.19
– ident: ref64
  doi: 10.1016/j.measurement.2018.12.009
– ident: ref19
  doi: 10.1152/ajpheart.2000.278.6.H2039
– ident: ref15
  doi: 10.1016/j.sigpro.2017.03.019
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref66
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– ident: ref12
  doi: 10.1016/j.ymssp.2015.02.020
– ident: ref39
  doi: 10.1080/03036758.2019.1609052
– ident: ref10
  doi: 10.1016/j.ymssp.2017.03.035
– ident: ref18
  doi: 10.1016/j.neucom.2018.05.002
– ident: ref16
  doi: 10.1016/j.jsv.2017.12.028
– ident: ref42
  doi: 10.1109/TCYB.2013.2286611
– ident: ref31
  doi: 10.1007/s10115-014-0761-z
– volume: 11
  start-page: 37
  year: 2005
  ident: ref45
  article-title: Gear fault classification using genetic programming and support vector machines
  publication-title: Int J Inf Technol
– ident: ref6
  doi: 10.1098/rspa.2006.1761
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref68
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– ident: ref57
  doi: 10.1007/978-1-4615-4329-9_13
– ident: ref20
  doi: 10.1109/TNSRE.2007.897025
– ident: ref30
  doi: 10.1016/j.ymssp.2015.10.007
– year: 2018
  ident: ref61
  publication-title: Case Western Reserve University Bearing Data Center
– ident: ref9
  doi: 10.1016/j.ymssp.2015.11.024
– ident: ref14
  doi: 10.1016/j.ymssp.2018.12.034
– ident: ref7
  doi: 10.1016/j.mechmachtheory.2013.08.014
– ident: ref24
  doi: 10.1103/PhysRevE.71.021906
– volume: 13
  start-page: 2171
  year: 2012
  ident: ref65
  article-title: DEAP: Evolutionary algorithms made easy
  publication-title: J Mach Learn Res
– ident: ref17
  doi: 10.1016/j.neucom.2017.11.016
– ident: ref8
  doi: 10.1142/S1793536909000047
– volume: 39
  start-page: 3
  year: 2018
  ident: ref36
  article-title: A survey on genetic programming to image analysis
  publication-title: Journal of Zhengzhou University Engineering Science
– ident: ref2
  doi: 10.1109/TIE.2015.2417501
– ident: ref43
  doi: 10.1109/MCI.2020.2976186
– ident: ref55
  doi: 10.1016/j.asoc.2019.04.039
– ident: ref27
  doi: 10.1016/j.knosys.2018.09.004
– ident: ref29
  doi: 10.1109/ACCESS.2018.2851966
– ident: ref3
  doi: 10.1109/TIE.2014.2327589
– year: 1992
  ident: ref35
  publication-title: Genetic Programming On the Programming of Computers by Means of Natural Selection
– ident: ref28
  doi: 10.1109/TEVC.2015.2504420
– ident: ref33
  doi: 10.1109/TIE.2016.2582729
– ident: ref46
  doi: 10.1162/evco.1995.3.2.199
– ident: ref34
  doi: 10.1109/TIE.2018.2844805
– ident: ref40
  doi: 10.1109/TCYB.2020.2964566
– ident: ref1
  doi: 10.1016/j.ymssp.2018.02.016
– ident: ref37
  doi: 10.1109/TEVC.2017.2683489
– ident: ref50
  doi: 10.1007/978-3-319-77538-8_29
– ident: ref23
  doi: 10.1016/j.ymssp.2016.12.040
SSID ssj0000816898
Score 2.5546494
Snippet Feature extraction is an essential process in the intelligent fault diagnosis of rotating machinery. Although existing feature extraction methods can obtain...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4909
SubjectTerms Datasets
Entropy
Fault diagnosis
feature construction
Feature extraction
Genetic algorithms
Genetic programming
genetic programming (GP)
Machinery
Roller bearings
Rotating machinery
Task analysis
Vibrations
Title Automatic Feature Extraction and Construction Using Genetic Programming for Rotating Machinery Fault Diagnosis
URI https://ieeexplore.ieee.org/document/9271873
https://www.proquest.com/docview/2581569340
https://www.proquest.com/docview/2464604753
Volume 51
WOSCitedRecordID wos000706832000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9UwFD5swwdf1DnFq3NE8EHFujRJf-Rxzl180DFkyvWppMkJDLZW7m1F_3tP0tyCKIJPTdsklJ6T5JycL-cDeI45t6URKvOtFuSgYJtpgTZDL3zurfc6ogm_fKjOz-vVSl_swOv5LAwiRvAZvgnFGMt3vR3DVtmxFjSTVnIXdquqnM5qzfspkUAiUt8KKmRkVVQpiJlzfXx5-vUtOYOCfFQuhVaBsEZKIUld1W8rUqRY-WNejovN8u7_feY9uJOMSnYyacE-7GB3H_bTsN2wFym39MsD6E7GoY9ZWlkw_sY1srMfw3o63cBM51hg8NzmlGURUMBC89DiYsJy3YRnZOuyT32I49PNx4jIxPVPtjTj9cDeTfi9q80D-Lw8uzx9nyXKhcySoTRkZD15TStW0YqizWtXK5urtsjLVtaGGyW8rYx0ypnKutqFMKIpbKm8rNqyaGv5EPa6vsNHwAqvCuS5QzKhlJVG14h01dLlAjU3C-Db397YlI880GJcN9Ev4boJQmuC0JoktAW8mpt8m5Jx_KvyQRDNXDFJZQGHW9k2abhuGlGEpDlaKr6AZ_NrGmghemI67Eeqo0pVckXu3eO_9_wEbosAeIlIv0PYI1nhU7hlvw9Xm_UR6eyqPoo6-wvVe-cQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9UwFD5sU5gv6tzEO6dG8EFl3dL8aJvHOXeZeHcZcpX5VNLkBAazHfe2ov-9SdpbEEXwqWmblNIvac7J-XI-gFeYUpNpJhJXKeYdFKwSxdAk6JhLnXFORTbhl1k-nxdXV-pyAw7HvTCIGMlneBSKMZZvG9OFpbJjxfyfNOebcCcoZ8l-t9a4ohIlJKL4LfOFxNsV-RDGTKk6Xpx-fefdQea9VMqZEkGyhnPGfYcVv81JUWTljz9znG6mD_7vRR_C_cGsJCd9P9iBDawfwc4wcFfk9ZBd-s0u1Cdd28Q8rSSYf90SydmPdtnvbyC6tiRoeK6zypJIKSCheWhx2bO5voVr3toln5oQyfcnF5GTicufZKq7m5a87xl816s9-Dw9W5yeJ4PoQmK8qdQm3n5yys9ZsmKySgtbCJOKSqZZxQtNtWDO5JpbYXVubGFDIFFLkwnH8yqTVcEfw1bd1PgEiHRCIk0teiNKGK5VgeiPituUoaJ6AnT92UszZCQPwhg3ZfRMqCoDaGUArRxAm8Dbscltn47jX5V3AzRjxQGVCRyssS2HAbsqmQxpcxQXdAIvx9t-qIX4ia6x6XwdkYmMCu_g7f_9yS9g-3xxMStnH-Yfn8I9Fugvkfd3AFseN3wGd8339nq1fB577i-ZZOlz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Feature+Extraction+and+Construction+Using+Genetic+Programming+for+Rotating+Machinery+Fault+Diagnosis&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Peng%2C+Bo&rft.au=Wan%2C+Shuting&rft.au=Bi%2C+Ying&rft.au=Xue%2C+Bing&rft.date=2021-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=51&rft.issue=10&rft.spage=4909&rft_id=info:doi/10.1109%2FTCYB.2020.3032945&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon