Automatic Feature Extraction and Construction Using Genetic Programming for Rotating Machinery Fault Diagnosis
Feature extraction is an essential process in the intelligent fault diagnosis of rotating machinery. Although existing feature extraction methods can obtain representative features from the original signal, domain knowledge and expert experience are often required. In this article, a novel diagnosis...
Saved in:
| Published in: | IEEE transactions on cybernetics Vol. 51; no. 10; pp. 4909 - 4923 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Feature extraction is an essential process in the intelligent fault diagnosis of rotating machinery. Although existing feature extraction methods can obtain representative features from the original signal, domain knowledge and expert experience are often required. In this article, a novel diagnosis approach based on evolutionary learning, namely, automatic feature extraction and construction using genetic programming (AFECGP), is proposed to automatically generate informative and discriminative features from original vibration signals for identifying different fault types of rotating machinery. To achieve this, a new program structure, a new function set, and a new terminal set are developed in AFECGP to allow it to detect important subband signals and extract and construct informative features, automatically and simultaneously. More important, AFECGP can produce a flexible number of features for classification. Having the generated features, <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-Nearest Neighbors is employed to perform fault diagnosis. The performance of the AFECGP-based fault diagnosis approach is evaluated on four fault diagnosis datasets of varying difficulty and compared with 14 baseline methods. The results show that the proposed approach achieves better fault diagnosis accuracy on all the datasets than the competitive methods and can effectively identify different fault conditions of rolling bearing, gear, and rotor. |
|---|---|
| AbstractList | Feature extraction is an essential process in the intelligent fault diagnosis of rotating machinery. Although existing feature extraction methods can obtain representative features from the original signal, domain knowledge and expert experience are often required. In this article, a novel diagnosis approach based on evolutionary learning, namely, automatic feature extraction and construction using genetic programming (AFECGP), is proposed to automatically generate informative and discriminative features from original vibration signals for identifying different fault types of rotating machinery. To achieve this, a new program structure, a new function set, and a new terminal set are developed in AFECGP to allow it to detect important subband signals and extract and construct informative features, automatically and simultaneously. More important, AFECGP can produce a flexible number of features for classification. Having the generated features, [Formula Omitted]-Nearest Neighbors is employed to perform fault diagnosis. The performance of the AFECGP-based fault diagnosis approach is evaluated on four fault diagnosis datasets of varying difficulty and compared with 14 baseline methods. The results show that the proposed approach achieves better fault diagnosis accuracy on all the datasets than the competitive methods and can effectively identify different fault conditions of rolling bearing, gear, and rotor. Feature extraction is an essential process in the intelligent fault diagnosis of rotating machinery. Although existing feature extraction methods can obtain representative features from the original signal, domain knowledge and expert experience are often required. In this article, a novel diagnosis approach based on evolutionary learning, namely, automatic feature extraction and construction using genetic programming (AFECGP), is proposed to automatically generate informative and discriminative features from original vibration signals for identifying different fault types of rotating machinery. To achieve this, a new program structure, a new function set, and a new terminal set are developed in AFECGP to allow it to detect important subband signals and extract and construct informative features, automatically and simultaneously. More important, AFECGP can produce a flexible number of features for classification. Having the generated features, <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-Nearest Neighbors is employed to perform fault diagnosis. The performance of the AFECGP-based fault diagnosis approach is evaluated on four fault diagnosis datasets of varying difficulty and compared with 14 baseline methods. The results show that the proposed approach achieves better fault diagnosis accuracy on all the datasets than the competitive methods and can effectively identify different fault conditions of rolling bearing, gear, and rotor. Feature extraction is an essential process in the intelligent fault diagnosis of rotating machinery. Although existing feature extraction methods can obtain representative features from the original signal, domain knowledge and expert experience are often required. In this article, a novel diagnosis approach based on evolutionary learning, namely, automatic feature extraction and construction using genetic programming (AFECGP), is proposed to automatically generate informative and discriminative features from original vibration signals for identifying different fault types of rotating machinery. To achieve this, a new program structure, a new function set, and a new terminal set are developed in AFECGP to allow it to detect important subband signals and extract and construct informative features, automatically and simultaneously. More important, AFECGP can produce a flexible number of features for classification. Having the generated features, k -Nearest Neighbors is employed to perform fault diagnosis. The performance of the AFECGP-based fault diagnosis approach is evaluated on four fault diagnosis datasets of varying difficulty and compared with 14 baseline methods. The results show that the proposed approach achieves better fault diagnosis accuracy on all the datasets than the competitive methods and can effectively identify different fault conditions of rolling bearing, gear, and rotor.Feature extraction is an essential process in the intelligent fault diagnosis of rotating machinery. Although existing feature extraction methods can obtain representative features from the original signal, domain knowledge and expert experience are often required. In this article, a novel diagnosis approach based on evolutionary learning, namely, automatic feature extraction and construction using genetic programming (AFECGP), is proposed to automatically generate informative and discriminative features from original vibration signals for identifying different fault types of rotating machinery. To achieve this, a new program structure, a new function set, and a new terminal set are developed in AFECGP to allow it to detect important subband signals and extract and construct informative features, automatically and simultaneously. More important, AFECGP can produce a flexible number of features for classification. Having the generated features, k -Nearest Neighbors is employed to perform fault diagnosis. The performance of the AFECGP-based fault diagnosis approach is evaluated on four fault diagnosis datasets of varying difficulty and compared with 14 baseline methods. The results show that the proposed approach achieves better fault diagnosis accuracy on all the datasets than the competitive methods and can effectively identify different fault conditions of rolling bearing, gear, and rotor. |
| Author | Xue, Bing Zhang, Mengjie Bi, Ying Wan, Shuting Peng, Bo |
| Author_xml | – sequence: 1 givenname: Bo orcidid: 0000-0002-4415-4007 surname: Peng fullname: Peng, Bo email: ncepupengbo@163.com organization: Hebei Key Laboratory of Electric Machinery Health Maintenance and Failure Prevention, North China Electric Power University, Baoding, China – sequence: 2 givenname: Shuting surname: Wan fullname: Wan, Shuting email: wanshuting1@sina.com organization: Hebei Key Laboratory of Electric Machinery Health Maintenance and Failure Prevention, North China Electric Power University, Baoding, China – sequence: 3 givenname: Ying orcidid: 0000-0003-2758-6067 surname: Bi fullname: Bi, Ying email: ying.bi@ecs.vuw.ac.nz organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand – sequence: 4 givenname: Bing orcidid: 0000-0002-4865-8026 surname: Xue fullname: Xue, Bing email: bing.xue@ecs.vuw.ac.nz organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand – sequence: 5 givenname: Mengjie orcidid: 0000-0003-4463-9538 surname: Zhang fullname: Zhang, Mengjie email: mengjie.zhang@ecs.vuw.ac.nz organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand |
| BookMark | eNp9kUtPxCAUhYnR-P4Bxk0TN25m5FnoUscZNRmjMbpwRSilI6YFBZrov5dmzCxcyAbuyflu7uUcgG3nnQHgBMEpQrC6eJ69Xk0xxHBKIMEVZVtgH6NSTDDmbHvzLvkeOI7xHeYjslSJXbBHCCZccLoP3OWQfK-S1cXCqDQEU8y_UlA6We8K5Zpi5l1MYVgLL9G6VXFjnBmJx-BXQfX9qLU-FE8-5U65uFf6zToTvouFGrpUXFu1cj7aeAR2WtVFc_x7H4KXxfx5djtZPtzczS6XE00qnCaIkrbCgrIasxqJRlCNaM1QWROhoKK41VyRhjaK60Y0kGaZ6ZK2hNclqwU5BOfrvh_Bfw4mJtnbqE3XKWf8ECWmJS0h5Yxk69kf67sfgsvTScwEYmVFKMwuvnbp4GMMppXajst6lz_LdhJBOaYix1TkmIr8TSWT6A_5EWyvwve_zOmascaYjb_CHAlOyA9qQ5hd |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_3390_app12094749 crossref_primary_10_1109_TIM_2023_3302338 crossref_primary_10_1109_TCYB_2024_3497597 crossref_primary_10_1109_TMECH_2023_3318373 crossref_primary_10_3390_electronics11020257 crossref_primary_10_1088_1361_6501_ad1c49 crossref_primary_10_1016_j_neucom_2022_04_111 crossref_primary_10_1109_TIM_2024_3363791 crossref_primary_10_1016_j_knosys_2023_110345 crossref_primary_10_1088_1361_6501_ad0ca6 crossref_primary_10_1155_2024_4418858 crossref_primary_10_2478_mspe_2024_0044 crossref_primary_10_1109_TSMC_2023_3346398 crossref_primary_10_1002_rob_22124 crossref_primary_10_1016_j_compag_2025_109949 crossref_primary_10_1109_TIM_2023_3280503 crossref_primary_10_1016_j_eswa_2023_119642 crossref_primary_10_1007_s10044_023_01149_9 crossref_primary_10_1109_TCYB_2022_3195355 crossref_primary_10_1109_TCYB_2022_3158697 crossref_primary_10_1016_j_engappai_2024_109550 crossref_primary_10_1177_01423312231198953 crossref_primary_10_1080_0952813X_2023_2183267 crossref_primary_10_1145_3603704 crossref_primary_10_3390_e24050681 crossref_primary_10_1016_j_apacoust_2024_109940 crossref_primary_10_7717_peerj_cs_1061 crossref_primary_10_1177_14759217241295951 crossref_primary_10_1108_ECAM_11_2024_1595 crossref_primary_10_1109_TIM_2023_3335512 crossref_primary_10_3390_pr11071972 crossref_primary_10_1080_03036758_2022_2090966 crossref_primary_10_1109_JIOT_2024_3463718 crossref_primary_10_1109_TCYB_2024_3474651 crossref_primary_10_1016_j_eswa_2024_123839 crossref_primary_10_1016_j_eswa_2025_129054 crossref_primary_10_1016_j_asoc_2023_110412 crossref_primary_10_1109_TCSS_2024_3406377 crossref_primary_10_1109_TCYB_2024_3372070 crossref_primary_10_3390_a15100347 crossref_primary_10_1109_TEVC_2024_3388725 crossref_primary_10_3390_s25164993 crossref_primary_10_1016_j_swevo_2024_101571 crossref_primary_10_1109_TR_2023_3311769 crossref_primary_10_1038_s41598_024_80033_w crossref_primary_10_1088_2631_8695_adc8ff crossref_primary_10_1016_j_solener_2025_113554 crossref_primary_10_1109_TCYB_2022_3162957 crossref_primary_10_2478_cait_2022_0045 crossref_primary_10_3390_s22155720 crossref_primary_10_1080_10589759_2024_2398687 crossref_primary_10_1109_TEVC_2021_3097043 crossref_primary_10_3390_electronics14153146 crossref_primary_10_1049_cth2_12783 crossref_primary_10_1109_TCYB_2021_3085476 crossref_primary_10_1177_14759217241290537 crossref_primary_10_1080_0952813X_2023_2165717 |
| Cites_doi | 10.1103/PhysRevLett.88.174102 10.1109/TCYB.2015.2404806 10.1109/TIE.2018.2879308 10.1016/j.sigpro.2016.09.004 10.1109/CEC.2011.5949624 10.1016/j.ymssp.2018.10.010 10.1007/978-3-030-58112-1_1 10.1016/j.eswa.2012.02.123 10.1109/ACCESS.2019.2918560 10.1016/j.patcog.2019.05.006 10.1109/TEVC.2020.3002229 10.1109/TSMCB.2004.841426 10.1109/LSP.2016.2542881 10.1016/j.ymssp.2016.09.010 10.1109/ACCESS.2018.2837621 10.1016/j.ymssp.2017.12.034 10.1098/rspa.1998.0193 10.1109/TIE.2015.2509913 10.1109/TSP.2013.2288675 10.1016/j.ymssp.2019.106587 10.1109/TEVC.2011.2166158 10.1109/TKDE.2005.182 10.1109/TCYB.2020.2970198 10.1109/TETCI.2017.2743758 10.1109/SMC.2015.19 10.1016/j.measurement.2018.12.009 10.1152/ajpheart.2000.278.6.H2039 10.1016/j.sigpro.2017.03.019 10.1016/j.ymssp.2015.02.020 10.1080/03036758.2019.1609052 10.1016/j.ymssp.2017.03.035 10.1016/j.neucom.2018.05.002 10.1016/j.jsv.2017.12.028 10.1109/TCYB.2013.2286611 10.1007/s10115-014-0761-z 10.1098/rspa.2006.1761 10.1007/978-1-4615-4329-9_13 10.1109/TNSRE.2007.897025 10.1016/j.ymssp.2015.10.007 10.1016/j.ymssp.2015.11.024 10.1016/j.ymssp.2018.12.034 10.1016/j.mechmachtheory.2013.08.014 10.1103/PhysRevE.71.021906 10.1016/j.neucom.2017.11.016 10.1142/S1793536909000047 10.1109/TIE.2015.2417501 10.1109/MCI.2020.2976186 10.1016/j.asoc.2019.04.039 10.1016/j.knosys.2018.09.004 10.1109/ACCESS.2018.2851966 10.1109/TIE.2014.2327589 10.1109/TEVC.2015.2504420 10.1109/TIE.2016.2582729 10.1162/evco.1995.3.2.199 10.1109/TIE.2018.2844805 10.1109/TCYB.2020.2964566 10.1016/j.ymssp.2018.02.016 10.1109/TEVC.2017.2683489 10.1007/978-3-319-77538-8_29 10.1016/j.ymssp.2016.12.040 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2020.3032945 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Aerospace Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 4923 |
| ExternalDocumentID | 10_1109_TCYB_2020_3032945 9271873 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Hebei Province grantid: E2019502064 funderid: 10.13039/501100003787 – fundername: Science for Technological Innovation Challenge Fund grantid: E3603/2903 – fundername: MBIE Data Science SSIF Fund grantid: RTVU1914 – fundername: National Natural Science Foundation of China grantid: 61876169 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 51777075 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for Central Universities grantid: 2019QN131 funderid: 10.13039/501100012226 – fundername: Marsden Fund of New Zealand Government grantid: VUW1509; VUW1615 funderid: 10.13039/501100009193 – fundername: Joint Postgraduate Training Program of North China Electric Power University funderid: 10.13039/501100007845 – fundername: University Research Fund at Victoria University of Wellington grantid: 223805/3986 funderid: 10.13039/501100001538 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c392t-143f92845b25b18d84c14b516b38a0a42fc7a3d4da7cd8d0438a5c64f37b65b83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 74 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000706832000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Wed Oct 01 14:42:53 EDT 2025 Mon Jun 30 06:18:11 EDT 2025 Tue Nov 18 22:28:57 EST 2025 Sat Nov 29 02:02:32 EST 2025 Wed Aug 27 02:26:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c392t-143f92845b25b18d84c14b516b38a0a42fc7a3d4da7cd8d0438a5c64f37b65b83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2758-6067 0000-0002-4865-8026 0000-0002-4415-4007 0000-0003-4463-9538 |
| PMID | 33237874 |
| PQID | 2581569340 |
| PQPubID | 85422 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2581569340 crossref_citationtrail_10_1109_TCYB_2020_3032945 ieee_primary_9271873 crossref_primary_10_1109_TCYB_2020_3032945 proquest_miscellaneous_2464604753 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-01 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 fortin (ref65) 2012; 13 ref59 ref15 ref14 ref53 ref52 pedregosa (ref66) 2011; 12 ref55 ref11 ref54 ref10 ref17 xuan (ref45) 2005; 11 ref16 ref19 ref18 ref51 maaten (ref68) 2008; 9 ref50 ref46 narendiranath babu (ref58) 2014; 16 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref34 ref37 ref31 ref30 ref33 ref32 bi (ref36) 2018; 39 ref2 ref1 ref39 ref38 (ref61) 2018 ref24 ref67 ref23 ref26 ref25 ref64 ref20 ref63 ref22 ref21 ref28 ref27 ref29 koza (ref35) 1992 ref60 ref62 |
| References_xml | – ident: ref21 doi: 10.1103/PhysRevLett.88.174102 – ident: ref41 doi: 10.1109/TCYB.2015.2404806 – ident: ref51 doi: 10.1109/TIE.2018.2879308 – ident: ref13 doi: 10.1016/j.sigpro.2016.09.004 – ident: ref48 doi: 10.1109/CEC.2011.5949624 – ident: ref62 doi: 10.1016/j.ymssp.2018.10.010 – ident: ref67 doi: 10.1007/978-3-030-58112-1_1 – ident: ref49 doi: 10.1016/j.eswa.2012.02.123 – ident: ref25 doi: 10.1109/ACCESS.2019.2918560 – ident: ref56 doi: 10.1016/j.patcog.2019.05.006 – ident: ref47 doi: 10.1109/TEVC.2020.3002229 – ident: ref44 doi: 10.1109/TSMCB.2004.841426 – ident: ref22 doi: 10.1109/LSP.2016.2542881 – ident: ref26 doi: 10.1016/j.ymssp.2016.09.010 – ident: ref63 doi: 10.1109/ACCESS.2018.2837621 – ident: ref4 doi: 10.1016/j.ymssp.2017.12.034 – ident: ref5 doi: 10.1098/rspa.1998.0193 – ident: ref59 doi: 10.1109/TIE.2015.2509913 – ident: ref11 doi: 10.1109/TSP.2013.2288675 – ident: ref60 doi: 10.1016/j.ymssp.2019.106587 – volume: 16 start-page: 1602 year: 2014 ident: ref58 article-title: Application of butterworth filter for fault diagnosis on journal bearing publication-title: J Vibroeng – ident: ref54 doi: 10.1109/TEVC.2011.2166158 – ident: ref53 doi: 10.1109/TKDE.2005.182 – ident: ref52 doi: 10.1109/TCYB.2020.2970198 – ident: ref38 doi: 10.1109/TETCI.2017.2743758 – ident: ref32 doi: 10.1109/SMC.2015.19 – ident: ref64 doi: 10.1016/j.measurement.2018.12.009 – ident: ref19 doi: 10.1152/ajpheart.2000.278.6.H2039 – ident: ref15 doi: 10.1016/j.sigpro.2017.03.019 – volume: 12 start-page: 2825 year: 2011 ident: ref66 article-title: Scikit-learn: Machine learning in Python publication-title: J Mach Learn Res – ident: ref12 doi: 10.1016/j.ymssp.2015.02.020 – ident: ref39 doi: 10.1080/03036758.2019.1609052 – ident: ref10 doi: 10.1016/j.ymssp.2017.03.035 – ident: ref18 doi: 10.1016/j.neucom.2018.05.002 – ident: ref16 doi: 10.1016/j.jsv.2017.12.028 – ident: ref42 doi: 10.1109/TCYB.2013.2286611 – ident: ref31 doi: 10.1007/s10115-014-0761-z – volume: 11 start-page: 37 year: 2005 ident: ref45 article-title: Gear fault classification using genetic programming and support vector machines publication-title: Int J Inf Technol – ident: ref6 doi: 10.1098/rspa.2006.1761 – volume: 9 start-page: 2579 year: 2008 ident: ref68 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – ident: ref57 doi: 10.1007/978-1-4615-4329-9_13 – ident: ref20 doi: 10.1109/TNSRE.2007.897025 – ident: ref30 doi: 10.1016/j.ymssp.2015.10.007 – year: 2018 ident: ref61 publication-title: Case Western Reserve University Bearing Data Center – ident: ref9 doi: 10.1016/j.ymssp.2015.11.024 – ident: ref14 doi: 10.1016/j.ymssp.2018.12.034 – ident: ref7 doi: 10.1016/j.mechmachtheory.2013.08.014 – ident: ref24 doi: 10.1103/PhysRevE.71.021906 – volume: 13 start-page: 2171 year: 2012 ident: ref65 article-title: DEAP: Evolutionary algorithms made easy publication-title: J Mach Learn Res – ident: ref17 doi: 10.1016/j.neucom.2017.11.016 – ident: ref8 doi: 10.1142/S1793536909000047 – volume: 39 start-page: 3 year: 2018 ident: ref36 article-title: A survey on genetic programming to image analysis publication-title: Journal of Zhengzhou University Engineering Science – ident: ref2 doi: 10.1109/TIE.2015.2417501 – ident: ref43 doi: 10.1109/MCI.2020.2976186 – ident: ref55 doi: 10.1016/j.asoc.2019.04.039 – ident: ref27 doi: 10.1016/j.knosys.2018.09.004 – ident: ref29 doi: 10.1109/ACCESS.2018.2851966 – ident: ref3 doi: 10.1109/TIE.2014.2327589 – year: 1992 ident: ref35 publication-title: Genetic Programming On the Programming of Computers by Means of Natural Selection – ident: ref28 doi: 10.1109/TEVC.2015.2504420 – ident: ref33 doi: 10.1109/TIE.2016.2582729 – ident: ref46 doi: 10.1162/evco.1995.3.2.199 – ident: ref34 doi: 10.1109/TIE.2018.2844805 – ident: ref40 doi: 10.1109/TCYB.2020.2964566 – ident: ref1 doi: 10.1016/j.ymssp.2018.02.016 – ident: ref37 doi: 10.1109/TEVC.2017.2683489 – ident: ref50 doi: 10.1007/978-3-319-77538-8_29 – ident: ref23 doi: 10.1016/j.ymssp.2016.12.040 |
| SSID | ssj0000816898 |
| Score | 2.5546494 |
| Snippet | Feature extraction is an essential process in the intelligent fault diagnosis of rotating machinery. Although existing feature extraction methods can obtain... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4909 |
| SubjectTerms | Datasets Entropy Fault diagnosis feature construction Feature extraction Genetic algorithms Genetic programming genetic programming (GP) Machinery Roller bearings Rotating machinery Task analysis Vibrations |
| Title | Automatic Feature Extraction and Construction Using Genetic Programming for Rotating Machinery Fault Diagnosis |
| URI | https://ieeexplore.ieee.org/document/9271873 https://www.proquest.com/docview/2581569340 https://www.proquest.com/docview/2464604753 |
| Volume | 51 |
| WOSCitedRecordID | wos000706832000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9UwFD5swwdf1DnFq3NE8EHFujRJf-Rxzl180DFkyvWppMkJDLZW7m1F_3tP0tyCKIJPTdsklJ6T5JycL-cDeI45t6URKvOtFuSgYJtpgTZDL3zurfc6ogm_fKjOz-vVSl_swOv5LAwiRvAZvgnFGMt3vR3DVtmxFjSTVnIXdquqnM5qzfspkUAiUt8KKmRkVVQpiJlzfXx5-vUtOYOCfFQuhVaBsEZKIUld1W8rUqRY-WNejovN8u7_feY9uJOMSnYyacE-7GB3H_bTsN2wFym39MsD6E7GoY9ZWlkw_sY1srMfw3o63cBM51hg8NzmlGURUMBC89DiYsJy3YRnZOuyT32I49PNx4jIxPVPtjTj9cDeTfi9q80D-Lw8uzx9nyXKhcySoTRkZD15TStW0YqizWtXK5urtsjLVtaGGyW8rYx0ypnKutqFMKIpbKm8rNqyaGv5EPa6vsNHwAqvCuS5QzKhlJVG14h01dLlAjU3C-Db397YlI880GJcN9Ev4boJQmuC0JoktAW8mpt8m5Jx_KvyQRDNXDFJZQGHW9k2abhuGlGEpDlaKr6AZ_NrGmghemI67Eeqo0pVckXu3eO_9_wEbosAeIlIv0PYI1nhU7hlvw9Xm_UR6eyqPoo6-wvVe-cQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9UwFD5sU5gv6tzEO6dG8EFl3dL8aJvHOXeZeHcZcpX5VNLkBAazHfe2ov-9SdpbEEXwqWmblNIvac7J-XI-gFeYUpNpJhJXKeYdFKwSxdAk6JhLnXFORTbhl1k-nxdXV-pyAw7HvTCIGMlneBSKMZZvG9OFpbJjxfyfNOebcCcoZ8l-t9a4ohIlJKL4LfOFxNsV-RDGTKk6Xpx-fefdQea9VMqZEkGyhnPGfYcVv81JUWTljz9znG6mD_7vRR_C_cGsJCd9P9iBDawfwc4wcFfk9ZBd-s0u1Cdd28Q8rSSYf90SydmPdtnvbyC6tiRoeK6zypJIKSCheWhx2bO5voVr3toln5oQyfcnF5GTicufZKq7m5a87xl816s9-Dw9W5yeJ4PoQmK8qdQm3n5yys9ZsmKySgtbCJOKSqZZxQtNtWDO5JpbYXVubGFDIFFLkwnH8yqTVcEfw1bd1PgEiHRCIk0teiNKGK5VgeiPituUoaJ6AnT92UszZCQPwhg3ZfRMqCoDaGUArRxAm8Dbscltn47jX5V3AzRjxQGVCRyssS2HAbsqmQxpcxQXdAIvx9t-qIX4ia6x6XwdkYmMCu_g7f_9yS9g-3xxMStnH-Yfn8I9Fugvkfd3AFseN3wGd8339nq1fB577i-ZZOlz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Feature+Extraction+and+Construction+Using+Genetic+Programming+for+Rotating+Machinery+Fault+Diagnosis&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Peng%2C+Bo&rft.au=Wan%2C+Shuting&rft.au=Bi%2C+Ying&rft.au=Xue%2C+Bing&rft.date=2021-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=51&rft.issue=10&rft.spage=4909&rft_id=info:doi/10.1109%2FTCYB.2020.3032945&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |