Oxy-fuel combustion study of biomass fuels in a 20 kWth fluidized bed combustor
•3 biomass fuels were tested in a BFB under air and oxy-fuel combustion conditions.•Similar temperature profiles found for combustion in air and in 30% O2/70% CO2.•Lower CO emission found for oxy combustion when O2 in O2/CO2 mixture is over 25%.•Similar NOx emissions found for biomass combustion in...
Uloženo v:
| Vydáno v: | Fuel (Guildford) Ročník 215; s. 778 - 786 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Kidlington
Elsevier Ltd
01.03.2018
Elsevier BV |
| Témata: | |
| ISSN: | 0016-2361, 1873-7153 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •3 biomass fuels were tested in a BFB under air and oxy-fuel combustion conditions.•Similar temperature profiles found for combustion in air and in 30% O2/70% CO2.•Lower CO emission found for oxy combustion when O2 in O2/CO2 mixture is over 25%.•Similar NOx emissions found for biomass combustion in air and in 30% O2/70% CO2.•Freeboard temperature plays a major role influencing both CO and NOx emissions.
Oxy-fuel combustion is one of the promising carbon capture technologies considered to be suitable for future commercial applications with stationary combustion plants. Although more and more biomass and waste are now being burned in stationary combustion plants, research on oxy-fuel combustion of biomass has received much less attention in comparison to oxy-fuel combustion of coal. In this work, a series of tests was carried out in a 20 kWth fluidized bed combustor under oxy-fuel conditions firing two non-woody fuels (miscanthus and straw pellets) and one woody fuel (domestic wood pellet). The effects of the combustion atmosphere (air and oxy-fuel) and oxygen concentration in the oxidant of the oxy-fuel combustion on gas emissions and temperature profiles were systematically studied with the overall excess oxygen coefficient in the combustor being maintained roughly constant throughout the tests. The experimental results showed that replacing the air with an oxy-fuel oxidant of 21 vol% O2 and 79 vol% CO2 resulted in a significant decrease in combustion temperature and ultimately led to the extinction of the biomass flame due to the larger specific heat of CO2 compared to N2. To keep a similar temperature profile to that achieved under the air combustion conditions, the oxygen concentration in the oxidant of O2/CO2 mixture had to be increased to 30 vol%. A drastic decrease in CO emissions was observed for all three biomass fuels (up to 80% reduction when firing straw) under oxy-fuel combustion conditions providing that the oxygen concentration in the oxidant of O2/CO2 mixture was above 25 vol%. NOx emissions were found to decrease with the oxygen concentration in the oxy-fuel oxidant, due to i) the increase of bed temperature, which implies more volatile-N released and converted in the dense bed zone and ii) the less dilution of the gases inside the dense bed zone, which leads to a higher CO concentration in this region enhancing the reduction of NOx. Similar NOx emissions to those obtained with air combustion were found when the oxygen concentration in the oxy-fuel oxidant was kept at 30 vol%. Further analysis of the experimental results showed that the gas emissions when firing the non-woody fuels were controlled mainly by the freeboard temperature instead of the dense bed region temperature due to the characteristically high volatile matter content and fines of this kind of biomass fuels. |
|---|---|
| AbstractList | •3 biomass fuels were tested in a BFB under air and oxy-fuel combustion conditions.•Similar temperature profiles found for combustion in air and in 30% O2/70% CO2.•Lower CO emission found for oxy combustion when O2 in O2/CO2 mixture is over 25%.•Similar NOx emissions found for biomass combustion in air and in 30% O2/70% CO2.•Freeboard temperature plays a major role influencing both CO and NOx emissions.
Oxy-fuel combustion is one of the promising carbon capture technologies considered to be suitable for future commercial applications with stationary combustion plants. Although more and more biomass and waste are now being burned in stationary combustion plants, research on oxy-fuel combustion of biomass has received much less attention in comparison to oxy-fuel combustion of coal. In this work, a series of tests was carried out in a 20 kWth fluidized bed combustor under oxy-fuel conditions firing two non-woody fuels (miscanthus and straw pellets) and one woody fuel (domestic wood pellet). The effects of the combustion atmosphere (air and oxy-fuel) and oxygen concentration in the oxidant of the oxy-fuel combustion on gas emissions and temperature profiles were systematically studied with the overall excess oxygen coefficient in the combustor being maintained roughly constant throughout the tests. The experimental results showed that replacing the air with an oxy-fuel oxidant of 21 vol% O2 and 79 vol% CO2 resulted in a significant decrease in combustion temperature and ultimately led to the extinction of the biomass flame due to the larger specific heat of CO2 compared to N2. To keep a similar temperature profile to that achieved under the air combustion conditions, the oxygen concentration in the oxidant of O2/CO2 mixture had to be increased to 30 vol%. A drastic decrease in CO emissions was observed for all three biomass fuels (up to 80% reduction when firing straw) under oxy-fuel combustion conditions providing that the oxygen concentration in the oxidant of O2/CO2 mixture was above 25 vol%. NOx emissions were found to decrease with the oxygen concentration in the oxy-fuel oxidant, due to i) the increase of bed temperature, which implies more volatile-N released and converted in the dense bed zone and ii) the less dilution of the gases inside the dense bed zone, which leads to a higher CO concentration in this region enhancing the reduction of NOx. Similar NOx emissions to those obtained with air combustion were found when the oxygen concentration in the oxy-fuel oxidant was kept at 30 vol%. Further analysis of the experimental results showed that the gas emissions when firing the non-woody fuels were controlled mainly by the freeboard temperature instead of the dense bed region temperature due to the characteristically high volatile matter content and fines of this kind of biomass fuels. Oxy-fuel combustion is one of the promising carbon capture technologies considered to be suitable for future commercial applications with stationary combustion plants. Although more and more biomass and waste are now being burned in stationary combustion plants, research on oxy-fuel combustion of biomass has received much less attention in comparison to oxy-fuel combustion of coal. In this work, a series of tests was carried out in a 20 kWth fluidized bed combustor under oxy-fuel conditions firing two non-woody fuels (miscanthus and straw pellets) and one woody fuel (domestic wood pellet). The effects of the combustion atmosphere (air and oxy-fuel) and oxygen concentration in the oxidant of the oxy-fuel combustion on gas emissions and temperature profiles were systematically studied with the overall excess oxygen coefficient in the combustor being maintained roughly constant throughout the tests. The experimental results showed that replacing the air with an oxy-fuel oxidant of 21 vol% O2 and 79 vol% CO2 resulted in a significant decrease in combustion temperature and ultimately led to the extinction of the biomass flame due to the larger specific heat of CO2 compared to N2. To keep a similar temperature profile to that achieved under the air combustion conditions, the oxygen concentration in the oxidant of O2/CO2 mixture had to be increased to 30 voI%. A drastic decrease in CO emissions was observed for all three biomass fuels (up to 80% reduction when firing straw) under oxy-fuel combustion conditions providing that the oxygen concentration in the oxidant of O2/CO2 mixture was above 25 vol%. NOx emissions were found to decrease with the oxygen concentration in the oxy-fuel oxidant, due to i) the increase of bed temperature, which implies more volatile-N released and converted in the dense bed zone and ii) the less dilution of the gases inside the dense bed zone, which leads to a higher CO concentration in this region enhancing the reduction of NOx. Similar NOx emissions to those obtained with air combustion were found when the oxygen concentration in the oxy-fuel oxidant was kept at 30 vol%. Further analysis of the experimental results showed that the gas emissions when firing the non-woody fuels were controlled mainly by the freeboard temperature instead of the dense bed region temperature due to the characteristically high volatile matter content and fines of this kind of biomass fuels. |
| Author | Liu, Hao Snape, Colin Pans, Miguel A. Sher, Farooq Sun, Chenggong |
| Author_xml | – sequence: 1 givenname: Farooq surname: Sher fullname: Sher, Farooq – sequence: 2 givenname: Miguel A. surname: Pans fullname: Pans, Miguel A. – sequence: 3 givenname: Chenggong surname: Sun fullname: Sun, Chenggong – sequence: 4 givenname: Colin orcidid: 0000-0002-6671-8766 surname: Snape fullname: Snape, Colin – sequence: 5 givenname: Hao orcidid: 0000-0003-0658-4425 surname: Liu fullname: Liu, Hao email: Liu.Hao@nottingham.ac.uk |
| BookMark | eNp9kM9KAzEQh4NUsK2-gKeA510zyXZ3A16k-A8KRVA8hmw2waztpia7Yj35Rr6TT2KW9uShh2Fg-H0zyTdBo9a1GqFzICkQyC-b1PR6lVICRQqQEsaP0BjKgiUFzNgIjUlMJZTlcIImITSEkKKcZWP0uPzcJgOLlVtXfeisa3Ho-nqLncGVdWsZAh4CAdsWS0zJ7_fP20v3is2qt7X90jWuYu1x50_RsZGroM_2fYqeb2-e5vfJYnn3ML9eJIpxypMZ5IpXND4PKgIcsiKXhMsslyVXOasoy4qiYoqqXA8zQrjmShqjC50bY9gUXez2brx773XoRON638aTghJGGY8bIaboLqW8C8FrIzberqXfCiBiUCcaMfxODOoEgIjqIlT-g5Tt5KCm89KuDqNXOzQK0x9WexGU1a3StfVadaJ29hD-B5JOjGY |
| CitedBy_id | crossref_primary_10_1016_j_energy_2020_118327 crossref_primary_10_1007_s11356_020_11463_y crossref_primary_10_1016_j_cej_2024_150732 crossref_primary_10_1016_j_energy_2020_118444 crossref_primary_10_1016_j_fuel_2020_118506 crossref_primary_10_1016_j_powtec_2024_120464 crossref_primary_10_1016_j_enconman_2020_113479 crossref_primary_10_1016_j_ces_2021_117368 crossref_primary_10_1016_j_sajce_2024_02_004 crossref_primary_10_1016_j_jes_2020_12_005 crossref_primary_10_1016_j_biombioe_2021_106055 crossref_primary_10_3390_en14175297 crossref_primary_10_1016_j_fuel_2020_119312 crossref_primary_10_1016_j_fuel_2020_117894 crossref_primary_10_1002_er_6302 crossref_primary_10_1016_j_renene_2025_123469 crossref_primary_10_1016_j_cej_2020_124679 crossref_primary_10_3390_su11236539 crossref_primary_10_1016_j_nexus_2025_100517 crossref_primary_10_1016_j_cjche_2019_07_013 crossref_primary_10_1016_j_cherd_2019_10_043 crossref_primary_10_1016_j_fuel_2023_127699 crossref_primary_10_1016_j_seta_2021_101913 crossref_primary_10_1016_j_fuel_2023_130344 crossref_primary_10_1088_1742_6596_1831_1_012033 crossref_primary_10_1016_j_partic_2022_08_016 crossref_primary_10_1016_j_fuel_2019_115914 crossref_primary_10_1016_j_cjche_2018_06_033 crossref_primary_10_1016_j_fuel_2020_117639 crossref_primary_10_1016_j_rser_2023_113614 crossref_primary_10_1016_j_biortech_2022_127774 crossref_primary_10_1016_j_renene_2021_12_072 crossref_primary_10_1016_j_fuel_2021_122140 crossref_primary_10_1016_j_fuel_2018_11_122 crossref_primary_10_3390_pr7090556 crossref_primary_10_1016_j_jenvman_2020_110411 crossref_primary_10_1016_j_cnt_2025_100004 crossref_primary_10_1016_j_energy_2019_116756 crossref_primary_10_1016_j_cjche_2025_03_001 crossref_primary_10_1016_j_jclepro_2022_133484 crossref_primary_10_3390_en12132469 crossref_primary_10_1016_j_fuel_2024_133485 crossref_primary_10_1016_j_rser_2019_109529 crossref_primary_10_1016_j_cej_2019_123727 crossref_primary_10_1016_j_enconman_2019_112266 crossref_primary_10_1016_j_fuel_2021_120133 crossref_primary_10_1016_j_energy_2023_127771 crossref_primary_10_1016_j_fuel_2022_126087 crossref_primary_10_3390_en12091801 crossref_primary_10_3390_en15030706 crossref_primary_10_3390_pr7100705 crossref_primary_10_1016_j_ijhydene_2020_12_086 crossref_primary_10_1016_j_fuel_2022_123779 crossref_primary_10_32604_EE_2021_014870 crossref_primary_10_1007_s40789_022_00531_y crossref_primary_10_1016_j_energy_2020_117352 crossref_primary_10_3390_en14217027 crossref_primary_10_3390_en15186514 crossref_primary_10_3390_app10041362 crossref_primary_10_1051_e3sconf_201913701032 crossref_primary_10_1016_j_jclepro_2020_120511 crossref_primary_10_1016_j_fuel_2020_119516 crossref_primary_10_1016_j_wasman_2021_01_028 crossref_primary_10_3390_fermentation7040268 crossref_primary_10_1016_j_fuel_2022_125882 crossref_primary_10_1007_s42452_025_06907_4 crossref_primary_10_1016_j_applthermaleng_2025_125768 crossref_primary_10_1016_j_fuel_2019_116109 crossref_primary_10_1016_j_fuel_2019_116588 crossref_primary_10_1016_j_renene_2024_120290 crossref_primary_10_1016_j_csite_2025_106301 crossref_primary_10_1016_j_rser_2019_109426 crossref_primary_10_3390_en14248321 crossref_primary_10_1016_j_energy_2018_09_198 crossref_primary_10_1016_j_fuel_2019_03_069 crossref_primary_10_1016_j_joei_2019_11_005 crossref_primary_10_1002_app_47941 crossref_primary_10_1016_j_applthermaleng_2024_125111 crossref_primary_10_1002_er_4792 crossref_primary_10_1016_j_renene_2020_12_122 crossref_primary_10_3390_en15103742 crossref_primary_10_1002_cjce_25600 crossref_primary_10_1016_j_cej_2024_157727 crossref_primary_10_1007_s13399_023_04020_3 crossref_primary_10_1016_j_fuel_2025_136244 crossref_primary_10_1016_j_apenergy_2020_114531 crossref_primary_10_3390_pr7040179 crossref_primary_10_1088_1742_6596_1398_1_012006 crossref_primary_10_1016_j_enconman_2022_115569 crossref_primary_10_1016_j_seppur_2024_127110 crossref_primary_10_1007_s13399_020_00690_5 crossref_primary_10_1016_j_energy_2022_126602 crossref_primary_10_1016_j_cej_2020_127093 crossref_primary_10_3390_en12193660 crossref_primary_10_1016_j_energy_2022_123573 crossref_primary_10_1093_ce_zky009 crossref_primary_10_1016_j_energy_2020_117020 crossref_primary_10_1016_j_fuproc_2021_106998 crossref_primary_10_1016_j_fuel_2024_131265 crossref_primary_10_3390_en14154638 crossref_primary_10_1080_15567036_2019_1682722 crossref_primary_10_1016_j_applthermaleng_2022_119334 crossref_primary_10_1016_j_energy_2019_03_090 crossref_primary_10_1016_j_mset_2021_08_009 crossref_primary_10_1016_j_combustflame_2021_111929 crossref_primary_10_1016_j_jenvman_2022_116498 crossref_primary_10_1155_ijce_7195300 crossref_primary_10_1016_j_powtec_2021_09_049 crossref_primary_10_1186_s13068_022_02203_0 crossref_primary_10_1016_j_energy_2022_124560 crossref_primary_10_1016_j_rser_2024_115229 crossref_primary_10_1016_j_jclepro_2021_128882 crossref_primary_10_1016_j_jclepro_2021_126101 crossref_primary_10_3390_en12040699 crossref_primary_10_1007_s11814_024_00092_7 crossref_primary_10_1016_j_energy_2021_121821 crossref_primary_10_1016_j_jclepro_2019_118239 crossref_primary_10_1016_j_jhazmat_2018_11_026 crossref_primary_10_1016_j_ces_2024_119735 |
| Cites_doi | 10.1016/j.fuel.2013.06.016 10.1016/j.ces.2014.05.018 10.1021/ef9900278 10.1016/j.cherd.2009.02.005 10.1016/S0360-1285(02)00031-X 10.1007/978-3-642-02682-9_4 10.1016/j.proci.2010.06.033 10.1016/j.pecs.2010.02.001 10.1016/j.ijggc.2011.10.009 10.1016/j.fuel.2005.01.002 10.1016/j.fuel.2015.02.023 10.1016/j.rser.2016.04.021 10.1016/j.fuproc.2010.09.031 10.1016/j.fuproc.2016.02.037 10.1016/S0016-2361(01)00170-3 10.1016/S0306-2619(02)00194-0 10.1021/ef901076g 10.1016/j.rser.2011.02.015 10.1021/es504667r 10.1016/j.pecs.2015.09.003 10.1016/j.fuel.2015.01.110 10.1016/j.fuel.2004.11.018 10.1016/j.ijggc.2011.05.020 10.1016/j.ijggc.2011.01.007 10.1021/ie0711832 10.1016/S0016-2361(01)00131-4 10.1016/S0016-2361(00)00197-6 10.1073/pnas.1108765109 10.1002/cjce.5450780217 10.1002/er.3486 10.1016/j.proci.2006.08.102 10.1016/j.fuel.2014.07.078 10.1016/j.fuel.2006.10.001 10.1016/S0378-3820(97)00059-3 10.1016/j.fuel.2005.08.010 10.1016/j.fuproc.2012.09.030 10.1016/j.fuproc.2015.07.021 10.1016/j.fuproc.2005.12.003 |
| ContentType | Journal Article |
| Copyright | 2017 The Author(s) Copyright Elsevier BV Mar 1, 2018 |
| Copyright_xml | – notice: 2017 The Author(s) – notice: Copyright Elsevier BV Mar 1, 2018 |
| DBID | 6I. AAFTH AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
| DOI | 10.1016/j.fuel.2017.11.039 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-7153 |
| EndPage | 786 |
| ExternalDocumentID | 10_1016_j_fuel_2017_11_039 S0016236117314369 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSK SSR SSZ T5K TWZ WH7 ZMT ~02 ~G- 29H 8WZ 9DU A6W AAQXK AATTM AAXKI AAYWO AAYXX ABDEX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SCB SEW VH1 WUQ XPP ZY4 ~HD 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD AGCQF C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
| ID | FETCH-LOGICAL-c3929-516c9b27151b0191476a09a46a89c63b23477b3c2c6e6a89009e9caffe7e6fff3 |
| ISSN | 0016-2361 |
| IngestDate | Wed Aug 13 06:27:44 EDT 2025 Tue Nov 18 22:32:12 EST 2025 Sat Nov 29 07:29:41 EST 2025 Fri Feb 23 02:46:06 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | NOx and CO emissions Biomass combustion Fluidized bed combustion Carbon capture Oxy-fuel combustion |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c3929-516c9b27151b0191476a09a46a89c63b23477b3c2c6e6a89009e9caffe7e6fff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0658-4425 0000-0002-6671-8766 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.fuel.2017.11.039 |
| PQID | 2032394761 |
| PQPubID | 2045474 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2032394761 crossref_primary_10_1016_j_fuel_2017_11_039 crossref_citationtrail_10_1016_j_fuel_2017_11_039 elsevier_sciencedirect_doi_10_1016_j_fuel_2017_11_039 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-03-01 |
| PublicationDateYYYYMMDD | 2018-03-01 |
| PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Fuel (Guildford) |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Duan, Zhao, Zhou, Qu, Chen (b0055) 2011; 92 Molina, Shaddix (b0130) 2007; 31 Shimizu, Toyono, Ohsawa (b0165) 2007; 86 Liu, Gibbs (b0160) 2002; 81 Andersson, Normann, Johnsson, Leckner (b0205) 2008; 47 Jenkins, Baxter, Miles, Miles (b0095) 1998; 54 Lackner, Brennan, Matter, Park, Wright, van der Zwaan (b0015) 2012; 109 Aarna, Suuberg (b0180) 1999; 13 de las Obras-Loscertales, Mendiara, Rufas, de Diego, García-Labiano, Gayán (b0075) 2015; 150 Jia, Tan, Anthony (b0085) 2010; 24 Croiset, Thambimuthu, Palmer (b0040) 2000; 78 Roy, Chen, Bhattacharya (b0065) 2014; 48 Liu, Zailani, Gibbs (b0200) 2005; 84 Kumar, Singh (b0125) 2016; 148 Duan, Duan, Zhao, Anthony (b0105) 2015; 150 Czakiert, Bis, Muskala, Nowak (b0190) 2006; 87 Díez, Lupiáñez, Guedea, Bolea, Romeo (b0215) 2015; 139 Liu, Zailani, Gibbs (b0140) 2005; 84 Hofbauer, Beisheim, Dieter, Scheffknecht (b0070) 2014 Toftegaard, Brix, Jensen, Glarborg, Jensen (b0025) 2010; 36 Winter F. Formation and reduction of pollutants in cfbc: from heavy metals, particulates, alkali, NOx, N2O, SOx, HCl. In: Yue G, Zhang H, Zhao C, Luo Z, editors. Proceedings of the 20th international conference on fluidized bed combustion. Berlin, Heidelberg: Springer, Berlin Heidelberg; 2010, p. 43–8. Zhang, Liu, Sun, Drage, Snape (b0005) 2014; 116 Duan, Sun, Zhao, Zhou, Chen (b0195) 2014; 127 Kouprianov, Permchart (b0170) 2003; 74 Pickard, Daood, Pourkashanian, Nimmo (b0135) 2014; 137 Ren, Zhao, Chen, Duan, Li, Ma (b0155) 2011; 33 Saidur, Abdelaziz, Demirbas, Hossain, Mekhilef (b0090) 2011; 15 Channiwala, Parikh (b0110) 2002; 81 Lupianez, Guedea, Bolea, Diez, Romeo (b0210) 2013; 106 . Scheffknecht, Al-Makhadmeh, Schnell, Maier (b0030) 2011; 5 Croiset, Thambimuthu (b0045) 2001; 80 Mathekga, Oboirien, North (b0050) 2016; 40 Tan, Croiset, Douglas, Thambimuthu (b0145) 2006; 85 Tarelho, Matos, Pereira (b0120) 2005; 84 Jia, Tan, McCalden, Wu, He, Symonds (b0185) 2012; 7 Singh, Kumar (b0060) 2016; 61 Lackner, Grimes, Ziock (b0010) 1999 Duan, Zhao, Zhou, Qu, Chen (b0080) 2011; 5 IEA. World Energy Outlook 2016; 2016. Wall, Liu, Spero, Elliott, Khare, Rathnam (b0035) 2009; 87 Niu, Tan, Hui (b0100) 2016; 52 Glarborg, Jensen, Johnsson (b0175) 2003; 29 Glarborg (10.1016/j.fuel.2017.11.039_b0175) 2003; 29 Liu (10.1016/j.fuel.2017.11.039_b0160) 2002; 81 Shimizu (10.1016/j.fuel.2017.11.039_b0165) 2007; 86 Croiset (10.1016/j.fuel.2017.11.039_b0040) 2000; 78 Lackner (10.1016/j.fuel.2017.11.039_b0010) 1999 Tarelho (10.1016/j.fuel.2017.11.039_b0120) 2005; 84 Zhang (10.1016/j.fuel.2017.11.039_b0005) 2014; 116 Kouprianov (10.1016/j.fuel.2017.11.039_b0170) 2003; 74 Saidur (10.1016/j.fuel.2017.11.039_b0090) 2011; 15 10.1016/j.fuel.2017.11.039_b0115 Duan (10.1016/j.fuel.2017.11.039_b0080) 2011; 5 Molina (10.1016/j.fuel.2017.11.039_b0130) 2007; 31 Duan (10.1016/j.fuel.2017.11.039_b0195) 2014; 127 Croiset (10.1016/j.fuel.2017.11.039_b0045) 2001; 80 Liu (10.1016/j.fuel.2017.11.039_b0200) 2005; 84 10.1016/j.fuel.2017.11.039_b0020 Hofbauer (10.1016/j.fuel.2017.11.039_b0070) 2014 Liu (10.1016/j.fuel.2017.11.039_b0140) 2005; 84 Niu (10.1016/j.fuel.2017.11.039_b0100) 2016; 52 Singh (10.1016/j.fuel.2017.11.039_b0060) 2016; 61 Wall (10.1016/j.fuel.2017.11.039_b0035) 2009; 87 Lupianez (10.1016/j.fuel.2017.11.039_b0210) 2013; 106 Scheffknecht (10.1016/j.fuel.2017.11.039_b0030) 2011; 5 Czakiert (10.1016/j.fuel.2017.11.039_b0190) 2006; 87 Tan (10.1016/j.fuel.2017.11.039_b0145) 2006; 85 Mathekga (10.1016/j.fuel.2017.11.039_b0050) 2016; 40 Jenkins (10.1016/j.fuel.2017.11.039_b0095) 1998; 54 Lackner (10.1016/j.fuel.2017.11.039_b0015) 2012; 109 Duan (10.1016/j.fuel.2017.11.039_b0055) 2011; 92 Duan (10.1016/j.fuel.2017.11.039_b0105) 2015; 150 Kumar (10.1016/j.fuel.2017.11.039_b0125) 2016; 148 Aarna (10.1016/j.fuel.2017.11.039_b0180) 1999; 13 Jia (10.1016/j.fuel.2017.11.039_b0085) 2010; 24 Andersson (10.1016/j.fuel.2017.11.039_b0205) 2008; 47 de las Obras-Loscertales (10.1016/j.fuel.2017.11.039_b0075) 2015; 150 Channiwala (10.1016/j.fuel.2017.11.039_b0110) 2002; 81 Díez (10.1016/j.fuel.2017.11.039_b0215) 2015; 139 10.1016/j.fuel.2017.11.039_b0150 Ren (10.1016/j.fuel.2017.11.039_b0155) 2011; 33 Jia (10.1016/j.fuel.2017.11.039_b0185) 2012; 7 Roy (10.1016/j.fuel.2017.11.039_b0065) 2014; 48 Pickard (10.1016/j.fuel.2017.11.039_b0135) 2014; 137 Toftegaard (10.1016/j.fuel.2017.11.039_b0025) 2010; 36 |
| References_xml | – year: 1999 ident: b0010 article-title: Carbon dioxide extraction from air: is it an option? – volume: 54 start-page: 17 year: 1998 end-page: 46 ident: b0095 article-title: Combustion properties of biomass publication-title: Fuel Process Technol – volume: 33 start-page: 1715 year: 2011 end-page: 1722 ident: b0155 article-title: NOx and N publication-title: Proc Combust Inst – volume: 84 start-page: 1128 year: 2005 end-page: 1135 ident: b0120 article-title: Axial and radial CO concentration profiles in an atmospheric bubbling FB combustor publication-title: Fuel – volume: 48 start-page: 14844 year: 2014 end-page: 14850 ident: b0065 article-title: Nitrogen oxides, sulfur trioxide, and mercury emissions during oxyfuel fluidized bed combustion of victorian brown coal publication-title: Environ Sci Technol – volume: 127 start-page: 47 year: 2014 end-page: 51 ident: b0195 article-title: Coal combustion characteristics on an oxy-fuel circulating fluidized bed combustor with warm flue gas recycle publication-title: Fuel – volume: 137 start-page: 185 year: 2014 end-page: 192 ident: b0135 article-title: Co-firing coal with biomass in oxygen- and carbon dioxide-enriched atmospheres for CCS applications publication-title: Fuel – volume: 24 start-page: 910 year: 2010 end-page: 915 ident: b0085 article-title: Emissions of SO publication-title: Energy Fuels – volume: 13 start-page: 1145 year: 1999 end-page: 1153 ident: b0180 article-title: The role of carbon monoxide in the NO-carbon reaction publication-title: Energy Fuels – volume: 106 start-page: 587 year: 2013 end-page: 594 ident: b0210 article-title: Experimental study of SO publication-title: Fuel Process Technol – volume: 87 start-page: 1003 year: 2009 end-page: 1016 ident: b0035 article-title: An overview on oxyfuel coal combustion—State of the art research and technology development publication-title: Chem Eng Res Des – volume: 5 start-page: 770 year: 2011 end-page: 776 ident: b0080 article-title: O publication-title: Int J Greenhouse Gas Control – volume: 87 start-page: 531 year: 2006 end-page: 538 ident: b0190 article-title: Fuel conversion from oxy-fuel combustion in a circulating fluidized bed publication-title: Fuel Process Technol – volume: 85 start-page: 507 year: 2006 end-page: 512 ident: b0145 article-title: Combustion characteristics of coal in a mixture of oxygen and recycled flue gas publication-title: Fuel – volume: 81 start-page: 271 year: 2002 end-page: 280 ident: b0160 article-title: Modelling of NO and N publication-title: Fuel – volume: 74 start-page: 383 year: 2003 end-page: 392 ident: b0170 article-title: Emissions from a conical FBC fired with a biomass fuel publication-title: Appl Energy – volume: 7 start-page: 240 year: 2012 end-page: 243 ident: b0185 article-title: Commissioning of a 0.8 MWth CFBC for oxy-fuel combustion publication-title: Int J Greenhouse Gas Control – volume: 61 start-page: 398 year: 2016 end-page: 420 ident: b0060 article-title: Current status and experimental investigation of oxy-fired fluidized bed publication-title: Renewable Sustainable Energy Rev – volume: 29 start-page: 89 year: 2003 end-page: 113 ident: b0175 article-title: Fuel nitrogen conversion in solid fuel fired systems publication-title: Prog Energy Combust Sci – volume: 52 start-page: 1 year: 2016 end-page: 61 ident: b0100 article-title: Ash-related issues during biomass combustion: alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures publication-title: Prog Energy Combust Sci – volume: 80 start-page: 2117 year: 2001 end-page: 2121 ident: b0045 article-title: NOx and SO publication-title: Fuel – volume: 86 start-page: 957 year: 2007 end-page: 964 ident: b0165 article-title: Emissions of NOx and N publication-title: Fuel – volume: 109 start-page: 13156 year: 2012 end-page: 13162 ident: b0015 article-title: The urgency of the development of CO publication-title: PNAS – volume: 31 start-page: 1905 year: 2007 end-page: 1912 ident: b0130 article-title: Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion publication-title: Proc Combust Inst – volume: 40 start-page: 878 year: 2016 end-page: 902 ident: b0050 article-title: A review of oxy-fuel combustion in fluidized bed reactors publication-title: Int J Energy Res – volume: 84 start-page: 833 year: 2005 end-page: 840 ident: b0200 article-title: Comparisons of pulverized coal combustion in air and in mixtures of O publication-title: Fuel – reference: Winter F. Formation and reduction of pollutants in cfbc: from heavy metals, particulates, alkali, NOx, N2O, SOx, HCl. In: Yue G, Zhang H, Zhao C, Luo Z, editors. Proceedings of the 20th international conference on fluidized bed combustion. Berlin, Heidelberg: Springer, Berlin Heidelberg; 2010, p. 43–8. – volume: 116 start-page: 306 year: 2014 end-page: 316 ident: b0005 article-title: Capturing CO publication-title: Chem Eng Sci – volume: 150 start-page: 146 year: 2015 end-page: 153 ident: b0075 article-title: NO and N publication-title: Fuel – reference: . – volume: 84 start-page: 833 year: 2005 end-page: 840 ident: b0140 article-title: Comparisons of pulverized coal combustion in air and in mixtures of O publication-title: Fuel – reference: IEA. World Energy Outlook 2016; 2016. – volume: 139 start-page: 196 year: 2015 end-page: 203 ident: b0215 article-title: Anthracite oxy-combustion characteristics in a 90 kWth fluidized bed reactor publication-title: Fuel Process Technol – volume: 148 start-page: 256 year: 2016 end-page: 268 ident: b0125 article-title: An investigation in 20 kW publication-title: Fuel Process Technol – volume: 81 start-page: 1051 year: 2002 end-page: 1063 ident: b0110 article-title: A unified correlation for estimating HHV of solid, liquid and gaseous fuels publication-title: Fuel – volume: 5 start-page: S16 year: 2011 end-page: S35 ident: b0030 article-title: Oxy-fuel coal combustion – a review of the current state-of-the-art publication-title: Int J Greenhouse Gas Control – volume: 15 start-page: 2262 year: 2011 end-page: 2289 ident: b0090 article-title: A review on biomass as a fuel for boilers publication-title: Renewable Sustainable Energy Rev – volume: 47 start-page: 1835 year: 2008 end-page: 1845 ident: b0205 article-title: NO emission during oxy-fuel combustion of lignite publication-title: Ind Eng Chem Res – volume: 150 start-page: 8 year: 2015 end-page: 13 ident: b0105 article-title: NO emission during co-firing coal and biomass in an oxy-fuel circulating fluidized bed combustor publication-title: Fuel – volume: 78 start-page: 402 year: 2000 end-page: 407 ident: b0040 article-title: Coal combustion in O publication-title: Can J Chem Eng – start-page: 24 year: 2014 end-page: 30 ident: b0070 article-title: Experiences from oxy-fuel combustion of bituminous coal in a 150 kW publication-title: 7th Trondheim Conference on CO – volume: 36 start-page: 581 year: 2010 end-page: 625 ident: b0025 article-title: Oxy-fuel combustion of solid fuels publication-title: Prog Energy Combust Sci – volume: 92 start-page: 379 year: 2011 end-page: 384 ident: b0055 article-title: Effects of operation parameters on NO emission in an oxy-fired CFB combustor publication-title: Fuel Process Technol – year: 1999 ident: 10.1016/j.fuel.2017.11.039_b0010 – volume: 127 start-page: 47 year: 2014 ident: 10.1016/j.fuel.2017.11.039_b0195 article-title: Coal combustion characteristics on an oxy-fuel circulating fluidized bed combustor with warm flue gas recycle publication-title: Fuel doi: 10.1016/j.fuel.2013.06.016 – volume: 116 start-page: 306 year: 2014 ident: 10.1016/j.fuel.2017.11.039_b0005 article-title: Capturing CO2 from ambient air using a polyethyleneimine-silica adsorbent in fluidized beds publication-title: Chem Eng Sci doi: 10.1016/j.ces.2014.05.018 – volume: 13 start-page: 1145 issue: 6 year: 1999 ident: 10.1016/j.fuel.2017.11.039_b0180 article-title: The role of carbon monoxide in the NO-carbon reaction publication-title: Energy Fuels doi: 10.1021/ef9900278 – volume: 87 start-page: 1003 issue: 8 year: 2009 ident: 10.1016/j.fuel.2017.11.039_b0035 article-title: An overview on oxyfuel coal combustion—State of the art research and technology development publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2009.02.005 – volume: 29 start-page: 89 issue: 2 year: 2003 ident: 10.1016/j.fuel.2017.11.039_b0175 article-title: Fuel nitrogen conversion in solid fuel fired systems publication-title: Prog Energy Combust Sci doi: 10.1016/S0360-1285(02)00031-X – ident: 10.1016/j.fuel.2017.11.039_b0150 doi: 10.1007/978-3-642-02682-9_4 – volume: 33 start-page: 1715 year: 2011 ident: 10.1016/j.fuel.2017.11.039_b0155 article-title: NOx and N2O precursors (NH3 and HCN) from biomass pyrolysis: Co-pyrolysis of amino acids and cellulose, hemicellulose and lignin publication-title: Proc Combust Inst doi: 10.1016/j.proci.2010.06.033 – volume: 36 start-page: 581 issue: 5 year: 2010 ident: 10.1016/j.fuel.2017.11.039_b0025 article-title: Oxy-fuel combustion of solid fuels publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2010.02.001 – volume: 7 start-page: 240 year: 2012 ident: 10.1016/j.fuel.2017.11.039_b0185 article-title: Commissioning of a 0.8 MWth CFBC for oxy-fuel combustion publication-title: Int J Greenhouse Gas Control doi: 10.1016/j.ijggc.2011.10.009 – volume: 84 start-page: 1128 issue: 9 year: 2005 ident: 10.1016/j.fuel.2017.11.039_b0120 article-title: Axial and radial CO concentration profiles in an atmospheric bubbling FB combustor publication-title: Fuel doi: 10.1016/j.fuel.2005.01.002 – volume: 150 start-page: 146 year: 2015 ident: 10.1016/j.fuel.2017.11.039_b0075 article-title: NO and N2O emissions in oxy-fuel combustion of coal in a bubbling fluidized bed combustor publication-title: Fuel doi: 10.1016/j.fuel.2015.02.023 – volume: 61 start-page: 398 year: 2016 ident: 10.1016/j.fuel.2017.11.039_b0060 article-title: Current status and experimental investigation of oxy-fired fluidized bed publication-title: Renewable Sustainable Energy Rev doi: 10.1016/j.rser.2016.04.021 – volume: 92 start-page: 379 issue: 3 year: 2011 ident: 10.1016/j.fuel.2017.11.039_b0055 article-title: Effects of operation parameters on NO emission in an oxy-fired CFB combustor publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2010.09.031 – volume: 148 start-page: 256 year: 2016 ident: 10.1016/j.fuel.2017.11.039_b0125 article-title: An investigation in 20 kWth oxygen-enriched bubbling fluidized bed combustor using coal and biomass publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2016.02.037 – volume: 81 start-page: 271 issue: 3 year: 2002 ident: 10.1016/j.fuel.2017.11.039_b0160 article-title: Modelling of NO and N2O emissions from biomass-fired circulating fluidized bed combustors publication-title: Fuel doi: 10.1016/S0016-2361(01)00170-3 – start-page: 24 year: 2014 ident: 10.1016/j.fuel.2017.11.039_b0070 article-title: Experiences from oxy-fuel combustion of bituminous coal in a 150 kWth circulating fluidized bed pilot facility – volume: 74 start-page: 383 issue: 3 year: 2003 ident: 10.1016/j.fuel.2017.11.039_b0170 article-title: Emissions from a conical FBC fired with a biomass fuel publication-title: Appl Energy doi: 10.1016/S0306-2619(02)00194-0 – volume: 24 start-page: 910 year: 2010 ident: 10.1016/j.fuel.2017.11.039_b0085 article-title: Emissions of SO2 and NOx during oxy-fuel CFB combustion tests in a mini-circulating fluidized bed combustion reactor publication-title: Energy Fuels doi: 10.1021/ef901076g – volume: 15 start-page: 2262 issue: 5 year: 2011 ident: 10.1016/j.fuel.2017.11.039_b0090 article-title: A review on biomass as a fuel for boilers publication-title: Renewable Sustainable Energy Rev doi: 10.1016/j.rser.2011.02.015 – volume: 48 start-page: 14844 issue: 24 year: 2014 ident: 10.1016/j.fuel.2017.11.039_b0065 article-title: Nitrogen oxides, sulfur trioxide, and mercury emissions during oxyfuel fluidized bed combustion of victorian brown coal publication-title: Environ Sci Technol doi: 10.1021/es504667r – volume: 52 start-page: 1 year: 2016 ident: 10.1016/j.fuel.2017.11.039_b0100 article-title: Ash-related issues during biomass combustion: alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2015.09.003 – volume: 150 start-page: 8 year: 2015 ident: 10.1016/j.fuel.2017.11.039_b0105 article-title: NO emission during co-firing coal and biomass in an oxy-fuel circulating fluidized bed combustor publication-title: Fuel doi: 10.1016/j.fuel.2015.01.110 – volume: 84 start-page: 833 issue: 7 year: 2005 ident: 10.1016/j.fuel.2017.11.039_b0140 article-title: Comparisons of pulverized coal combustion in air and in mixtures of O2/CO2 publication-title: Fuel doi: 10.1016/j.fuel.2004.11.018 – volume: 5 start-page: S16 year: 2011 ident: 10.1016/j.fuel.2017.11.039_b0030 article-title: Oxy-fuel coal combustion – a review of the current state-of-the-art publication-title: Int J Greenhouse Gas Control doi: 10.1016/j.ijggc.2011.05.020 – volume: 5 start-page: 770 issue: 4 year: 2011 ident: 10.1016/j.fuel.2017.11.039_b0080 article-title: O2/CO2 coal combustion characteristics in a 50 kWth circulating fluidized bed publication-title: Int J Greenhouse Gas Control doi: 10.1016/j.ijggc.2011.01.007 – volume: 47 start-page: 1835 issue: 6 year: 2008 ident: 10.1016/j.fuel.2017.11.039_b0205 article-title: NO emission during oxy-fuel combustion of lignite publication-title: Ind Eng Chem Res doi: 10.1021/ie0711832 – volume: 81 start-page: 1051 issue: 8 year: 2002 ident: 10.1016/j.fuel.2017.11.039_b0110 article-title: A unified correlation for estimating HHV of solid, liquid and gaseous fuels publication-title: Fuel doi: 10.1016/S0016-2361(01)00131-4 – ident: 10.1016/j.fuel.2017.11.039_b0020 – volume: 84 start-page: 833 issue: 7–8 year: 2005 ident: 10.1016/j.fuel.2017.11.039_b0200 article-title: Comparisons of pulverized coal combustion in air and in mixtures of O2/CO2 publication-title: Fuel doi: 10.1016/j.fuel.2004.11.018 – volume: 80 start-page: 2117 issue: 14 year: 2001 ident: 10.1016/j.fuel.2017.11.039_b0045 article-title: NOx and SO2 emissions from O2/CO2 recycle coal combustion publication-title: Fuel doi: 10.1016/S0016-2361(00)00197-6 – ident: 10.1016/j.fuel.2017.11.039_b0115 – volume: 109 start-page: 13156 issue: 33 year: 2012 ident: 10.1016/j.fuel.2017.11.039_b0015 article-title: The urgency of the development of CO2 capture from ambient air publication-title: PNAS doi: 10.1073/pnas.1108765109 – volume: 78 start-page: 402 issue: 2 year: 2000 ident: 10.1016/j.fuel.2017.11.039_b0040 article-title: Coal combustion in O2/CO2 mixtures compared with air publication-title: Can J Chem Eng doi: 10.1002/cjce.5450780217 – volume: 40 start-page: 878 issue: 7 year: 2016 ident: 10.1016/j.fuel.2017.11.039_b0050 article-title: A review of oxy-fuel combustion in fluidized bed reactors publication-title: Int J Energy Res doi: 10.1002/er.3486 – volume: 31 start-page: 1905 issue: 2 year: 2007 ident: 10.1016/j.fuel.2017.11.039_b0130 article-title: Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion publication-title: Proc Combust Inst doi: 10.1016/j.proci.2006.08.102 – volume: 137 start-page: 185 year: 2014 ident: 10.1016/j.fuel.2017.11.039_b0135 article-title: Co-firing coal with biomass in oxygen- and carbon dioxide-enriched atmospheres for CCS applications publication-title: Fuel doi: 10.1016/j.fuel.2014.07.078 – volume: 86 start-page: 957 issue: 7–8 year: 2007 ident: 10.1016/j.fuel.2017.11.039_b0165 article-title: Emissions of NOx and N2O during co-combustion of dried sewage sludge with coal in a bubbling fluidized bed combustor publication-title: Fuel doi: 10.1016/j.fuel.2006.10.001 – volume: 54 start-page: 17 issue: 1–3 year: 1998 ident: 10.1016/j.fuel.2017.11.039_b0095 article-title: Combustion properties of biomass publication-title: Fuel Process Technol doi: 10.1016/S0378-3820(97)00059-3 – volume: 85 start-page: 507 issue: 4 year: 2006 ident: 10.1016/j.fuel.2017.11.039_b0145 article-title: Combustion characteristics of coal in a mixture of oxygen and recycled flue gas publication-title: Fuel doi: 10.1016/j.fuel.2005.08.010 – volume: 106 start-page: 587 year: 2013 ident: 10.1016/j.fuel.2017.11.039_b0210 article-title: Experimental study of SO2 and NOx emissions in fluidized bed oxy-fuel combustion publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2012.09.030 – volume: 139 start-page: 196 year: 2015 ident: 10.1016/j.fuel.2017.11.039_b0215 article-title: Anthracite oxy-combustion characteristics in a 90 kWth fluidized bed reactor publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2015.07.021 – volume: 87 start-page: 531 issue: 6 year: 2006 ident: 10.1016/j.fuel.2017.11.039_b0190 article-title: Fuel conversion from oxy-fuel combustion in a circulating fluidized bed publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2005.12.003 |
| SSID | ssj0007854 |
| Score | 2.5973294 |
| Snippet | •3 biomass fuels were tested in a BFB under air and oxy-fuel combustion conditions.•Similar temperature profiles found for combustion in air and in 30% O2/70%... Oxy-fuel combustion is one of the promising carbon capture technologies considered to be suitable for future commercial applications with stationary combustion... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 778 |
| SubjectTerms | Air temperature Biomass Biomass burning Biomass combustion Carbon capture Carbon dioxide Carbon sequestration Coal Combustion Combustion chambers Combustion temperature Dilution Emissions Firing Fluidized bed combustion Fluidized beds Freeboard Fuel combustion Fuels Gases Nitrogen oxides NOx and CO emissions Oxidizing agents Oxy-fuel Oxy-fuel combustion Oxygen Plants (botany) Reduction Specific heat Straw Temperature effects Temperature profiles |
| Title | Oxy-fuel combustion study of biomass fuels in a 20 kWth fluidized bed combustor |
| URI | https://dx.doi.org/10.1016/j.fuel.2017.11.039 https://www.proquest.com/docview/2032394761 |
| Volume | 215 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007854 issn: 0016-2361 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLVKhwUsEE8xMCAv2FWpEsePeFmhqYDFAGIQ3UWJY5cOJS19jAps-CP-iS_BN3YeFM2IWbCJIie-SnxP7BP7-lyEnnEleE7yKOCSkYBmmgYSlgup0KagWksmTJVsQpycJJOJfNPrfa_3wpzPRVkmu51c_ldX2zLrbNg6ewV3N0ZtgT23TrdH63Z7_CfHv959DcxWg-zH5xxydVn_rmvpaNhtb-nyAG6oImGzAQl9wMNo_OnD5uPAzLezYvYNmKkuaiOLVZfFjsE8zC9ATm0XHd_MJ7zzIBhnlpN_aVeo_LT2bAp1R8N2Mcqv-utyOl34YRTKy2zpghQhq1B3biJK2uCsur-NeADyLt3-lkSs02MKl8HHD77C6WL_1a-7KYazIbQOxOOJIUivOhmkP0W09wa3JuSwjmY7S8FGCjbs309qbVxDB0QwmfTRwejl8eRVM5CLhDkRb_8Sfs-VCw_cf5KLeM3eCF_RltPb6Jb_38Ajh5M7qKfLu-hmR4XyHnpbIwa3iMEVYvDCYI8YXCEGz0qcYRL--vETsIIbrGCLFdxg5T56Pz4-ff4i8Jk2AgX8OGARVzInwtK_PATFP8GzUGaUZ4lUPM5JTIXIY0UU11BmibmWKjNGC82NMfED1C8XpX6IMNUsiqliSc4llUJJpTRJwjxnMTWFLg5RVLdTqrwMPWRDmacXe-gQDZo6SyfCcundrG7-1NNIRw9Ti6ZL6x3Vvkr997y212MSS9se0aMrPcRjdKP9II5Qf7Pa6ifoujrfzNarpx5pvwHG85uK |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxy-fuel+combustion+study+of+biomass+fuels+in+a+20%E2%80%AFkWth+fluidized+bed+combustor&rft.jtitle=Fuel+%28Guildford%29&rft.au=Sher%2C+Farooq&rft.au=Pans%2C+Miguel+A.&rft.au=Sun%2C+Chenggong&rft.au=Snape%2C+Colin&rft.date=2018-03-01&rft.issn=0016-2361&rft.volume=215&rft.spage=778&rft.epage=786&rft_id=info:doi/10.1016%2Fj.fuel.2017.11.039&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuel_2017_11_039 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon |