An adjoint-free algorithm for conditional nonlinear optimal perturbations (CNOPs) via sampling

In this paper, we propose a sampling algorithm based on state-of-the-art statistical machine learning techniques to obtain conditional nonlinear optimal perturbations (CNOPs), which is different from traditional (deterministic) optimization methods.1 Specifically, the traditional approach is unavail...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nonlinear processes in geophysics Ročník 30; číslo 3; s. 263 - 276
Hlavní autoři: Shi, Bin, Sun, Guodong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Gottingen Copernicus GmbH 06.07.2023
Copernicus Publications
Témata:
ISSN:1607-7946, 1023-5809, 1607-7946
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we propose a sampling algorithm based on state-of-the-art statistical machine learning techniques to obtain conditional nonlinear optimal perturbations (CNOPs), which is different from traditional (deterministic) optimization methods.1 Specifically, the traditional approach is unavailable in practice, which requires numerically computing the gradient (first-order information) such that the computation cost is expensive, since it needs a large number of times to run numerical models. However, the sampling approach directly reduces the gradient to the objective function value (zeroth-order information), which also avoids using the adjoint technique that is unusable for many atmosphere and ocean models and requires large amounts of storage. We show an intuitive analysis for the sampling algorithm from the law of large numbers and further present a Chernoff-type concentration inequality to rigorously characterize the degree to which the sample average probabilistically approximates the exact gradient. The experiments are implemented to obtain the CNOPs for two numerical models, the Burgers equation with small viscosity and the Lorenz-96 model. We demonstrate the CNOPs obtained with their spatial patterns, objective values, computation times, and nonlinear error growth. Compared with the performance of the three approaches, all the characters for quantifying the CNOPs are nearly consistent, while the computation time using the sampling approach with fewer samples is much shorter. In other words, the new sampling algorithm shortens the computation time to the utmost at the cost of losing little accuracy.
AbstractList In this paper, we propose a sampling algorithm based on state-of-the-art statistical machine learning techniques to obtain conditional nonlinear optimal perturbations (CNOPs), which is different from traditional (deterministic) optimization methods. 1 Specifically, the traditional approach is unavailable in practice, which requires numerically computing the gradient (first-order information) such that the computation cost is expensive, since it needs a large number of times to run numerical models. However, the sampling approach directly reduces the gradient to the objective function value (zeroth-order information), which also avoids using the adjoint technique that is unusable for many atmosphere and ocean models and requires large amounts of storage. We show an intuitive analysis for the sampling algorithm from the law of large numbers and further present a Chernoff-type concentration inequality to rigorously characterize the degree to which the sample average probabilistically approximates the exact gradient. The experiments are implemented to obtain the CNOPs for two numerical models, the Burgers equation with small viscosity and the Lorenz-96 model. We demonstrate the CNOPs obtained with their spatial patterns, objective values, computation times, and nonlinear error growth. Compared with the performance of the three approaches, all the characters for quantifying the CNOPs are nearly consistent, while the computation time using the sampling approach with fewer samples is much shorter. In other words, the new sampling algorithm shortens the computation time to the utmost at the cost of losing little accuracy.
In this paper, we propose a sampling algorithm based on state-of-the-art statistical machine learning techniques to obtain conditional nonlinear optimal perturbations (CNOPs), which is different from traditional (deterministic) optimization methods..sup.1 Specifically, the traditional approach is unavailable in practice, which requires numerically computing the gradient (first-order information) such that the computation cost is expensive, since it needs a large number of times to run numerical models. However, the sampling approach directly reduces the gradient to the objective function value (zeroth-order information), which also avoids using the adjoint technique that is unusable for many atmosphere and ocean models and requires large amounts of storage. We show an intuitive analysis for the sampling algorithm from the law of large numbers and further present a Chernoff-type concentration inequality to rigorously characterize the degree to which the sample average probabilistically approximates the exact gradient. The experiments are implemented to obtain the CNOPs for two numerical models, the Burgers equation with small viscosity and the Lorenz-96 model. We demonstrate the CNOPs obtained with their spatial patterns, objective values, computation times, and nonlinear error growth. Compared with the performance of the three approaches, all the characters for quantifying the CNOPs are nearly consistent, while the computation time using the sampling approach with fewer samples is much shorter. In other words, the new sampling algorithm shortens the computation time to the utmost at the cost of losing little accuracy.
In this paper, we propose a sampling algorithm based on state-of-the-art statistical machine learning techniques to obtain conditional nonlinear optimal perturbations (CNOPs), which is different from traditional (deterministic) optimization methods.1 Specifically, the traditional approach is unavailable in practice, which requires numerically computing the gradient (first-order information) such that the computation cost is expensive, since it needs a large number of times to run numerical models. However, the sampling approach directly reduces the gradient to the objective function value (zeroth-order information), which also avoids using the adjoint technique that is unusable for many atmosphere and ocean models and requires large amounts of storage. We show an intuitive analysis for the sampling algorithm from the law of large numbers and further present a Chernoff-type concentration inequality to rigorously characterize the degree to which the sample average probabilistically approximates the exact gradient. The experiments are implemented to obtain the CNOPs for two numerical models, the Burgers equation with small viscosity and the Lorenz-96 model. We demonstrate the CNOPs obtained with their spatial patterns, objective values, computation times, and nonlinear error growth. Compared with the performance of the three approaches, all the characters for quantifying the CNOPs are nearly consistent, while the computation time using the sampling approach with fewer samples is much shorter. In other words, the new sampling algorithm shortens the computation time to the utmost at the cost of losing little accuracy.
Audience Academic
Author Shi, Bin
Sun, Guodong
Author_xml – sequence: 1
  givenname: Bin
  surname: Shi
  fullname: Shi, Bin
– sequence: 2
  givenname: Guodong
  orcidid: 0000-0003-1495-6516
  surname: Sun
  fullname: Sun, Guodong
BookMark eNp1kktv1DAUhS1UJNrCmq0lNnSR1s88lqMRlJEqilrYYt34ETxK4mB7UPn3eDoIGATywtbVd46vr88ZOpnDbBF6ScmlpJ24mpeh4qRiNa8YYfwJOqU1aaqmE_XJH-dn6CylLSFUyJqdos-rGYPZBj_nykVrMYxDiD5_mbALEeswG599mGHE5b7RzxYiDkv2U6ksNuZd7GEPJPx6_f72Q7rA3zzgBNNS4OE5eupgTPbFz_0cfXr75uP6XXVze71Zr24qzTtWGmZU1mB6SrmpQYqWNMwZ2nNCbQsgwRgnDGta3elGt8zSWjQNlE0D6zXh52hz8DUBtmqJpb34XQXw6rEQ4qAgZq9Hq_pWW9IDcK2FkNr11FLSOUIa0vXamOL16uC1xPB1Z1NW27CLZQJJsZZzKaUg7W9qgGLqZxdyBD35pNWqkTXpeMtEoS7_QZVl7OTLcK3zpX4kuDgSFCbbhzzALiW1ub87Zq8OrI4hpWjdr4dTovaZUCUTihNVMqH2mSgK-ZdC-_z4faUtP_5X9wP83bwO
CitedBy_id crossref_primary_10_5194_npg_31_165_2024
crossref_primary_10_1016_j_jcp_2025_114163
crossref_primary_10_1007_s00376_025_4467_9
Cites_doi 10.1175/2008MWR2640.1
10.1093/nsr/nwz039
10.1002/2015JC011095
10.1175/1520-0493(1997)125<2057:POACMO>2.0.CO;2
10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2
10.1002/qj.2337
10.1007/978-3-0348-8802-8_21
10.1137/S1052623497330963
10.1007/s00382-015-2789-5
10.1007/BF01589116
10.1155/2017/9419024
10.1175/1520-0469(1996)053<2025:GSTPIA>2.0.CO;2
10.1002/2017MS001132
10.1007/s11430-014-4991-4
10.1175/1520-0469(1998)055<0537:ICFOGI>2.0.CO;2
10.1029/2007JC004476
10.1007/BF02906869
10.1017/CBO9780511617652.004
10.1175/JTECH-D-15-0183.1
10.5194/npg-10-493-2003
10.1175/JPO-D-15-0100.1
10.1360/N012016-00200
10.1111/j.1600-0870.2004.00076.x
10.1017/jfm.2018.689
10.1175/1520-0469(1996)053<2041:GSTPIN>2.0.CO;2
10.1103/PhysRevLett.105.154502
10.1137/17M1141163
10.3402/tellusa.v1i3.8507
10.1175/1520-0485(2004)034<2305:TSASOT>2.0.CO;2
10.1103/PhysRevE.78.016209
10.1111/j.2153-3490.1965.tb01424.x
10.1007/BF02959448
10.1029/2006GL027412
10.1002/qj.902
10.1112/plms/s1-11.1.57
10.1175/1520-0469(2001)058<3613:IOTCET>2.0.CO;2
10.5194/npg-18-243-2011
10.1017/CBO9780511802270
10.1175/JAS-D-18-0324.1
10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2
10.1017/9781108231596
10.1175/2009MWR3022.1
10.1175/1520-0493(1997)125<2043:POACMO>2.0.CO;2
10.1175/1520-0469(1982)039<1663:TIGODI>2.0.CO;2
10.1007/s00704-015-1690-9
10.1146/annurev-fluid-122316-045042
10.1137/16M1080173
10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2
10.1007/978-3-319-26535-3_11
10.1175/2010JCLI3610.1
10.5194/npg-24-101-2017
10.1029/2008JC004925
ContentType Journal Article
Copyright COPYRIGHT 2023 Copernicus GmbH
2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 Copernicus GmbH
– notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
3V.
7TG
7TN
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
L.G
L7M
M2O
M2P
MBDVC
P5Z
P62
PADUT
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.5194/npg-30-263-2023
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Research Library
Science Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Research Library China
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1607-7946
EndPage 276
ExternalDocumentID oai_doaj_org_article_b8ce0baa3cc445cfb1e109f00709bcdd
A756093824
10_5194_npg_30_263_2023
GroupedDBID 123
29N
2WC
5VS
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGOD
ADBBV
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BANNL
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
DU5
DWQXO
E3Z
EBS
EDH
EJD
FRP
GNUQQ
GROUPED_DOAJ
GUQSH
H13
HCIFZ
IAO
IEA
ISR
ITC
KQ8
L8X
LK5
M2O
M2P
M7R
MM-
OK1
OVT
P2P
P62
PADUT
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
Q2X
RKB
RNS
TR2
XSB
~02
~OA
3V.
7TG
7TN
7XB
8FD
8FK
F1W
H8D
H96
KL.
L.G
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c3923-22156adb113d6a548072fd1b301e8aa5addf4d278c9c7c82e16477ae16ca2bc03
IEDL.DBID RKB
ISSN 1607-7946
1023-5809
IngestDate Tue Oct 14 19:09:01 EDT 2025
Fri Jul 25 22:55:22 EDT 2025
Sat Nov 29 13:22:05 EST 2025
Sat Nov 29 09:52:44 EST 2025
Wed Nov 26 11:14:24 EST 2025
Tue Nov 18 21:02:05 EST 2025
Sat Nov 29 01:43:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3923-22156adb113d6a548072fd1b301e8aa5addf4d278c9c7c82e16477ae16ca2bc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1495-6516
OpenAccessLink https://doaj.org/article/b8ce0baa3cc445cfb1e109f00709bcdd
PQID 2833555408
PQPubID 54809
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_b8ce0baa3cc445cfb1e109f00709bcdd
proquest_journals_2833555408
gale_infotracmisc_A756093824
gale_infotracacademiconefile_A756093824
gale_incontextgauss_ISR_A756093824
crossref_primary_10_5194_npg_30_263_2023
crossref_citationtrail_10_5194_npg_30_263_2023
PublicationCentury 2000
PublicationDate 2023-07-06
PublicationDateYYYYMMDD 2023-07-06
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-06
  day: 06
PublicationDecade 2020
PublicationPlace Gottingen
PublicationPlace_xml – name: Gottingen
PublicationTitle Nonlinear processes in geophysics
PublicationYear 2023
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref29
  doi: 10.1175/2008MWR2640.1
– ident: ref46
  doi: 10.1093/nsr/nwz039
– ident: ref45
  doi: 10.1002/2015JC011095
– ident: ref49
  doi: 10.1175/1520-0493(1997)125<2057:POACMO>2.0.CO;2
– ident: ref20
  doi: 10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2
– ident: ref21
  doi: 10.1002/qj.2337
– ident: ref1
  doi: 10.1007/978-3-0348-8802-8_21
– ident: ref2
  doi: 10.1137/S1052623497330963
– ident: ref7
  doi: 10.1007/s00382-015-2789-5
– ident: ref17
  doi: 10.1007/BF01589116
– ident: ref39
  doi: 10.1155/2017/9419024
– ident: ref11
  doi: 10.1175/1520-0469(1996)053<2025:GSTPIA>2.0.CO;2
– ident: ref47
  doi: 10.1002/2017MS001132
– ident: ref5
  doi: 10.1007/s11430-014-4991-4
– ident: ref41
  doi: 10.1175/1520-0469(1998)055<0537:ICFOGI>2.0.CO;2
– ident: ref13
  doi: 10.1029/2007JC004476
– ident: ref24
  doi: 10.1007/BF02906869
– ident: ref18
  doi: 10.1017/CBO9780511617652.004
– ident: ref50
  doi: 10.1175/JTECH-D-15-0183.1
– ident: ref16
– ident: ref26
  doi: 10.5194/npg-10-493-2003
– ident: ref55
  doi: 10.1175/JPO-D-15-0100.1
– ident: ref25
  doi: 10.1360/N012016-00200
– ident: ref32
  doi: 10.1111/j.1600-0870.2004.00076.x
– ident: ref30
  doi: 10.1017/jfm.2018.689
– ident: ref12
  doi: 10.1175/1520-0469(1996)053<2041:GSTPIN>2.0.CO;2
– ident: ref34
  doi: 10.1103/PhysRevLett.105.154502
– ident: ref6
  doi: 10.1137/17M1141163
– ident: ref9
  doi: 10.3402/tellusa.v1i3.8507
– ident: ref27
  doi: 10.1175/1520-0485(2004)034<2305:TSASOT>2.0.CO;2
– ident: ref33
  doi: 10.1103/PhysRevE.78.016209
– ident: ref19
  doi: 10.1111/j.2153-3490.1965.tb01424.x
– ident: ref23
  doi: 10.1007/BF02959448
– ident: ref28
  doi: 10.1029/2006GL027412
– ident: ref35
  doi: 10.1002/qj.902
– ident: ref36
  doi: 10.1112/plms/s1-11.1.57
– ident: ref37
  doi: 10.1175/1520-0469(2001)058<3613:IOTCET>2.0.CO;2
– ident: ref42
  doi: 10.5194/npg-18-243-2011
– ident: ref14
  doi: 10.1017/CBO9780511802270
– ident: ref38
– ident: ref22
  doi: 10.1175/JAS-D-18-0324.1
– ident: ref53
  doi: 10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2
– ident: ref43
  doi: 10.1017/9781108231596
– ident: ref44
  doi: 10.1175/2009MWR3022.1
– ident: ref48
  doi: 10.1175/1520-0493(1997)125<2043:POACMO>2.0.CO;2
– ident: ref10
  doi: 10.1175/1520-0469(1982)039<1663:TIGODI>2.0.CO;2
– ident: ref40
  doi: 10.1007/s00704-015-1690-9
– ident: ref15
  doi: 10.1146/annurev-fluid-122316-045042
– ident: ref3
  doi: 10.1137/16M1080173
– ident: ref4
  doi: 10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2
– ident: ref51
  doi: 10.1007/978-3-319-26535-3_11
– ident: ref52
  doi: 10.1175/2010JCLI3610.1
– ident: ref54
  doi: 10.5194/npg-24-101-2017
– ident: ref8
  doi: 10.1029/2008JC004925
– ident: ref31
SSID ssj0014562
Score 2.3259933
Snippet In this paper, we propose a sampling algorithm based on state-of-the-art statistical machine learning techniques to obtain conditional nonlinear optimal...
In this paper, we propose a sampling algorithm based on state-of-the-art statistical machine learning techniques to obtain conditional nonlinear optimal...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 263
SubjectTerms Algorithms
Analysis
Atmosphere
Atmospheric models
Burgers equation
Computation
Computing time
Fluid dynamics
General circulation models
Machine learning
Mathematical models
Methods
Modelling
Numerical models
Objective function
Ocean models
Optimization
Ordinary differential equations
Perturbation
Perturbations
Probability theory
Sampling
Viscosity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUltNBL6SfdNC0iFJoe1EiWbMvHbWhooGxDv8ipQhrJmw2Jd7E3-f2dsb2hewi99GSwxyA_jWfeWOMnxt6CTFIn8CIVeRSUckVIdSbqWsUqFdHYfkX315dyNrNnZ9XpX1t9UU_YIA88AHcYLCQZvNcAxuRQB5WUrGqSqakCxEjRF1nPppga1w-I1_frnJkWuZXVIOqDbMUcNqu50FJkhRa0dfhWPupl--8Kzn3GOX7MHo1UkU-HIT5h91LzlD3oWzahe8Z-Txvu48Vy0axF3abE_eV8iaX--RVHIsqxzo2L4UMfbwY9DN_yJUaIKzyzSi3mmjB8ruMHR7Ovp917frPwvPPUY97Mn7Ofx59-HH0W424JApDj4MNg8i58DErpWHiScSuzOqqAb3Cy3ucYyGoTs9JCBSXYLJGSWOnxAD4LIPULtoPDSS8ZTwWyQsgR6yoaZRROgQebcqytlIkmTNiHDWYORilx2tHi0mFJQSA7BNlp6RBkRyBP2MHtDatBReNu0480CbdmJH_dn0CncKNTuH85xYTt0xQ6ErhoqINm7q-7zp18_-amJXK8StvMTNi70ahe4ujBjz8kIAakibVlubdliW8gbF_eeIobI0DnMvqbDbmatLv_44lesYeETt8oXOyxnXV7nV6z-3CzXnTtm975_wDKpQkF
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgCxIX3oiFgiyERDmY5uEkzgltq1YgoWVVHuoJyx47Yas2u022_f3MJN5FeygXTpHsSTTx2DPj8fgbxt5C5KPUgxE-z5wgkyusrxJRVbErfe6k6k90f34pplN1elrOQsCtC2mVa53YK2q3AIqR7yd0OwhtX6Q-Li8FVY2i09VQQuM22yGkMjliOwdH09nJ5hyB_Pv-vDNJRaaicgD3Qa9F7jfLWqSRSPJUUAnxLbvUw_ffpKR7y3P84H95fsjuB5-TT4ZJ8ojd8s1jdrfP_YTuCfs1abhxZ4t5sxJV6z035zV-ZfX7gqNHy3HD7OZDxJA3A7CGafkCVc0Ftix9i0bLDnE_vnc4_Trr3vPrueGdoWT1pn7KfhwffT_8JELZBQHoLOFooBeQG2fjOHW5ITy4IqlcbFEVeGVMhhqxki4pFJRQgEo8QZIVBh9gEgtR-oyNkB3_nHGfo3sJWWXj0slYxgpQzyuf4SYtlk7aMfuwHnQNAZOcSmOca9ybkJQ0SkmnkUYpaZLSmO1tXlgOcBw3kx6QFDdkhKPdNyzaWodlqS1yFFljUgApM0BGfRyVFYEglRacG7M3NAc0IWU0lIpTm6uu05-_nehJgc5imapEjtm7QFQtkHsw4WYDjgGBa21R7m5R4lKG7e71PNJBlXT67yR68e_ul-we_XefS5zvstGqvfKv2B24Xs279nVYGX8AkMEWqA
  priority: 102
  providerName: ProQuest
Title An adjoint-free algorithm for conditional nonlinear optimal perturbations (CNOPs) via sampling
URI https://www.proquest.com/docview/2833555408
https://doaj.org/article/b8ce0baa3cc445cfb1e109f00709bcdd
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus Publications
  customDbUrl:
  eissn: 1607-7946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014562
  issn: 1607-7946
  databaseCode: RKB
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1607-7946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014562
  issn: 1607-7946
  databaseCode: DOA
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1607-7946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014562
  issn: 1607-7946
  databaseCode: P5Z
  dateStart: 20150901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1607-7946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014562
  issn: 1607-7946
  databaseCode: PCBAR
  dateStart: 20150901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1607-7946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014562
  issn: 1607-7946
  databaseCode: BENPR
  dateStart: 20150901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 1607-7946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014562
  issn: 1607-7946
  databaseCode: M2O
  dateStart: 20150901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1607-7946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014562
  issn: 1607-7946
  databaseCode: PIMPY
  dateStart: 20150901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1607-7946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014562
  issn: 1607-7946
  databaseCode: M2P
  dateStart: 20150901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQAYkLb8S2ZWUhJMrBNHGcxDluq1ZUotuoPFQ4YNljZ1nUZlfJtr-fmSSt2EPFAS6O5IwlZ77YM7bH3zD2BqIQJQGsCFnqBZlc4UIlRVXFvgiZV7o70f36MZ9O9dlZUf6R6otiwnp64F5xu05DiJy1CYBSKVQuDnFUVERTUzjwnu6t46imdTrlcBvOD8iv7845ZSJSHRU9qQ96K2q3Xs5EEgmZJYJSh6_Zo462_7bJubM4h4_-oa-P2cPBzeSTvskTdifUT9n9LtwT2mfsx6Tm1v9azOuVqJoQuD2fLZr56ucFRyeW4xrZz_tNQl73XBq24QucXS6wZhkatFOu3-rjO_vTk7J9x6_mlreW4tPr2XP25fDg8_4HMWRaEID-ESoCDX9mvYvjxGeWKOByWfnY4egP2toUJ8FKeZlrKCAHLQOxkOUWH2Clgyh5wTawO-El4yFDjxJS_PbCq1jFqBILOqS4LouVV27E3l_r28BAQ07ZMM4NLkcIIIMAmSQyCJAhgEZs56bBsmfguF10jzC5ESPq7K4CQTIDSOZvII3Ya4LfEDlGTdE3M3vZtubo06mZ5OgfFomWasTeDkLVAnsPdrjMgDogPq01ye01SRy9sP76-i8zw-zRGkk34dDPi_Tm__iiLfaAtNMFGWfbbGPVXIZX7B5creZtM2Z39w6m5em4243A8liedGWJZZl-x_fl0XH5bdwNsN90oCM7
linkProvider Copernicus Gesellschaft
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwELZGB4IXfiMKAywEYjyYJY6TOA8IlcG0al2pYKDxgnFsJxRtSUm6If4p_kbukrSoD-NtDzxVSq7txfl8d_advyPkifGcFzijmYtCy9DlstRlnGWZbxMXWSGbjO6nUTwey8PDZLJGfi_OwmBZ5cImNobalgb3yLc4ng4C3-fJV7MfDLtGYXZ10UKjhcWe-_UTlmz1y-EbeL9POd95e7C9y7quAsxALBAwDk4u0jb1_cBGGunOYp5ZPwWkO6l1CBM-E5bH0iQmNpI7ZNyKNXwYzVPjBfC7F8i6ALDLHlmfDPcnn5d5C1xPNPlV-KNQeklLJgRRktgqZjkLPMYjUMHjwYofbNoFnOUUGk-3c-1_G6Pr5GoXU9NBOwlukDVX3CSXmtpWU98iXwYF1fZ7OS3mLKuco_ooB63n344pROzUlJi1b3ZEadESh-iKlmBKj-HKzFXglNN2X5Nubo_fTern9HSqaa2xGL_Ib5OP5_Jwd0gP1HF3CXURhM8mzFI_scIXvjTgx6QLYRHqCyvSPnmxeMnKdJzr2PrjSMHaC1GhABUq8BSgQiEq-mRz-YVZSzdytuhrRM1SDHnCmwtllavO7KgUNPJSrQNjhAgNKOp8L8mQ5ClJjbV98hgxp5AJpMBSo1yf1LUafnivBjEEw0kgueiTZ51QVoL2RncnN2AMkDxsRXJjRRJMlVm9vcCt6kxlrf6C9t6_bz8il3cP9kdqNBzv3SdXcAyauulog_Tm1Yl7QC6a0_m0rh52s5KSr-cN8j_ETXOA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGB4gXvicKAywEYjx4dZwv5wGhrqOi2lSq8aE9YRzbKUVbUpJuiH-Nv467JC3qw3jbA0-Vkmt7cX6-O_vOvyPkueGO-85o5qLQMnS5LHWZYFnm2cRFNpB1RvfzYTwey-PjZLJBfi_PwmBZ5dIm1obaFgb3yHsCTweB7-Oyl7VlEZP94Zv5D4YdpDDTumyn0UDkwP36Ccu36vVoH971CyGGbz8O3rG2wwAzEBf4TIDDi7RNPc-3kUbqs1hk1ksB9U5qHcLkzwIrYmkSExspHLJvxRo-jBap4T787hWyKaOYiw7ZnAz2-kerHAauLepcK_xRKHnSEAtBxBT08vmU-ZyJCFTgwl_ziXXrgIscRO31hrf-5_G6TW62sTbtN5PjDtlw-V1yra55NdU98qWfU22_F7N8wbLSOapPpqD14tsphUiemgKz-fVOKc0bQhFd0gJM7ClcmbsSnHXa7HfSncH4_aR6Rc9nmlYai_Tz6X3y6VIebot0QB33gFAXQVhtwiz1Eht4gScN-DfpQliceoEN0i7ZXb5wZVoudmwJcqJgTYYIUYAQ5XMFCFGIkC7ZWX1h3tCQXCy6hwhaiSF_eH2hKKeqNUcqBY14qrVvTBCEBhR1Hk8yJH9KUmNtlzxD_ClkCMkRO1N9VlVq9OFI9WMIkhNfiqBLXrZCWQHaG92e6IAxQFKxNcntNUkwYWb99hLDqjWhlfoL4If_vv2UXAdkq8PR-OARuYFDUJdTR9uksyjP3GNy1ZwvZlX5pJ2glHy9bIz_AYz-e_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adjoint-free+algorithm+for+conditional+nonlinear+optimal+perturbations+%28CNOPs%29+via+sampling&rft.jtitle=Nonlinear+processes+in+geophysics&rft.au=Shi%2C+Bin&rft.au=Sun%2C+Guodong&rft.date=2023-07-06&rft.issn=1607-7946&rft.eissn=1607-7946&rft.volume=30&rft.issue=3&rft.spage=263&rft.epage=276&rft_id=info:doi/10.5194%2Fnpg-30-263-2023&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_npg_30_263_2023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-7946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-7946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-7946&client=summon