An adjoint-free algorithm for conditional nonlinear optimal perturbations (CNOPs) via sampling
In this paper, we propose a sampling algorithm based on state-of-the-art statistical machine learning techniques to obtain conditional nonlinear optimal perturbations (CNOPs), which is different from traditional (deterministic) optimization methods.1 Specifically, the traditional approach is unavail...
Uloženo v:
| Vydáno v: | Nonlinear processes in geophysics Ročník 30; číslo 3; s. 263 - 276 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Gottingen
Copernicus GmbH
06.07.2023
Copernicus Publications |
| Témata: | |
| ISSN: | 1607-7946, 1023-5809, 1607-7946 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we propose a sampling algorithm based on state-of-the-art statistical machine learning techniques to obtain conditional nonlinear
optimal perturbations (CNOPs), which is different from traditional (deterministic) optimization methods.1 Specifically, the traditional approach is unavailable in practice, which requires numerically computing the gradient (first-order
information) such that the computation cost is expensive, since it needs a large number of times to run numerical models. However, the sampling
approach directly reduces the gradient to the objective function value (zeroth-order information), which also avoids using the adjoint technique
that is unusable for many atmosphere and ocean models and requires large amounts of storage. We show an intuitive analysis for the sampling
algorithm from the law of large numbers and further present a Chernoff-type concentration inequality to rigorously characterize the degree to which
the sample average probabilistically approximates the exact gradient. The experiments are implemented to obtain the CNOPs for two numerical models,
the Burgers equation with small viscosity and the Lorenz-96 model. We demonstrate the CNOPs obtained with their spatial patterns, objective values,
computation times, and nonlinear error growth. Compared with the performance of the three approaches, all the characters for quantifying the CNOPs
are nearly consistent, while the computation time using the sampling approach with fewer samples is much shorter. In other words, the new
sampling algorithm shortens the computation time to the utmost at the cost of losing little accuracy. |
|---|---|
| AbstractList | In this paper, we propose a sampling algorithm based on state-of-the-art statistical machine learning techniques to obtain conditional nonlinear optimal perturbations (CNOPs), which is different from traditional (deterministic) optimization methods. 1 Specifically, the traditional approach is unavailable in practice, which requires numerically computing the gradient (first-order information) such that the computation cost is expensive, since it needs a large number of times to run numerical models. However, the sampling approach directly reduces the gradient to the objective function value (zeroth-order information), which also avoids using the adjoint technique that is unusable for many atmosphere and ocean models and requires large amounts of storage. We show an intuitive analysis for the sampling algorithm from the law of large numbers and further present a Chernoff-type concentration inequality to rigorously characterize the degree to which the sample average probabilistically approximates the exact gradient. The experiments are implemented to obtain the CNOPs for two numerical models, the Burgers equation with small viscosity and the Lorenz-96 model. We demonstrate the CNOPs obtained with their spatial patterns, objective values, computation times, and nonlinear error growth. Compared with the performance of the three approaches, all the characters for quantifying the CNOPs are nearly consistent, while the computation time using the sampling approach with fewer samples is much shorter. In other words, the new sampling algorithm shortens the computation time to the utmost at the cost of losing little accuracy. In this paper, we propose a sampling algorithm based on state-of-the-art statistical machine learning techniques to obtain conditional nonlinear optimal perturbations (CNOPs), which is different from traditional (deterministic) optimization methods..sup.1 Specifically, the traditional approach is unavailable in practice, which requires numerically computing the gradient (first-order information) such that the computation cost is expensive, since it needs a large number of times to run numerical models. However, the sampling approach directly reduces the gradient to the objective function value (zeroth-order information), which also avoids using the adjoint technique that is unusable for many atmosphere and ocean models and requires large amounts of storage. We show an intuitive analysis for the sampling algorithm from the law of large numbers and further present a Chernoff-type concentration inequality to rigorously characterize the degree to which the sample average probabilistically approximates the exact gradient. The experiments are implemented to obtain the CNOPs for two numerical models, the Burgers equation with small viscosity and the Lorenz-96 model. We demonstrate the CNOPs obtained with their spatial patterns, objective values, computation times, and nonlinear error growth. Compared with the performance of the three approaches, all the characters for quantifying the CNOPs are nearly consistent, while the computation time using the sampling approach with fewer samples is much shorter. In other words, the new sampling algorithm shortens the computation time to the utmost at the cost of losing little accuracy. In this paper, we propose a sampling algorithm based on state-of-the-art statistical machine learning techniques to obtain conditional nonlinear optimal perturbations (CNOPs), which is different from traditional (deterministic) optimization methods.1 Specifically, the traditional approach is unavailable in practice, which requires numerically computing the gradient (first-order information) such that the computation cost is expensive, since it needs a large number of times to run numerical models. However, the sampling approach directly reduces the gradient to the objective function value (zeroth-order information), which also avoids using the adjoint technique that is unusable for many atmosphere and ocean models and requires large amounts of storage. We show an intuitive analysis for the sampling algorithm from the law of large numbers and further present a Chernoff-type concentration inequality to rigorously characterize the degree to which the sample average probabilistically approximates the exact gradient. The experiments are implemented to obtain the CNOPs for two numerical models, the Burgers equation with small viscosity and the Lorenz-96 model. We demonstrate the CNOPs obtained with their spatial patterns, objective values, computation times, and nonlinear error growth. Compared with the performance of the three approaches, all the characters for quantifying the CNOPs are nearly consistent, while the computation time using the sampling approach with fewer samples is much shorter. In other words, the new sampling algorithm shortens the computation time to the utmost at the cost of losing little accuracy. |
| Audience | Academic |
| Author | Shi, Bin Sun, Guodong |
| Author_xml | – sequence: 1 givenname: Bin surname: Shi fullname: Shi, Bin – sequence: 2 givenname: Guodong orcidid: 0000-0003-1495-6516 surname: Sun fullname: Sun, Guodong |
| BookMark | eNp1kktv1DAUhS1UJNrCmq0lNnSR1s88lqMRlJEqilrYYt34ETxK4mB7UPn3eDoIGATywtbVd46vr88ZOpnDbBF6ScmlpJ24mpeh4qRiNa8YYfwJOqU1aaqmE_XJH-dn6CylLSFUyJqdos-rGYPZBj_nykVrMYxDiD5_mbALEeswG599mGHE5b7RzxYiDkv2U6ksNuZd7GEPJPx6_f72Q7rA3zzgBNNS4OE5eupgTPbFz_0cfXr75uP6XXVze71Zr24qzTtWGmZU1mB6SrmpQYqWNMwZ2nNCbQsgwRgnDGta3elGt8zSWjQNlE0D6zXh52hz8DUBtmqJpb34XQXw6rEQ4qAgZq9Hq_pWW9IDcK2FkNr11FLSOUIa0vXamOL16uC1xPB1Z1NW27CLZQJJsZZzKaUg7W9qgGLqZxdyBD35pNWqkTXpeMtEoS7_QZVl7OTLcK3zpX4kuDgSFCbbhzzALiW1ub87Zq8OrI4hpWjdr4dTovaZUCUTihNVMqH2mSgK-ZdC-_z4faUtP_5X9wP83bwO |
| CitedBy_id | crossref_primary_10_5194_npg_31_165_2024 crossref_primary_10_1016_j_jcp_2025_114163 crossref_primary_10_1007_s00376_025_4467_9 |
| Cites_doi | 10.1175/2008MWR2640.1 10.1093/nsr/nwz039 10.1002/2015JC011095 10.1175/1520-0493(1997)125<2057:POACMO>2.0.CO;2 10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2 10.1002/qj.2337 10.1007/978-3-0348-8802-8_21 10.1137/S1052623497330963 10.1007/s00382-015-2789-5 10.1007/BF01589116 10.1155/2017/9419024 10.1175/1520-0469(1996)053<2025:GSTPIA>2.0.CO;2 10.1002/2017MS001132 10.1007/s11430-014-4991-4 10.1175/1520-0469(1998)055<0537:ICFOGI>2.0.CO;2 10.1029/2007JC004476 10.1007/BF02906869 10.1017/CBO9780511617652.004 10.1175/JTECH-D-15-0183.1 10.5194/npg-10-493-2003 10.1175/JPO-D-15-0100.1 10.1360/N012016-00200 10.1111/j.1600-0870.2004.00076.x 10.1017/jfm.2018.689 10.1175/1520-0469(1996)053<2041:GSTPIN>2.0.CO;2 10.1103/PhysRevLett.105.154502 10.1137/17M1141163 10.3402/tellusa.v1i3.8507 10.1175/1520-0485(2004)034<2305:TSASOT>2.0.CO;2 10.1103/PhysRevE.78.016209 10.1111/j.2153-3490.1965.tb01424.x 10.1007/BF02959448 10.1029/2006GL027412 10.1002/qj.902 10.1112/plms/s1-11.1.57 10.1175/1520-0469(2001)058<3613:IOTCET>2.0.CO;2 10.5194/npg-18-243-2011 10.1017/CBO9780511802270 10.1175/JAS-D-18-0324.1 10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2 10.1017/9781108231596 10.1175/2009MWR3022.1 10.1175/1520-0493(1997)125<2043:POACMO>2.0.CO;2 10.1175/1520-0469(1982)039<1663:TIGODI>2.0.CO;2 10.1007/s00704-015-1690-9 10.1146/annurev-fluid-122316-045042 10.1137/16M1080173 10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2 10.1007/978-3-319-26535-3_11 10.1175/2010JCLI3610.1 10.5194/npg-24-101-2017 10.1029/2008JC004925 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 Copernicus GmbH 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 Copernicus GmbH – notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 3V. 7TG 7TN 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO F1W GNUQQ GUQSH H8D H96 HCIFZ KL. L.G L7M M2O M2P MBDVC P5Z P62 PADUT PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
| DOI | 10.5194/npg-30-263-2023 |
| DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Database ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Research Library Science Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Research Library China Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Prep ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Research Library China Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1607-7946 |
| EndPage | 276 |
| ExternalDocumentID | oai_doaj_org_article_b8ce0baa3cc445cfb1e109f00709bcdd A756093824 10_5194_npg_30_263_2023 |
| GroupedDBID | 123 29N 2WC 5VS 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAFWJ AAYXX ABUWG ACGOD ADBBV AENEX AEUYN AFFHD AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BANNL BCNDV BENPR BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION DU5 DWQXO E3Z EBS EDH EJD FRP GNUQQ GROUPED_DOAJ GUQSH H13 HCIFZ IAO IEA ISR ITC KQ8 L8X LK5 M2O M2P M7R MM- OK1 OVT P2P P62 PADUT PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC Q2X RKB RNS TR2 XSB ~02 ~OA 3V. 7TG 7TN 7XB 8FD 8FK F1W H8D H96 KL. L.G L7M MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c3923-22156adb113d6a548072fd1b301e8aa5addf4d278c9c7c82e16477ae16ca2bc03 |
| IEDL.DBID | RKB |
| ISSN | 1607-7946 1023-5809 |
| IngestDate | Tue Oct 14 19:09:01 EDT 2025 Fri Jul 25 22:55:22 EDT 2025 Sat Nov 29 13:22:05 EST 2025 Sat Nov 29 09:52:44 EST 2025 Wed Nov 26 11:14:24 EST 2025 Tue Nov 18 21:02:05 EST 2025 Sat Nov 29 01:43:06 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3923-22156adb113d6a548072fd1b301e8aa5addf4d278c9c7c82e16477ae16ca2bc03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1495-6516 |
| OpenAccessLink | https://doaj.org/article/b8ce0baa3cc445cfb1e109f00709bcdd |
| PQID | 2833555408 |
| PQPubID | 54809 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b8ce0baa3cc445cfb1e109f00709bcdd proquest_journals_2833555408 gale_infotracmisc_A756093824 gale_infotracacademiconefile_A756093824 gale_incontextgauss_ISR_A756093824 crossref_primary_10_5194_npg_30_263_2023 crossref_citationtrail_10_5194_npg_30_263_2023 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-06 |
| PublicationDateYYYYMMDD | 2023-07-06 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | Gottingen |
| PublicationPlace_xml | – name: Gottingen |
| PublicationTitle | Nonlinear processes in geophysics |
| PublicationYear | 2023 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref29 doi: 10.1175/2008MWR2640.1 – ident: ref46 doi: 10.1093/nsr/nwz039 – ident: ref45 doi: 10.1002/2015JC011095 – ident: ref49 doi: 10.1175/1520-0493(1997)125<2057:POACMO>2.0.CO;2 – ident: ref20 doi: 10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2 – ident: ref21 doi: 10.1002/qj.2337 – ident: ref1 doi: 10.1007/978-3-0348-8802-8_21 – ident: ref2 doi: 10.1137/S1052623497330963 – ident: ref7 doi: 10.1007/s00382-015-2789-5 – ident: ref17 doi: 10.1007/BF01589116 – ident: ref39 doi: 10.1155/2017/9419024 – ident: ref11 doi: 10.1175/1520-0469(1996)053<2025:GSTPIA>2.0.CO;2 – ident: ref47 doi: 10.1002/2017MS001132 – ident: ref5 doi: 10.1007/s11430-014-4991-4 – ident: ref41 doi: 10.1175/1520-0469(1998)055<0537:ICFOGI>2.0.CO;2 – ident: ref13 doi: 10.1029/2007JC004476 – ident: ref24 doi: 10.1007/BF02906869 – ident: ref18 doi: 10.1017/CBO9780511617652.004 – ident: ref50 doi: 10.1175/JTECH-D-15-0183.1 – ident: ref16 – ident: ref26 doi: 10.5194/npg-10-493-2003 – ident: ref55 doi: 10.1175/JPO-D-15-0100.1 – ident: ref25 doi: 10.1360/N012016-00200 – ident: ref32 doi: 10.1111/j.1600-0870.2004.00076.x – ident: ref30 doi: 10.1017/jfm.2018.689 – ident: ref12 doi: 10.1175/1520-0469(1996)053<2041:GSTPIN>2.0.CO;2 – ident: ref34 doi: 10.1103/PhysRevLett.105.154502 – ident: ref6 doi: 10.1137/17M1141163 – ident: ref9 doi: 10.3402/tellusa.v1i3.8507 – ident: ref27 doi: 10.1175/1520-0485(2004)034<2305:TSASOT>2.0.CO;2 – ident: ref33 doi: 10.1103/PhysRevE.78.016209 – ident: ref19 doi: 10.1111/j.2153-3490.1965.tb01424.x – ident: ref23 doi: 10.1007/BF02959448 – ident: ref28 doi: 10.1029/2006GL027412 – ident: ref35 doi: 10.1002/qj.902 – ident: ref36 doi: 10.1112/plms/s1-11.1.57 – ident: ref37 doi: 10.1175/1520-0469(2001)058<3613:IOTCET>2.0.CO;2 – ident: ref42 doi: 10.5194/npg-18-243-2011 – ident: ref14 doi: 10.1017/CBO9780511802270 – ident: ref38 – ident: ref22 doi: 10.1175/JAS-D-18-0324.1 – ident: ref53 doi: 10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2 – ident: ref43 doi: 10.1017/9781108231596 – ident: ref44 doi: 10.1175/2009MWR3022.1 – ident: ref48 doi: 10.1175/1520-0493(1997)125<2043:POACMO>2.0.CO;2 – ident: ref10 doi: 10.1175/1520-0469(1982)039<1663:TIGODI>2.0.CO;2 – ident: ref40 doi: 10.1007/s00704-015-1690-9 – ident: ref15 doi: 10.1146/annurev-fluid-122316-045042 – ident: ref3 doi: 10.1137/16M1080173 – ident: ref4 doi: 10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2 – ident: ref51 doi: 10.1007/978-3-319-26535-3_11 – ident: ref52 doi: 10.1175/2010JCLI3610.1 – ident: ref54 doi: 10.5194/npg-24-101-2017 – ident: ref8 doi: 10.1029/2008JC004925 – ident: ref31 |
| SSID | ssj0014562 |
| Score | 2.3259933 |
| Snippet | In this paper, we propose a sampling algorithm based on state-of-the-art statistical machine learning techniques to obtain conditional nonlinear
optimal... In this paper, we propose a sampling algorithm based on state-of-the-art statistical machine learning techniques to obtain conditional nonlinear optimal... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 263 |
| SubjectTerms | Algorithms Analysis Atmosphere Atmospheric models Burgers equation Computation Computing time Fluid dynamics General circulation models Machine learning Mathematical models Methods Modelling Numerical models Objective function Ocean models Optimization Ordinary differential equations Perturbation Perturbations Probability theory Sampling Viscosity |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUltNBL6SfdNC0iFJoe1EiWbMvHbWhooGxDv8ipQhrJmw2Jd7E3-f2dsb2hewi99GSwxyA_jWfeWOMnxt6CTFIn8CIVeRSUckVIdSbqWsUqFdHYfkX315dyNrNnZ9XpX1t9UU_YIA88AHcYLCQZvNcAxuRQB5WUrGqSqakCxEjRF1nPppga1w-I1_frnJkWuZXVIOqDbMUcNqu50FJkhRa0dfhWPupl--8Kzn3GOX7MHo1UkU-HIT5h91LzlD3oWzahe8Z-Txvu48Vy0axF3abE_eV8iaX--RVHIsqxzo2L4UMfbwY9DN_yJUaIKzyzSi3mmjB8ruMHR7Ovp917frPwvPPUY97Mn7Ofx59-HH0W424JApDj4MNg8i58DErpWHiScSuzOqqAb3Cy3ucYyGoTs9JCBSXYLJGSWOnxAD4LIPULtoPDSS8ZTwWyQsgR6yoaZRROgQebcqytlIkmTNiHDWYORilx2tHi0mFJQSA7BNlp6RBkRyBP2MHtDatBReNu0480CbdmJH_dn0CncKNTuH85xYTt0xQ6ErhoqINm7q-7zp18_-amJXK8StvMTNi70ahe4ujBjz8kIAakibVlubdliW8gbF_eeIobI0DnMvqbDbmatLv_44lesYeETt8oXOyxnXV7nV6z-3CzXnTtm975_wDKpQkF priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgCxIX3oiFgiyERDmY5uEkzgltq1YgoWVVHuoJyx47Yas2u022_f3MJN5FeygXTpHsSTTx2DPj8fgbxt5C5KPUgxE-z5wgkyusrxJRVbErfe6k6k90f34pplN1elrOQsCtC2mVa53YK2q3AIqR7yd0OwhtX6Q-Li8FVY2i09VQQuM22yGkMjliOwdH09nJ5hyB_Pv-vDNJRaaicgD3Qa9F7jfLWqSRSPJUUAnxLbvUw_ffpKR7y3P84H95fsjuB5-TT4ZJ8ojd8s1jdrfP_YTuCfs1abhxZ4t5sxJV6z035zV-ZfX7gqNHy3HD7OZDxJA3A7CGafkCVc0Ftix9i0bLDnE_vnc4_Trr3vPrueGdoWT1pn7KfhwffT_8JELZBQHoLOFooBeQG2fjOHW5ITy4IqlcbFEVeGVMhhqxki4pFJRQgEo8QZIVBh9gEgtR-oyNkB3_nHGfo3sJWWXj0slYxgpQzyuf4SYtlk7aMfuwHnQNAZOcSmOca9ybkJQ0SkmnkUYpaZLSmO1tXlgOcBw3kx6QFDdkhKPdNyzaWodlqS1yFFljUgApM0BGfRyVFYEglRacG7M3NAc0IWU0lIpTm6uu05-_nehJgc5imapEjtm7QFQtkHsw4WYDjgGBa21R7m5R4lKG7e71PNJBlXT67yR68e_ul-we_XefS5zvstGqvfKv2B24Xs279nVYGX8AkMEWqA priority: 102 providerName: ProQuest |
| Title | An adjoint-free algorithm for conditional nonlinear optimal perturbations (CNOPs) via sampling |
| URI | https://www.proquest.com/docview/2833555408 https://doaj.org/article/b8ce0baa3cc445cfb1e109f00709bcdd |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus Publications customDbUrl: eissn: 1607-7946 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014562 issn: 1607-7946 databaseCode: RKB dateStart: 19940101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1607-7946 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014562 issn: 1607-7946 databaseCode: DOA dateStart: 19940101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1607-7946 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014562 issn: 1607-7946 databaseCode: P5Z dateStart: 20150901 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1607-7946 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014562 issn: 1607-7946 databaseCode: PCBAR dateStart: 20150901 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1607-7946 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014562 issn: 1607-7946 databaseCode: BENPR dateStart: 20150901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Research Library customDbUrl: eissn: 1607-7946 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014562 issn: 1607-7946 databaseCode: M2O dateStart: 20150901 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1607-7946 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014562 issn: 1607-7946 databaseCode: PIMPY dateStart: 20150901 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1607-7946 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014562 issn: 1607-7946 databaseCode: M2P dateStart: 20150901 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQAYkLb8S2ZWUhJMrBNHGcxDluq1ZUotuoPFQ4YNljZ1nUZlfJtr-fmSSt2EPFAS6O5IwlZ77YM7bH3zD2BqIQJQGsCFnqBZlc4UIlRVXFvgiZV7o70f36MZ9O9dlZUf6R6otiwnp64F5xu05DiJy1CYBSKVQuDnFUVERTUzjwnu6t46imdTrlcBvOD8iv7845ZSJSHRU9qQ96K2q3Xs5EEgmZJYJSh6_Zo462_7bJubM4h4_-oa-P2cPBzeSTvskTdifUT9n9LtwT2mfsx6Tm1v9azOuVqJoQuD2fLZr56ucFRyeW4xrZz_tNQl73XBq24QucXS6wZhkatFOu3-rjO_vTk7J9x6_mlreW4tPr2XP25fDg8_4HMWRaEID-ESoCDX9mvYvjxGeWKOByWfnY4egP2toUJ8FKeZlrKCAHLQOxkOUWH2Clgyh5wTawO-El4yFDjxJS_PbCq1jFqBILOqS4LouVV27E3l_r28BAQ07ZMM4NLkcIIIMAmSQyCJAhgEZs56bBsmfguF10jzC5ESPq7K4CQTIDSOZvII3Ya4LfEDlGTdE3M3vZtubo06mZ5OgfFomWasTeDkLVAnsPdrjMgDogPq01ye01SRy9sP76-i8zw-zRGkk34dDPi_Tm__iiLfaAtNMFGWfbbGPVXIZX7B5creZtM2Z39w6m5em4243A8liedGWJZZl-x_fl0XH5bdwNsN90oCM7 |
| linkProvider | Copernicus Gesellschaft |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwELZGB4IXfiMKAywEYjyYJY6TOA8IlcG0al2pYKDxgnFsJxRtSUm6If4p_kbukrSoD-NtDzxVSq7txfl8d_advyPkifGcFzijmYtCy9DlstRlnGWZbxMXWSGbjO6nUTwey8PDZLJGfi_OwmBZ5cImNobalgb3yLc4ng4C3-fJV7MfDLtGYXZ10UKjhcWe-_UTlmz1y-EbeL9POd95e7C9y7quAsxALBAwDk4u0jb1_cBGGunOYp5ZPwWkO6l1CBM-E5bH0iQmNpI7ZNyKNXwYzVPjBfC7F8i6ALDLHlmfDPcnn5d5C1xPNPlV-KNQeklLJgRRktgqZjkLPMYjUMHjwYofbNoFnOUUGk-3c-1_G6Pr5GoXU9NBOwlukDVX3CSXmtpWU98iXwYF1fZ7OS3mLKuco_ooB63n344pROzUlJi1b3ZEadESh-iKlmBKj-HKzFXglNN2X5Nubo_fTern9HSqaa2xGL_Ib5OP5_Jwd0gP1HF3CXURhM8mzFI_scIXvjTgx6QLYRHqCyvSPnmxeMnKdJzr2PrjSMHaC1GhABUq8BSgQiEq-mRz-YVZSzdytuhrRM1SDHnCmwtllavO7KgUNPJSrQNjhAgNKOp8L8mQ5ClJjbV98hgxp5AJpMBSo1yf1LUafnivBjEEw0kgueiTZ51QVoL2RncnN2AMkDxsRXJjRRJMlVm9vcCt6kxlrf6C9t6_bz8il3cP9kdqNBzv3SdXcAyauulog_Tm1Yl7QC6a0_m0rh52s5KSr-cN8j_ETXOA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGB4gXvicKAywEYjx4dZwv5wGhrqOi2lSq8aE9YRzbKUVbUpJuiH-Nv467JC3qw3jbA0-Vkmt7cX6-O_vOvyPkueGO-85o5qLQMnS5LHWZYFnm2cRFNpB1RvfzYTwey-PjZLJBfi_PwmBZ5dIm1obaFgb3yHsCTweB7-Oyl7VlEZP94Zv5D4YdpDDTumyn0UDkwP36Ccu36vVoH971CyGGbz8O3rG2wwAzEBf4TIDDi7RNPc-3kUbqs1hk1ksB9U5qHcLkzwIrYmkSExspHLJvxRo-jBap4T787hWyKaOYiw7ZnAz2-kerHAauLepcK_xRKHnSEAtBxBT08vmU-ZyJCFTgwl_ziXXrgIscRO31hrf-5_G6TW62sTbtN5PjDtlw-V1yra55NdU98qWfU22_F7N8wbLSOapPpqD14tsphUiemgKz-fVOKc0bQhFd0gJM7ClcmbsSnHXa7HfSncH4_aR6Rc9nmlYai_Tz6X3y6VIebot0QB33gFAXQVhtwiz1Eht4gScN-DfpQliceoEN0i7ZXb5wZVoudmwJcqJgTYYIUYAQ5XMFCFGIkC7ZWX1h3tCQXCy6hwhaiSF_eH2hKKeqNUcqBY14qrVvTBCEBhR1Hk8yJH9KUmNtlzxD_ClkCMkRO1N9VlVq9OFI9WMIkhNfiqBLXrZCWQHaG92e6IAxQFKxNcntNUkwYWb99hLDqjWhlfoL4If_vv2UXAdkq8PR-OARuYFDUJdTR9uksyjP3GNy1ZwvZlX5pJ2glHy9bIz_AYz-e_A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adjoint-free+algorithm+for+conditional+nonlinear+optimal+perturbations+%28CNOPs%29+via+sampling&rft.jtitle=Nonlinear+processes+in+geophysics&rft.au=Shi%2C+Bin&rft.au=Sun%2C+Guodong&rft.date=2023-07-06&rft.issn=1607-7946&rft.eissn=1607-7946&rft.volume=30&rft.issue=3&rft.spage=263&rft.epage=276&rft_id=info:doi/10.5194%2Fnpg-30-263-2023&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_npg_30_263_2023 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-7946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-7946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-7946&client=summon |