Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach

Summary We present two accurate and efficient numerical schemes for a phase field dendritic crystal growth model, which is derived from the variation of a free‐energy functional, consisting of a temperature dependent bulk potential and a conformational entropy with a gradient‐dependent anisotropic c...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering Vol. 110; no. 3; pp. 279 - 300
Main Authors: Zhao, Jia, Wang, Qi, Yang, Xiaofeng
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Ltd 20.04.2017
Wiley Subscription Services, Inc
Subjects:
ISSN:0029-5981, 1097-0207
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary We present two accurate and efficient numerical schemes for a phase field dendritic crystal growth model, which is derived from the variation of a free‐energy functional, consisting of a temperature dependent bulk potential and a conformational entropy with a gradient‐dependent anisotropic coefficient. We introduce a novel Invariant Energy Quadratization approach to transform the free‐energy functional into a quadratic form by introducing new variables to substitute the nonlinear transformations. Based on the reformulated equivalent governing system, we develop a first and a second order semi‐discretized scheme in time for the system, in which all nonlinear terms are treated semi‐explicitly. The resulting semi‐discretized equations consist of a linear elliptic equation system at each time step, where the coefficient matrix operator is positive definite and thus, the semi‐discrete system can be solved efficiently. We further prove that the proposed schemes are unconditionally energy stable. Convergence test together with 2D and 3D numerical simulations for dendritic crystal growth are presented after the semi‐discrete schemes are fully discretized in space using the finite difference method to demonstrate the stability and the accuracy of the proposed schemes. Copyright © 2016 John Wiley & Sons, Ltd.
AbstractList We present two accurate and efficient numerical schemes for a phase field dendritic crystal growth model, which is derived from the variation of a free-energy functional, consisting of a temperature dependent bulk potential and a conformational entropy with a gradient-dependent anisotropic coefficient. We introduce a novel Invariant Energy Quadratization approach to transform the free-energy functional into a quadratic form by introducing new variables to substitute the nonlinear transformations. Based on the reformulated equivalent governing system, we develop a first and a second order semi-discretized scheme in time for the system, in which all nonlinear terms are treated semi-explicitly. The resulting semi-discretized equations consist of a linear elliptic equation system at each time step, where the coefficient matrix operator is positive definite and thus, the semi-discrete system can be solved efficiently. We further prove that the proposed schemes are unconditionally energy stable. Convergence test together with 2D and 3D numerical simulations for dendritic crystal growth are presented after the semi-discrete schemes are fully discretized in space using the finite difference method to demonstrate the stability and the accuracy of the proposed schemes.
Summary We present two accurate and efficient numerical schemes for a phase field dendritic crystal growth model, which is derived from the variation of a free-energy functional, consisting of a temperature dependent bulk potential and a conformational entropy with a gradient-dependent anisotropic coefficient. We introduce a novel Invariant Energy Quadratization approach to transform the free-energy functional into a quadratic form by introducing new variables to substitute the nonlinear transformations. Based on the reformulated equivalent governing system, we develop a first and a second order semi-discretized scheme in time for the system, in which all nonlinear terms are treated semi-explicitly. The resulting semi-discretized equations consist of a linear elliptic equation system at each time step, where the coefficient matrix operator is positive definite and thus, the semi-discrete system can be solved efficiently. We further prove that the proposed schemes are unconditionally energy stable. Convergence test together with 2D and 3D numerical simulations for dendritic crystal growth are presented after the semi-discrete schemes are fully discretized in space using the finite difference method to demonstrate the stability and the accuracy of the proposed schemes. Copyright © 2016 John Wiley & Sons, Ltd.
Summary We present two accurate and efficient numerical schemes for a phase field dendritic crystal growth model, which is derived from the variation of a free‐energy functional, consisting of a temperature dependent bulk potential and a conformational entropy with a gradient‐dependent anisotropic coefficient. We introduce a novel Invariant Energy Quadratization approach to transform the free‐energy functional into a quadratic form by introducing new variables to substitute the nonlinear transformations. Based on the reformulated equivalent governing system, we develop a first and a second order semi‐discretized scheme in time for the system, in which all nonlinear terms are treated semi‐explicitly. The resulting semi‐discretized equations consist of a linear elliptic equation system at each time step, where the coefficient matrix operator is positive definite and thus, the semi‐discrete system can be solved efficiently. We further prove that the proposed schemes are unconditionally energy stable. Convergence test together with 2D and 3D numerical simulations for dendritic crystal growth are presented after the semi‐discrete schemes are fully discretized in space using the finite difference method to demonstrate the stability and the accuracy of the proposed schemes. Copyright © 2016 John Wiley & Sons, Ltd.
We present two accurate and efficient numerical schemes for a phase field dendritic crystal growth model, which is derived from the variation of a free‐energy functional, consisting of a temperature dependent bulk potential and a conformational entropy with a gradient‐dependent anisotropic coefficient. We introduce a novel Invariant Energy Quadratization approach to transform the free‐energy functional into a quadratic form by introducing new variables to substitute the nonlinear transformations. Based on the reformulated equivalent governing system, we develop a first and a second order semi‐discretized scheme in time for the system, in which all nonlinear terms are treated semi‐explicitly. The resulting semi‐discretized equations consist of a linear elliptic equation system at each time step, where the coefficient matrix operator is positive definite and thus, the semi‐discrete system can be solved efficiently. We further prove that the proposed schemes are unconditionally energy stable. Convergence test together with 2D and 3D numerical simulations for dendritic crystal growth are presented after the semi‐discrete schemes are fully discretized in space using the finite difference method to demonstrate the stability and the accuracy of the proposed schemes. Copyright © 2016 John Wiley & Sons, Ltd.
Author Wang, Qi
Zhao, Jia
Yang, Xiaofeng
Author_xml – sequence: 1
  givenname: Jia
  surname: Zhao
  fullname: Zhao, Jia
  organization: University of North Carolina
– sequence: 2
  givenname: Qi
  surname: Wang
  fullname: Wang, Qi
  organization: Beijing Computational Science Research Center
– sequence: 3
  givenname: Xiaofeng
  surname: Yang
  fullname: Yang, Xiaofeng
  email: xfyang@math.sc.edu
  organization: University of South Carolina
BookMark eNp1kU9P3DAQxS0EUheK1I9giQuXbP1nk9jHCkGLROFSztGsPWGNEnuxHWB76VfH7KJWquA0h_nNm3nzDsm-Dx4J-cLZnDMmvvoR57VsxR6ZcabbignW7pNZaemq1op_Iocp3TPGec3kjPy5nkaMzsBAYb2O4dmNkF3wifYhUqDrFSSkvcPBUoveRpedoSZuUi4jdzE85RUdg8WBLgtpafA0r5A6_wjRgc8UPca7DX2YwMYi_Xsrv1sGZvWZHPQwJDx-q0fk9uL819mP6urm--XZt6vKSC1EZXpgjdUccAGsttw2IHjTMwVmKQGQS6b6pWql0Y0SjTItYzXyRauLU6G4PCKnO92y9mHClLvRJYPDAB7DlDqutNRMKt0W9OQ_9D5M0ZfrCtUqIeoFV4Wa7ygTQ0oR-864vPWWI7ih46x7zaMreXSvefy74O_AOpZnx817aLVDn9yAmw-57vrn-ZZ_AYu9nR8
CODEN IJNMBH
CitedBy_id crossref_primary_10_1016_j_camwa_2022_06_020
crossref_primary_10_1016_j_cnsns_2020_105658
crossref_primary_10_1007_s10915_020_01386_8
crossref_primary_10_1016_j_enganabound_2025_106118
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126036
crossref_primary_10_1016_j_cma_2025_118274
crossref_primary_10_1007_s10915_018_0867_7
crossref_primary_10_3390_e24111683
crossref_primary_10_1002_mma_9594
crossref_primary_10_1016_j_cam_2023_115577
crossref_primary_10_1016_j_cnsns_2024_108365
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104957
crossref_primary_10_1137_16M1100885
crossref_primary_10_1016_j_apnum_2022_11_006
crossref_primary_10_1137_17M1119834
crossref_primary_10_1007_s11075_023_01621_x
crossref_primary_10_1016_j_cnsns_2021_105766
crossref_primary_10_1007_s10915_019_01038_6
crossref_primary_10_1016_j_cma_2021_114089
crossref_primary_10_1016_j_cpc_2020_107767
crossref_primary_10_1063_5_0284031
crossref_primary_10_1007_s10915_022_02094_1
crossref_primary_10_1016_j_jcp_2017_04_010
crossref_primary_10_1007_s42967_023_00258_w
crossref_primary_10_1016_j_cnsns_2024_108379
crossref_primary_10_1007_s11075_024_01910_z
crossref_primary_10_1002_mma_7952
crossref_primary_10_1016_j_jcp_2023_112722
crossref_primary_10_1002_num_22435
crossref_primary_10_1137_23M158190X
crossref_primary_10_1016_j_jcp_2024_113598
crossref_primary_10_1007_s00211_021_01203_w
crossref_primary_10_1016_j_camwa_2025_03_032
crossref_primary_10_1007_s10915_022_01822_x
crossref_primary_10_1016_j_jcp_2025_114209
crossref_primary_10_1016_j_camwa_2019_07_030
crossref_primary_10_1007_s10915_022_01863_2
crossref_primary_10_1016_j_cam_2020_113335
crossref_primary_10_1016_j_camwa_2023_10_023
crossref_primary_10_1016_j_cnsns_2024_108102
crossref_primary_10_1016_j_jcp_2022_110954
crossref_primary_10_1016_j_matcom_2025_04_023
crossref_primary_10_1007_s10915_022_01981_x
crossref_primary_10_1016_j_jcp_2023_111925
crossref_primary_10_1016_j_cam_2024_116161
crossref_primary_10_1016_j_cma_2023_116306
crossref_primary_10_1016_j_aml_2025_109687
crossref_primary_10_1002_nme_6697
crossref_primary_10_1016_j_apnum_2022_07_002
crossref_primary_10_3390_sym12071155
crossref_primary_10_1016_j_cpc_2017_05_002
crossref_primary_10_1016_j_cma_2023_116166
crossref_primary_10_1016_j_compfluid_2022_105306
crossref_primary_10_1016_j_apnum_2020_10_009
crossref_primary_10_1016_j_cma_2017_02_011
crossref_primary_10_1016_j_matcom_2023_11_013
crossref_primary_10_1016_j_camwa_2022_06_015
crossref_primary_10_1016_j_jcp_2019_03_009
crossref_primary_10_1016_j_jcp_2021_110800
crossref_primary_10_1007_s10915_024_02693_0
crossref_primary_10_1016_j_cma_2018_12_012
crossref_primary_10_1137_17M1135451
crossref_primary_10_1137_18M1235405
crossref_primary_10_1360_SSM_2024_0266
crossref_primary_10_1137_17M1150153
crossref_primary_10_1002_nme_7131
crossref_primary_10_1007_s11075_023_01635_5
crossref_primary_10_1007_s10994_025_06797_y
crossref_primary_10_3390_e24050721
crossref_primary_10_1007_s10915_023_02163_z
crossref_primary_10_1137_20M1331160
crossref_primary_10_1002_num_23152
crossref_primary_10_1016_j_apt_2024_104723
crossref_primary_10_1360_SSM_2023_0157
crossref_primary_10_1016_j_jcp_2019_03_017
crossref_primary_10_1080_00207160_2021_1940978
crossref_primary_10_1137_17M1111759
crossref_primary_10_1016_j_jcp_2021_110854
crossref_primary_10_1137_24M1687546
crossref_primary_10_1016_j_camwa_2017_07_012
crossref_primary_10_1007_s10444_018_9597_5
crossref_primary_10_1016_j_cam_2019_112482
crossref_primary_10_1016_j_camwa_2023_03_016
crossref_primary_10_1016_j_camwa_2020_11_014
crossref_primary_10_1016_j_aml_2019_03_029
crossref_primary_10_1016_j_jcp_2022_111028
crossref_primary_10_1007_s40314_025_03309_5
crossref_primary_10_1016_j_jcp_2023_112236
crossref_primary_10_1007_s10915_023_02423_y
crossref_primary_10_1016_j_cam_2024_115768
crossref_primary_10_1016_j_cma_2022_115195
crossref_primary_10_1007_s10915_020_01229_6
crossref_primary_10_1002_num_23041
crossref_primary_10_1016_j_cnsns_2022_106717
crossref_primary_10_1007_s10915_021_01681_y
crossref_primary_10_1155_2019_8152136
crossref_primary_10_1016_j_camwa_2022_01_017
crossref_primary_10_1007_s42967_025_00486_2
crossref_primary_10_1016_j_cma_2021_113746
crossref_primary_10_1016_j_cma_2019_03_030
crossref_primary_10_1051_m2an_2025067
crossref_primary_10_1007_s10915_020_01241_w
crossref_primary_10_1016_j_matcom_2022_05_024
crossref_primary_10_1093_imanum_drae062
crossref_primary_10_1016_j_camwa_2018_09_034
crossref_primary_10_1007_s10915_024_02677_0
crossref_primary_10_1016_j_commatsci_2020_109967
crossref_primary_10_1007_s11075_024_01847_3
crossref_primary_10_1016_j_jcp_2024_113711
crossref_primary_10_1007_s11075_021_01068_y
crossref_primary_10_1002_nme_7619
crossref_primary_10_1016_j_cma_2019_112779
crossref_primary_10_1007_s10444_020_09835_6
crossref_primary_10_1016_j_cma_2022_115661
crossref_primary_10_1016_j_cma_2024_116794
crossref_primary_10_1016_j_cam_2018_04_027
crossref_primary_10_1016_j_amc_2021_126267
crossref_primary_10_1016_j_cnsns_2024_107858
crossref_primary_10_1016_j_cam_2020_113375
crossref_primary_10_1016_j_cam_2024_116368
crossref_primary_10_1007_s10915_017_0576_7
crossref_primary_10_1016_j_cnsns_2024_108021
crossref_primary_10_1016_j_compfluid_2025_106673
crossref_primary_10_1016_j_camwa_2024_10_020
crossref_primary_10_1016_j_cnsns_2018_10_019
crossref_primary_10_1007_s10444_019_09678_w
crossref_primary_10_1016_j_apnum_2024_03_021
crossref_primary_10_1007_s11804_023_00328_8
crossref_primary_10_1016_j_aml_2020_106576
crossref_primary_10_1016_j_tsep_2021_100843
crossref_primary_10_1002_num_23061
crossref_primary_10_1016_j_jcp_2024_113147
crossref_primary_10_1016_j_jsv_2022_117021
crossref_primary_10_1016_j_jcp_2019_05_037
crossref_primary_10_1007_s10915_019_00946_x
crossref_primary_10_1002_num_22929
crossref_primary_10_1007_s10915_020_01127_x
crossref_primary_10_1016_j_jcp_2018_12_033
crossref_primary_10_1016_j_apnum_2018_02_004
crossref_primary_10_1016_j_cam_2020_113122
crossref_primary_10_1016_j_cpc_2018_12_019
crossref_primary_10_1016_j_apor_2022_103218
crossref_primary_10_1108_EC_11_2021_0692
crossref_primary_10_1002_nme_7053
crossref_primary_10_1016_j_enganabound_2023_06_029
crossref_primary_10_1016_j_jsv_2023_117968
crossref_primary_10_1016_j_jcp_2021_110561
crossref_primary_10_1016_j_amc_2022_127238
crossref_primary_10_1016_j_jcp_2022_111278
crossref_primary_10_1007_s10915_023_02252_z
crossref_primary_10_1016_j_cma_2024_116938
crossref_primary_10_1080_00036811_2022_2047947
crossref_primary_10_1137_19M1298627
crossref_primary_10_1007_s10915_017_0508_6
crossref_primary_10_1016_j_cma_2024_117507
crossref_primary_10_1137_23M1552164
Cites_doi 10.1016/j.cma.2010.04.011
10.1007/s10915-016-0177-x
10.1007/s00211-004-0546-5
10.1103/PhysRevE.60.3614
10.1006/jcph.2000.6634
10.1006/jcph.2001.6726
10.1103/PhysRevE.79.031926
10.1016/j.jcp.2016.09.029
10.1016/j.ijheatmasstransfer.2008.09.014
10.4236/wjm.2014.45015
10.4208/cicp.301110.040811a
10.1137/090752675
10.1103/PhysRevE.64.041602
10.1103/PhysRevE.57.4323
10.1016/j.cma.2016.06.008
10.1103/PhysRevB.10.139
10.1016/j.ijheatmasstransfer.2012.08.009
10.1016/j.jcp.2005.01.018
10.1016/j.jcrysgro.2011.02.042
10.1016/0956-7151(94)00285-P
10.1103/PhysRevE.78.020601
10.3934/dcds.2010.28.405
10.1016/j.jcp.2015.09.044
10.1007/s10915-011-9559-2
10.1080/14786431003773015
10.1103/PhysRevE.88.052409
10.1103/PhysRevE.69.051607
10.1137/130950628
10.1016/j.physd.2005.06.021
10.1103/PhysRevLett.80.3308
ContentType Journal Article
Copyright Copyright © 2016 John Wiley & Sons, Ltd.
Copyright © 2017 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2016 John Wiley & Sons, Ltd.
– notice: Copyright © 2017 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.5372
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
Civil Engineering Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 300
ExternalDocumentID 4320930257
10_1002_nme_5372
NME5372
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3922-cfa06d91ae4a05d1d6a216f08acb3aae1308fb873c968268c7005e14790012813
IEDL.DBID DRFUL
ISICitedReferencesCount 196
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000397802700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Sun Nov 09 09:31:41 EST 2025
Fri Jul 25 12:19:44 EDT 2025
Sat Nov 29 06:43:52 EST 2025
Tue Nov 18 22:08:45 EST 2025
Wed Jan 22 16:53:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3922-cfa06d91ae4a05d1d6a216f08acb3aae1308fb873c968268c7005e14790012813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1878225418
PQPubID 996376
PageCount 22
ParticipantIDs proquest_miscellaneous_1893903897
proquest_journals_1878225418
crossref_citationtrail_10_1002_nme_5372
crossref_primary_10_1002_nme_5372
wiley_primary_10_1002_nme_5372_NME5372
PublicationCentury 2000
PublicationDate 20 April 2017
PublicationDateYYYYMMDD 2017-04-20
PublicationDate_xml – month: 04
  year: 2017
  text: 20 April 2017
  day: 20
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationYear 2017
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References 2013; 88
2016; 305
2004; 69
1998
2008; 78
1998; 80
2016; 301
1999; 60
2012; 12
2012; 55
2001; 169
2012; 52
2004; 99
2009; 79
2009; 52
2014; 4
1974; B10
2010; 28
2006; 44
1995; 43
2005; 207
2010; 199
2005; 208
2016
2000; 165
2015
2001; 55
2011; 49
2010; 91
2011; 321
2016; 68
1998; 57
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
Eyre DJs (e_1_2_7_30_1) 1998
Yang X (e_1_2_7_21_1) 2016
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
Han D (e_1_2_7_19_1) 2016
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
Yang X (e_1_2_7_34_1) 2016
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Yang X (e_1_2_7_22_1) 2016
Diegel A (e_1_2_7_40_1) 2016
Shen J (e_1_2_7_25_1) 2010; 28
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
Zhao J (e_1_2_7_33_1)
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Xu C (e_1_2_7_26_1) 2006; 44
References_xml – volume: 305
  start-page: 539
  year: 2016
  end-page: 556
  article-title: A decoupled energy stable scheme for a hydrodynamic phase field model of mixtures of nematic liquid crystals and viscous fluids
  publication-title: Journal of Computational Physics
– volume: 49
  start-page: 945
  year: 2011
  end-page: 969
  article-title: An energy stable and convergent finite‐difference scheme for the modified phase field crystal equation
  publication-title: SIAM Journal on Numerical Analysis
– volume: 207
  start-page: 221
  year: 2005
  end-page: 239
  article-title: Crystal growth of pure substances: phase field simulations in comparison with analytical and experimental results
  publication-title: Journal of Computational Physics
– volume: 169
  start-page: 708
  year: 2001
  end-page: 759
  article-title: A front‐tracking method for the computations of multiphase flow
  publication-title: Journal of Computational Physics
– volume: 199
  start-page: 2765
  year: 2010
  end-page: 2778
  article-title: A phase field model for rate‐independent crack propagation: robust algorithmic implementation based on operator splits
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 4
  start-page: 128
  year: 2014
  end-page: 136
  article-title: Numerical simulation of two dimensional dendritic growth using phase field model
  publication-title: World Journal of Mechanics
– volume: 301
  start-page: 77
  year: 2016
  end-page: 97
  article-title: Numerical approximations to a new phase‐field model for immiscible mixtures of nematic liquid crystals and viscous fluids
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 68
  start-page: 1241
  year: 2016
  end-page: 1266
  article-title: Semi‐discrete energy‐stable schemes for a tensor‐based dydrodynamic model of nematic liquid crystal flows
  publication-title: Journal of Scientific Computing
– volume: 88
  start-page: 052409
  year: 2013
  article-title: Phase field modeling of two dimensional crystal growth with anisotropic diffusion
  publication-title: Physical Review E
– volume: 79
  start-page: 031926
  issue: 3
  year: 2009
  article-title: Phase field modeling of the dynamics of multicomponent vesicles spinodal decomposition coarsening budding and fission
  publication-title: Physical Review E
– year: 2016
  article-title: Numerical analysis of second order, fully discrete energy stable schemes for phase field models of two phase incompressible flows
  publication-title: in press, Journal of Scientific Computing
– article-title: Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals
  publication-title: SIAM Journal on Scientific Computing
– volume: 12
  start-page: 613
  issue: 3
  year: 2012
  end-page: 661
  article-title: Phase‐field models for multi‐component fluid flows
  publication-title: Computer Physics Communications
– volume: 57
  start-page: 4323
  year: 1998
  end-page: 4349
  article-title: Quantitative phase‐field modeling of dendritic growth in two and three dimensions
  publication-title: Physical Review E
– volume: 78
  start-page: 020601
  year: 2008
  article-title: Simulation of dendritic growth into an undercooled melt using kinetic Monte Carlo techniques
  publication-title: Physical Review E
– volume: 321
  start-page: 176
  year: 2011
  end-page: 182
  article-title: A fast robust and accurate operator splitting method for phase field simulations of crystal growth
  publication-title: Journal of Crystal Growth
– volume: 60
  start-page: 3614
  year: 1999
  end-page: 3625
  article-title: Phase‐field model of dendritic side branching with thermal noise
  publication-title: Physical Review E
– volume: 69
  start-page: 051607
  year: 2004
  article-title: Phase‐field modeling of binary alloy solidication with coupled heat and solute diffusion
  publication-title: Physical Review E
– year: 2016
  article-title: Linearly first‐ and second‐order, unconditionally energy stable schemes for the phase field crystal equation
  publication-title: Journal of Computational Physics
– volume: 99
  start-page: 47
  year: 2004
  end-page: 84
  article-title: Error analysis of a mixed finite element method for the cahn‐hilliard equation
  publication-title: Numerical Mathematics
– volume: 165
  start-page: 592
  year: 2000
  end-page: 619
  article-title: Multiscale finite‐difference‐diffusion‐Monte‐Carlo method for simulating dendritic solidification
  publication-title: Journal of Computational Physics
– volume: 52
  start-page: 546
  year: 2012
  end-page: 562
  article-title: A linear energy stable scheme for a thin film model without slope selection
  publication-title: Journal of Scientific Computing
– start-page: 39
  year: 1998
  end-page: 46
– volume: 55
  start-page: 7926
  year: 2012
  end-page: 7932
  article-title: Phase‐field simulations of crystal growth with adaptive mesh refinement
  publication-title: International Journal of Heat and Mass Transfer
– volume: 91
  start-page: 75
  year: 2010
  end-page: 95
  article-title: A phase field model for rate‐independent crack propagation: robust algorithmic implementation based on operator splits
  publication-title: Philosophical Magazine
– year: 2015
  article-title: Stability and convergence of a second order mixed finite element method for the Cahn Hilliard equation
  publication-title: IMA Journal of Numerical Analysis
– year: 2016
  article-title: On stable linear algorithms for variable motility Cahn‐Hilliard type equation with flory huggins potential
  publication-title: submitted
– year: 2016
  article-title: Linear, first and second order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends
  publication-title: Journal of Computational Physics
– volume: B10
  start-page: 139
  year: 1974
  end-page: 153
  article-title: Renormalization‐group methods for critical dynamics: i. recursion relations and effects of energy conservation
  publication-title: Physical Review
– volume: 80
  start-page: 3308
  year: 1998
  end-page: 3311
  article-title: Efficient computation of dendritic microstructures using adaptive mesh refinement
  publication-title: Physical Review Letter
– volume: 208
  start-page: 209
  year: 2005
  end-page: 219
  article-title: Nonlinear morphological control of growing crystals
  publication-title: Physics D
– volume: 52
  start-page: 1158
  year: 2009
  end-page: 1166
  article-title: Adaptive phase field simulation of dendritic crystal growth in a forced flow: 2d vs. 3d morphologies
  publication-title: International Journal of HeatMass Transfer
– year: 2016
  article-title: Efficient, accurate, and unconditionally energy stable numerical schemes for the binary fluid‐surfactant phase field model
  publication-title: submitted
– volume: 28
  start-page: 405
  issue: 1
  year: 2010
  end-page: 423
  article-title: Unconditionally stable schemes for equations of thin film epitaxy
  publication-title: Discrete and Continuous Dynamical Systems
– volume: 55
  start-page: 041602
  year: 2001
  article-title: Phase field model for three‐dimensional dendritic growth with fluid flow
  publication-title: Physical Review E
– year: 2016
  article-title: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn‐Hilliard‐Navier‐Stokes system
  publication-title: Arxiv
– volume: 28
  start-page: 1169
  year: 2010
  end-page: 1691
  article-title: Numerical approximations of allen‐cahn and cahn‐hilliard equations
  publication-title: DCDS, Series A
– volume: 43
  start-page: 689
  year: 1995
  end-page: 703
  article-title: Prediction of dentric growth and microsegregation patterns in a binary alloy using the phase field method
  publication-title: Acta Metallurgica et Materialia
– volume: 44
  start-page: 1759
  year: 2006
  end-page: 1779
  article-title: Stability analysis of large time‐stepping methods for epitaxial growth models
  publication-title: Liquid Crystals
– year: 2016
  article-title: Numerical approximations for the molecular beam epitaxial growth model based on energy quadratization methods
  publication-title: Journal of Computational Physics,
– ident: e_1_2_7_38_1
  doi: 10.1016/j.cma.2010.04.011
– ident: e_1_2_7_27_1
  doi: 10.1007/s10915-016-0177-x
– ident: e_1_2_7_41_1
  doi: 10.1007/s00211-004-0546-5
– ident: e_1_2_7_5_1
  doi: 10.1103/PhysRevE.60.3614
– ident: e_1_2_7_10_1
  doi: 10.1006/jcph.2000.6634
– start-page: 39
  volume-title: In Computational and mathematical models of microstruc‐ tural evolution (San Francisco, CA, 1998) 529 of Mater. Res. Soc. Sympos. Proc
  year: 1998
  ident: e_1_2_7_30_1
– ident: e_1_2_7_12_1
  doi: 10.1006/jcph.2001.6726
– ident: e_1_2_7_36_1
  doi: 10.1103/PhysRevE.79.031926
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jcp.2016.09.029
– ident: e_1_2_7_2_1
  doi: 10.1016/j.ijheatmasstransfer.2008.09.014
– ident: e_1_2_7_11_1
  doi: 10.4236/wjm.2014.45015
– ident: e_1_2_7_35_1
  doi: 10.4208/cicp.301110.040811a
– ident: e_1_2_7_32_1
  doi: 10.1137/090752675
– ident: e_1_2_7_14_1
  doi: 10.1103/PhysRevE.64.041602
– ident: e_1_2_7_4_1
  doi: 10.1103/PhysRevE.57.4323
– ident: e_1_2_7_24_1
  doi: 10.1016/j.cma.2016.06.008
– ident: e_1_2_7_33_1
  article-title: Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals
  publication-title: SIAM Journal on Scientific Computing
– ident: e_1_2_7_20_1
  doi: 10.1016/j.jcp.2016.09.029
– ident: e_1_2_7_3_1
  doi: 10.1103/PhysRevB.10.139
– ident: e_1_2_7_15_1
  doi: 10.1016/j.ijheatmasstransfer.2012.08.009
– ident: e_1_2_7_16_1
  doi: 10.1016/j.jcp.2005.01.018
– volume: 28
  start-page: 1169
  year: 2010
  ident: e_1_2_7_25_1
  article-title: Numerical approximations of allen‐cahn and cahn‐hilliard equations
  publication-title: DCDS, Series A
– ident: e_1_2_7_7_1
  doi: 10.1016/j.jcrysgro.2011.02.042
– ident: e_1_2_7_13_1
  doi: 10.1016/0956-7151(94)00285-P
– year: 2016
  ident: e_1_2_7_21_1
  article-title: Efficient, accurate, and unconditionally energy stable numerical schemes for the binary fluid‐surfactant phase field model
  publication-title: submitted
– ident: e_1_2_7_9_1
  doi: 10.1103/PhysRevE.78.020601
– year: 2016
  ident: e_1_2_7_22_1
  article-title: On stable linear algorithms for variable motility Cahn‐Hilliard type equation with flory huggins potential
  publication-title: submitted
– ident: e_1_2_7_31_1
  doi: 10.3934/dcds.2010.28.405
– volume: 44
  start-page: 1759
  year: 2006
  ident: e_1_2_7_26_1
  article-title: Stability analysis of large time‐stepping methods for epitaxial growth models
  publication-title: Liquid Crystals
– ident: e_1_2_7_28_1
  doi: 10.1016/j.jcp.2015.09.044
– year: 2016
  ident: e_1_2_7_19_1
  article-title: Numerical analysis of second order, fully discrete energy stable schemes for phase field models of two phase incompressible flows
  publication-title: in press, Journal of Scientific Computing
– ident: e_1_2_7_29_1
  doi: 10.1007/s10915-011-9559-2
– ident: e_1_2_7_37_1
  doi: 10.1080/14786431003773015
– ident: e_1_2_7_8_1
  doi: 10.1103/PhysRevE.88.052409
– ident: e_1_2_7_18_1
  doi: 10.1103/PhysRevE.69.051607
– ident: e_1_2_7_39_1
  doi: 10.1137/130950628
– year: 2016
  ident: e_1_2_7_40_1
  article-title: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn‐Hilliard‐Navier‐Stokes system
  publication-title: Arxiv
– year: 2016
  ident: e_1_2_7_34_1
  article-title: Numerical approximations for the molecular beam epitaxial growth model based on energy quadratization methods
  publication-title: Journal of Computational Physics,
– ident: e_1_2_7_6_1
  doi: 10.1016/j.physd.2005.06.021
– ident: e_1_2_7_17_1
  doi: 10.1103/PhysRevLett.80.3308
SSID ssj0011503
Score 2.602657
Snippet Summary We present two accurate and efficient numerical schemes for a phase field dendritic crystal growth model, which is derived from the variation of a...
We present two accurate and efficient numerical schemes for a phase field dendritic crystal growth model, which is derived from the variation of a free‐energy...
Summary We present two accurate and efficient numerical schemes for a phase field dendritic crystal growth model, which is derived from the variation of a...
We present two accurate and efficient numerical schemes for a phase field dendritic crystal growth model, which is derived from the variation of a free-energy...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 279
SubjectTerms Anisotropy
Dendritic Crystal Growth
Dendritic crystals
Entropy
Invariant Energy Quadratization
Invariants
Linear Elliptic Equations
Mathematical analysis
Mathematical models
Nonlinearity
Phase‐field models
Quadratic forms
Second Order
Unconditional Energy Stability
Title Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.5372
https://www.proquest.com/docview/1878225418
https://www.proquest.com/docview/1893903897
Volume 110
WOSCitedRecordID wos000397802700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VSw9wgPJSl9JqkBCcArHjJM6xAlY9wAqhInGLHMeBlZbsdrOL4NS_3rHz6FaiEhKnKMrkIc_rc-z5BuBQFsYIo5jHCl96hP9zL-NZ5IUJZ5GSuoi5cs0m4uFQ3t0l182uSlsLU_NDdD_crGe4eG0dXGXV6RJp6KM5CYOYwu8KJ7MNe7ByfjO4vezWEAjqBO0GjzCRrKWe9flpe--_yegvwlzGqS7RDDbe84mfYL2Bl_i9todN-GDKLdhooCY2jlxtwdoSDyGdXXXkrdU2_B4u6mWcMTrG8edRXd5YIQFcVDh9oMyHbusbUtTKXbME1LMXAppjvKd5_fwBXYcdtDkyx0mJ9HgclU80MSdNonEFh_hroXJrgHUlKLb05jtwO7j4efbDa_o0eJrQFfd0ofwoT5gyQvlhzvJIkaJJ90pngVKG0qQsMhkHOoloNiN1TK5vmIiTeiEv2IVeOSnNZ0AWKiPDLGfccEHYRQkhjIgLSTAp4hnrw3GrsFQ3JOa2l8Y4remXeUpjntox78NBJzmtiTtekdlvdZ42rlulTFrQFAom6RHdZXI6u5KiSjNZWJkkSCw1YdyHI2cB_31HOry6sMe9twp-gVVuoYMvKILtQ28-W5iv8FE_zUfV7Ftj5H8AsncCKg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD6UVrA-WK0V17b2CKJPsZnJJJnQp9J2qbgbRFroW5hMJnZhzdbNbtGn_vWemVxcQUHoUwiZTMKc2zeX8x2Ad7I0RhjFPFb60iP8X3g5zyMvTDiLlNRlzJUrNhGnqby6Sr6swVGXC9PwQ_QLbtYynL-2Bm4XpA9XWEO_m49hEJP_3RCkRaTeG6dfh5ejfhOBsE7QnfAIE8k67lmfH3bv_hmNfkPMVaDqIs1w60H_-AyetgATjxuNeA5rptqGrRZsYmvK9TY8WWEipLtxT99av4C7dNls5EzRcY7_nDQJjjUSxEWFN9cU-9AdfkPyW4Url4B6_oug5hS_0cx-cY2uxg7aKFngrELqHifVLU3NSZZoXMoh_liqwqpgkwuKHcH5DlwOzy5Ozr22UoOnCV9xT5fKj4qEKSOUHxasiBSJmqSvdB4oZShQyjKXcaCTiOYzUsdk_IaJOGm28oKXsF7NKvMKkIXKyDAvGDdcEHpRQggj4lISUIp4zgbwoZNYplsac1tNY5o1BMw8ozHP7JgP4G3f8qah7vhLm71O6FlrvHXGpIVNoWCSuugfk9nZvRRVmdnStkmCxJITxgN471Tgn9_I0vGZvb7-34YH8Pj8YjzKRp_Sz7uwyS2Q8AX5sz1YX8yXZh8e6dvFpJ6_aTX-HhxHBho
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_KVUQfrFbF06ojiD7FZjebZEOfSttDsQ1FLPQtbHY39uDMnZe7ok_-653dfHiCguBTCJl8sDOz89vMzm8AXsvKWmEVC1gVyoDwvwlKXiZBnHGWKKmrlCvfbCLNc3l5mZ1vwUFfC9PyQww_3Jxn-PnaObhdmGp_gzX0q30XRynNv9vC9ZAZwfbxp8nF6ZBEIKwT9Ts84kyynns25Pv9vb9Ho18QcxOo-kgz2fmvb7wP9zqAiYetRTyALVvvwk4HNrFz5WYX7m4wEdLZ2UDf2jyEn_m6TeTM0HOOf5-2BY4NEsRFhYsrin3oN78hzVvGt0tAvfxBUHOGX2hlv7pC32MHXZQ0OK-RHo_T-pqW5qRLtL7kEL-tlXEm2NaCYk9w_gguJiefj94HXaeGQBO-4oGuVJiYjCkrVBgbZhJFqibtK11GSlkKlLIqZRrpLKH1jNQpOb9lIs3aVF70GEb1vLZPAFmsrIxLw7jlgtCLEkJYkVaSgFLCSzaGt73GCt3RmLtuGrOiJWDmBY154cZ8DK8GyUVL3fEHmb1e6UXnvE3BpINNsWCSHjFcJrdzuRRV2_nayWRR5sgJ0zG88Sbw13cU-dmJOz79V8GXcPv8eFKcfsg_PoM73OGIUNB0tgej1XJtn8Mtfb2aNssXncHfAJ84BZU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+approximations+for+a+phase+field+dendritic+crystal+growth+model+based+on+the+invariant+energy+quadratization+approach&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Zhao%2C+Jia&rft.au=Wang%2C+Qi&rft.au=Yang%2C+Xiaofeng&rft.date=2017-04-20&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=110&rft.issue=3&rft.spage=279&rft.epage=300&rft_id=info:doi/10.1002%2Fnme.5372&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon