Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach
Summary We present two accurate and efficient numerical schemes for a phase field dendritic crystal growth model, which is derived from the variation of a free‐energy functional, consisting of a temperature dependent bulk potential and a conformational entropy with a gradient‐dependent anisotropic c...
Saved in:
| Published in: | International journal for numerical methods in engineering Vol. 110; no. 3; pp. 279 - 300 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Chichester, UK
John Wiley & Sons, Ltd
20.04.2017
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 0029-5981, 1097-0207 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Summary
We present two accurate and efficient numerical schemes for a phase field dendritic crystal growth model, which is derived from the variation of a free‐energy functional, consisting of a temperature dependent bulk potential and a conformational entropy with a gradient‐dependent anisotropic coefficient. We introduce a novel Invariant Energy Quadratization approach to transform the free‐energy functional into a quadratic form by introducing new variables to substitute the nonlinear transformations. Based on the reformulated equivalent governing system, we develop a first and a second order semi‐discretized scheme in time for the system, in which all nonlinear terms are treated semi‐explicitly. The resulting semi‐discretized equations consist of a linear elliptic equation system at each time step, where the coefficient matrix operator is positive definite and thus, the semi‐discrete system can be solved efficiently. We further prove that the proposed schemes are unconditionally energy stable. Convergence test together with 2D and 3D numerical simulations for dendritic crystal growth are presented after the semi‐discrete schemes are fully discretized in space using the finite difference method to demonstrate the stability and the accuracy of the proposed schemes. Copyright © 2016 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | We present two accurate and efficient numerical schemes for a phase field dendritic crystal growth model, which is derived from the variation of a free-energy functional, consisting of a temperature dependent bulk potential and a conformational entropy with a gradient-dependent anisotropic coefficient. We introduce a novel Invariant Energy Quadratization approach to transform the free-energy functional into a quadratic form by introducing new variables to substitute the nonlinear transformations. Based on the reformulated equivalent governing system, we develop a first and a second order semi-discretized scheme in time for the system, in which all nonlinear terms are treated semi-explicitly. The resulting semi-discretized equations consist of a linear elliptic equation system at each time step, where the coefficient matrix operator is positive definite and thus, the semi-discrete system can be solved efficiently. We further prove that the proposed schemes are unconditionally energy stable. Convergence test together with 2D and 3D numerical simulations for dendritic crystal growth are presented after the semi-discrete schemes are fully discretized in space using the finite difference method to demonstrate the stability and the accuracy of the proposed schemes. Summary We present two accurate and efficient numerical schemes for a phase field dendritic crystal growth model, which is derived from the variation of a free-energy functional, consisting of a temperature dependent bulk potential and a conformational entropy with a gradient-dependent anisotropic coefficient. We introduce a novel Invariant Energy Quadratization approach to transform the free-energy functional into a quadratic form by introducing new variables to substitute the nonlinear transformations. Based on the reformulated equivalent governing system, we develop a first and a second order semi-discretized scheme in time for the system, in which all nonlinear terms are treated semi-explicitly. The resulting semi-discretized equations consist of a linear elliptic equation system at each time step, where the coefficient matrix operator is positive definite and thus, the semi-discrete system can be solved efficiently. We further prove that the proposed schemes are unconditionally energy stable. Convergence test together with 2D and 3D numerical simulations for dendritic crystal growth are presented after the semi-discrete schemes are fully discretized in space using the finite difference method to demonstrate the stability and the accuracy of the proposed schemes. Copyright © 2016 John Wiley & Sons, Ltd. Summary We present two accurate and efficient numerical schemes for a phase field dendritic crystal growth model, which is derived from the variation of a free‐energy functional, consisting of a temperature dependent bulk potential and a conformational entropy with a gradient‐dependent anisotropic coefficient. We introduce a novel Invariant Energy Quadratization approach to transform the free‐energy functional into a quadratic form by introducing new variables to substitute the nonlinear transformations. Based on the reformulated equivalent governing system, we develop a first and a second order semi‐discretized scheme in time for the system, in which all nonlinear terms are treated semi‐explicitly. The resulting semi‐discretized equations consist of a linear elliptic equation system at each time step, where the coefficient matrix operator is positive definite and thus, the semi‐discrete system can be solved efficiently. We further prove that the proposed schemes are unconditionally energy stable. Convergence test together with 2D and 3D numerical simulations for dendritic crystal growth are presented after the semi‐discrete schemes are fully discretized in space using the finite difference method to demonstrate the stability and the accuracy of the proposed schemes. Copyright © 2016 John Wiley & Sons, Ltd. We present two accurate and efficient numerical schemes for a phase field dendritic crystal growth model, which is derived from the variation of a free‐energy functional, consisting of a temperature dependent bulk potential and a conformational entropy with a gradient‐dependent anisotropic coefficient. We introduce a novel Invariant Energy Quadratization approach to transform the free‐energy functional into a quadratic form by introducing new variables to substitute the nonlinear transformations. Based on the reformulated equivalent governing system, we develop a first and a second order semi‐discretized scheme in time for the system, in which all nonlinear terms are treated semi‐explicitly. The resulting semi‐discretized equations consist of a linear elliptic equation system at each time step, where the coefficient matrix operator is positive definite and thus, the semi‐discrete system can be solved efficiently. We further prove that the proposed schemes are unconditionally energy stable. Convergence test together with 2D and 3D numerical simulations for dendritic crystal growth are presented after the semi‐discrete schemes are fully discretized in space using the finite difference method to demonstrate the stability and the accuracy of the proposed schemes. Copyright © 2016 John Wiley & Sons, Ltd. |
| Author | Wang, Qi Zhao, Jia Yang, Xiaofeng |
| Author_xml | – sequence: 1 givenname: Jia surname: Zhao fullname: Zhao, Jia organization: University of North Carolina – sequence: 2 givenname: Qi surname: Wang fullname: Wang, Qi organization: Beijing Computational Science Research Center – sequence: 3 givenname: Xiaofeng surname: Yang fullname: Yang, Xiaofeng email: xfyang@math.sc.edu organization: University of South Carolina |
| BookMark | eNp1kU9P3DAQxS0EUheK1I9giQuXbP1nk9jHCkGLROFSztGsPWGNEnuxHWB76VfH7KJWquA0h_nNm3nzDsm-Dx4J-cLZnDMmvvoR57VsxR6ZcabbignW7pNZaemq1op_Iocp3TPGec3kjPy5nkaMzsBAYb2O4dmNkF3wifYhUqDrFSSkvcPBUoveRpedoSZuUi4jdzE85RUdg8WBLgtpafA0r5A6_wjRgc8UPca7DX2YwMYi_Xsrv1sGZvWZHPQwJDx-q0fk9uL819mP6urm--XZt6vKSC1EZXpgjdUccAGsttw2IHjTMwVmKQGQS6b6pWql0Y0SjTItYzXyRauLU6G4PCKnO92y9mHClLvRJYPDAB7DlDqutNRMKt0W9OQ_9D5M0ZfrCtUqIeoFV4Wa7ygTQ0oR-864vPWWI7ih46x7zaMreXSvefy74O_AOpZnx817aLVDn9yAmw-57vrn-ZZ_AYu9nR8 |
| CODEN | IJNMBH |
| CitedBy_id | crossref_primary_10_1016_j_camwa_2022_06_020 crossref_primary_10_1016_j_cnsns_2020_105658 crossref_primary_10_1007_s10915_020_01386_8 crossref_primary_10_1016_j_enganabound_2025_106118 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126036 crossref_primary_10_1016_j_cma_2025_118274 crossref_primary_10_1007_s10915_018_0867_7 crossref_primary_10_3390_e24111683 crossref_primary_10_1002_mma_9594 crossref_primary_10_1016_j_cam_2023_115577 crossref_primary_10_1016_j_cnsns_2024_108365 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104957 crossref_primary_10_1137_16M1100885 crossref_primary_10_1016_j_apnum_2022_11_006 crossref_primary_10_1137_17M1119834 crossref_primary_10_1007_s11075_023_01621_x crossref_primary_10_1016_j_cnsns_2021_105766 crossref_primary_10_1007_s10915_019_01038_6 crossref_primary_10_1016_j_cma_2021_114089 crossref_primary_10_1016_j_cpc_2020_107767 crossref_primary_10_1063_5_0284031 crossref_primary_10_1007_s10915_022_02094_1 crossref_primary_10_1016_j_jcp_2017_04_010 crossref_primary_10_1007_s42967_023_00258_w crossref_primary_10_1016_j_cnsns_2024_108379 crossref_primary_10_1007_s11075_024_01910_z crossref_primary_10_1002_mma_7952 crossref_primary_10_1016_j_jcp_2023_112722 crossref_primary_10_1002_num_22435 crossref_primary_10_1137_23M158190X crossref_primary_10_1016_j_jcp_2024_113598 crossref_primary_10_1007_s00211_021_01203_w crossref_primary_10_1016_j_camwa_2025_03_032 crossref_primary_10_1007_s10915_022_01822_x crossref_primary_10_1016_j_jcp_2025_114209 crossref_primary_10_1016_j_camwa_2019_07_030 crossref_primary_10_1007_s10915_022_01863_2 crossref_primary_10_1016_j_cam_2020_113335 crossref_primary_10_1016_j_camwa_2023_10_023 crossref_primary_10_1016_j_cnsns_2024_108102 crossref_primary_10_1016_j_jcp_2022_110954 crossref_primary_10_1016_j_matcom_2025_04_023 crossref_primary_10_1007_s10915_022_01981_x crossref_primary_10_1016_j_jcp_2023_111925 crossref_primary_10_1016_j_cam_2024_116161 crossref_primary_10_1016_j_cma_2023_116306 crossref_primary_10_1016_j_aml_2025_109687 crossref_primary_10_1002_nme_6697 crossref_primary_10_1016_j_apnum_2022_07_002 crossref_primary_10_3390_sym12071155 crossref_primary_10_1016_j_cpc_2017_05_002 crossref_primary_10_1016_j_cma_2023_116166 crossref_primary_10_1016_j_compfluid_2022_105306 crossref_primary_10_1016_j_apnum_2020_10_009 crossref_primary_10_1016_j_cma_2017_02_011 crossref_primary_10_1016_j_matcom_2023_11_013 crossref_primary_10_1016_j_camwa_2022_06_015 crossref_primary_10_1016_j_jcp_2019_03_009 crossref_primary_10_1016_j_jcp_2021_110800 crossref_primary_10_1007_s10915_024_02693_0 crossref_primary_10_1016_j_cma_2018_12_012 crossref_primary_10_1137_17M1135451 crossref_primary_10_1137_18M1235405 crossref_primary_10_1360_SSM_2024_0266 crossref_primary_10_1137_17M1150153 crossref_primary_10_1002_nme_7131 crossref_primary_10_1007_s11075_023_01635_5 crossref_primary_10_1007_s10994_025_06797_y crossref_primary_10_3390_e24050721 crossref_primary_10_1007_s10915_023_02163_z crossref_primary_10_1137_20M1331160 crossref_primary_10_1002_num_23152 crossref_primary_10_1016_j_apt_2024_104723 crossref_primary_10_1360_SSM_2023_0157 crossref_primary_10_1016_j_jcp_2019_03_017 crossref_primary_10_1080_00207160_2021_1940978 crossref_primary_10_1137_17M1111759 crossref_primary_10_1016_j_jcp_2021_110854 crossref_primary_10_1137_24M1687546 crossref_primary_10_1016_j_camwa_2017_07_012 crossref_primary_10_1007_s10444_018_9597_5 crossref_primary_10_1016_j_cam_2019_112482 crossref_primary_10_1016_j_camwa_2023_03_016 crossref_primary_10_1016_j_camwa_2020_11_014 crossref_primary_10_1016_j_aml_2019_03_029 crossref_primary_10_1016_j_jcp_2022_111028 crossref_primary_10_1007_s40314_025_03309_5 crossref_primary_10_1016_j_jcp_2023_112236 crossref_primary_10_1007_s10915_023_02423_y crossref_primary_10_1016_j_cam_2024_115768 crossref_primary_10_1016_j_cma_2022_115195 crossref_primary_10_1007_s10915_020_01229_6 crossref_primary_10_1002_num_23041 crossref_primary_10_1016_j_cnsns_2022_106717 crossref_primary_10_1007_s10915_021_01681_y crossref_primary_10_1155_2019_8152136 crossref_primary_10_1016_j_camwa_2022_01_017 crossref_primary_10_1007_s42967_025_00486_2 crossref_primary_10_1016_j_cma_2021_113746 crossref_primary_10_1016_j_cma_2019_03_030 crossref_primary_10_1051_m2an_2025067 crossref_primary_10_1007_s10915_020_01241_w crossref_primary_10_1016_j_matcom_2022_05_024 crossref_primary_10_1093_imanum_drae062 crossref_primary_10_1016_j_camwa_2018_09_034 crossref_primary_10_1007_s10915_024_02677_0 crossref_primary_10_1016_j_commatsci_2020_109967 crossref_primary_10_1007_s11075_024_01847_3 crossref_primary_10_1016_j_jcp_2024_113711 crossref_primary_10_1007_s11075_021_01068_y crossref_primary_10_1002_nme_7619 crossref_primary_10_1016_j_cma_2019_112779 crossref_primary_10_1007_s10444_020_09835_6 crossref_primary_10_1016_j_cma_2022_115661 crossref_primary_10_1016_j_cma_2024_116794 crossref_primary_10_1016_j_cam_2018_04_027 crossref_primary_10_1016_j_amc_2021_126267 crossref_primary_10_1016_j_cnsns_2024_107858 crossref_primary_10_1016_j_cam_2020_113375 crossref_primary_10_1016_j_cam_2024_116368 crossref_primary_10_1007_s10915_017_0576_7 crossref_primary_10_1016_j_cnsns_2024_108021 crossref_primary_10_1016_j_compfluid_2025_106673 crossref_primary_10_1016_j_camwa_2024_10_020 crossref_primary_10_1016_j_cnsns_2018_10_019 crossref_primary_10_1007_s10444_019_09678_w crossref_primary_10_1016_j_apnum_2024_03_021 crossref_primary_10_1007_s11804_023_00328_8 crossref_primary_10_1016_j_aml_2020_106576 crossref_primary_10_1016_j_tsep_2021_100843 crossref_primary_10_1002_num_23061 crossref_primary_10_1016_j_jcp_2024_113147 crossref_primary_10_1016_j_jsv_2022_117021 crossref_primary_10_1016_j_jcp_2019_05_037 crossref_primary_10_1007_s10915_019_00946_x crossref_primary_10_1002_num_22929 crossref_primary_10_1007_s10915_020_01127_x crossref_primary_10_1016_j_jcp_2018_12_033 crossref_primary_10_1016_j_apnum_2018_02_004 crossref_primary_10_1016_j_cam_2020_113122 crossref_primary_10_1016_j_cpc_2018_12_019 crossref_primary_10_1016_j_apor_2022_103218 crossref_primary_10_1108_EC_11_2021_0692 crossref_primary_10_1002_nme_7053 crossref_primary_10_1016_j_enganabound_2023_06_029 crossref_primary_10_1016_j_jsv_2023_117968 crossref_primary_10_1016_j_jcp_2021_110561 crossref_primary_10_1016_j_amc_2022_127238 crossref_primary_10_1016_j_jcp_2022_111278 crossref_primary_10_1007_s10915_023_02252_z crossref_primary_10_1016_j_cma_2024_116938 crossref_primary_10_1080_00036811_2022_2047947 crossref_primary_10_1137_19M1298627 crossref_primary_10_1007_s10915_017_0508_6 crossref_primary_10_1016_j_cma_2024_117507 crossref_primary_10_1137_23M1552164 |
| Cites_doi | 10.1016/j.cma.2010.04.011 10.1007/s10915-016-0177-x 10.1007/s00211-004-0546-5 10.1103/PhysRevE.60.3614 10.1006/jcph.2000.6634 10.1006/jcph.2001.6726 10.1103/PhysRevE.79.031926 10.1016/j.jcp.2016.09.029 10.1016/j.ijheatmasstransfer.2008.09.014 10.4236/wjm.2014.45015 10.4208/cicp.301110.040811a 10.1137/090752675 10.1103/PhysRevE.64.041602 10.1103/PhysRevE.57.4323 10.1016/j.cma.2016.06.008 10.1103/PhysRevB.10.139 10.1016/j.ijheatmasstransfer.2012.08.009 10.1016/j.jcp.2005.01.018 10.1016/j.jcrysgro.2011.02.042 10.1016/0956-7151(94)00285-P 10.1103/PhysRevE.78.020601 10.3934/dcds.2010.28.405 10.1016/j.jcp.2015.09.044 10.1007/s10915-011-9559-2 10.1080/14786431003773015 10.1103/PhysRevE.88.052409 10.1103/PhysRevE.69.051607 10.1137/130950628 10.1016/j.physd.2005.06.021 10.1103/PhysRevLett.80.3308 |
| ContentType | Journal Article |
| Copyright | Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2016 John Wiley & Sons, Ltd. – notice: Copyright © 2017 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1002/nme.5372 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Mathematics |
| EISSN | 1097-0207 |
| EndPage | 300 |
| ExternalDocumentID | 4320930257 10_1002_nme_5372 NME5372 |
| Genre | article |
| GroupedDBID | -~X .3N .4S .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWS RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION O8X 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3922-cfa06d91ae4a05d1d6a216f08acb3aae1308fb873c968268c7005e14790012813 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 196 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000397802700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-5981 |
| IngestDate | Sun Nov 09 09:31:41 EST 2025 Fri Jul 25 12:19:44 EDT 2025 Sat Nov 29 06:43:52 EST 2025 Tue Nov 18 22:08:45 EST 2025 Wed Jan 22 16:53:51 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3922-cfa06d91ae4a05d1d6a216f08acb3aae1308fb873c968268c7005e14790012813 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1878225418 |
| PQPubID | 996376 |
| PageCount | 22 |
| ParticipantIDs | proquest_miscellaneous_1893903897 proquest_journals_1878225418 crossref_citationtrail_10_1002_nme_5372 crossref_primary_10_1002_nme_5372 wiley_primary_10_1002_nme_5372_NME5372 |
| PublicationCentury | 2000 |
| PublicationDate | 20 April 2017 |
| PublicationDateYYYYMMDD | 2017-04-20 |
| PublicationDate_xml | – month: 04 year: 2017 text: 20 April 2017 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis |
| PublicationTitle | International journal for numerical methods in engineering |
| PublicationYear | 2017 |
| Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
| References | 2013; 88 2016; 305 2004; 69 1998 2008; 78 1998; 80 2016; 301 1999; 60 2012; 12 2012; 55 2001; 169 2012; 52 2004; 99 2009; 79 2009; 52 2014; 4 1974; B10 2010; 28 2006; 44 1995; 43 2005; 207 2010; 199 2005; 208 2016 2000; 165 2015 2001; 55 2011; 49 2010; 91 2011; 321 2016; 68 1998; 57 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 Eyre DJs (e_1_2_7_30_1) 1998 Yang X (e_1_2_7_21_1) 2016 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 Han D (e_1_2_7_19_1) 2016 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 Yang X (e_1_2_7_34_1) 2016 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Yang X (e_1_2_7_22_1) 2016 Diegel A (e_1_2_7_40_1) 2016 Shen J (e_1_2_7_25_1) 2010; 28 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 Zhao J (e_1_2_7_33_1) e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 Xu C (e_1_2_7_26_1) 2006; 44 |
| References_xml | – volume: 305 start-page: 539 year: 2016 end-page: 556 article-title: A decoupled energy stable scheme for a hydrodynamic phase field model of mixtures of nematic liquid crystals and viscous fluids publication-title: Journal of Computational Physics – volume: 49 start-page: 945 year: 2011 end-page: 969 article-title: An energy stable and convergent finite‐difference scheme for the modified phase field crystal equation publication-title: SIAM Journal on Numerical Analysis – volume: 207 start-page: 221 year: 2005 end-page: 239 article-title: Crystal growth of pure substances: phase field simulations in comparison with analytical and experimental results publication-title: Journal of Computational Physics – volume: 169 start-page: 708 year: 2001 end-page: 759 article-title: A front‐tracking method for the computations of multiphase flow publication-title: Journal of Computational Physics – volume: 199 start-page: 2765 year: 2010 end-page: 2778 article-title: A phase field model for rate‐independent crack propagation: robust algorithmic implementation based on operator splits publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 4 start-page: 128 year: 2014 end-page: 136 article-title: Numerical simulation of two dimensional dendritic growth using phase field model publication-title: World Journal of Mechanics – volume: 301 start-page: 77 year: 2016 end-page: 97 article-title: Numerical approximations to a new phase‐field model for immiscible mixtures of nematic liquid crystals and viscous fluids publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 68 start-page: 1241 year: 2016 end-page: 1266 article-title: Semi‐discrete energy‐stable schemes for a tensor‐based dydrodynamic model of nematic liquid crystal flows publication-title: Journal of Scientific Computing – volume: 88 start-page: 052409 year: 2013 article-title: Phase field modeling of two dimensional crystal growth with anisotropic diffusion publication-title: Physical Review E – volume: 79 start-page: 031926 issue: 3 year: 2009 article-title: Phase field modeling of the dynamics of multicomponent vesicles spinodal decomposition coarsening budding and fission publication-title: Physical Review E – year: 2016 article-title: Numerical analysis of second order, fully discrete energy stable schemes for phase field models of two phase incompressible flows publication-title: in press, Journal of Scientific Computing – article-title: Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals publication-title: SIAM Journal on Scientific Computing – volume: 12 start-page: 613 issue: 3 year: 2012 end-page: 661 article-title: Phase‐field models for multi‐component fluid flows publication-title: Computer Physics Communications – volume: 57 start-page: 4323 year: 1998 end-page: 4349 article-title: Quantitative phase‐field modeling of dendritic growth in two and three dimensions publication-title: Physical Review E – volume: 78 start-page: 020601 year: 2008 article-title: Simulation of dendritic growth into an undercooled melt using kinetic Monte Carlo techniques publication-title: Physical Review E – volume: 321 start-page: 176 year: 2011 end-page: 182 article-title: A fast robust and accurate operator splitting method for phase field simulations of crystal growth publication-title: Journal of Crystal Growth – volume: 60 start-page: 3614 year: 1999 end-page: 3625 article-title: Phase‐field model of dendritic side branching with thermal noise publication-title: Physical Review E – volume: 69 start-page: 051607 year: 2004 article-title: Phase‐field modeling of binary alloy solidication with coupled heat and solute diffusion publication-title: Physical Review E – year: 2016 article-title: Linearly first‐ and second‐order, unconditionally energy stable schemes for the phase field crystal equation publication-title: Journal of Computational Physics – volume: 99 start-page: 47 year: 2004 end-page: 84 article-title: Error analysis of a mixed finite element method for the cahn‐hilliard equation publication-title: Numerical Mathematics – volume: 165 start-page: 592 year: 2000 end-page: 619 article-title: Multiscale finite‐difference‐diffusion‐Monte‐Carlo method for simulating dendritic solidification publication-title: Journal of Computational Physics – volume: 52 start-page: 546 year: 2012 end-page: 562 article-title: A linear energy stable scheme for a thin film model without slope selection publication-title: Journal of Scientific Computing – start-page: 39 year: 1998 end-page: 46 – volume: 55 start-page: 7926 year: 2012 end-page: 7932 article-title: Phase‐field simulations of crystal growth with adaptive mesh refinement publication-title: International Journal of Heat and Mass Transfer – volume: 91 start-page: 75 year: 2010 end-page: 95 article-title: A phase field model for rate‐independent crack propagation: robust algorithmic implementation based on operator splits publication-title: Philosophical Magazine – year: 2015 article-title: Stability and convergence of a second order mixed finite element method for the Cahn Hilliard equation publication-title: IMA Journal of Numerical Analysis – year: 2016 article-title: On stable linear algorithms for variable motility Cahn‐Hilliard type equation with flory huggins potential publication-title: submitted – year: 2016 article-title: Linear, first and second order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends publication-title: Journal of Computational Physics – volume: B10 start-page: 139 year: 1974 end-page: 153 article-title: Renormalization‐group methods for critical dynamics: i. recursion relations and effects of energy conservation publication-title: Physical Review – volume: 80 start-page: 3308 year: 1998 end-page: 3311 article-title: Efficient computation of dendritic microstructures using adaptive mesh refinement publication-title: Physical Review Letter – volume: 208 start-page: 209 year: 2005 end-page: 219 article-title: Nonlinear morphological control of growing crystals publication-title: Physics D – volume: 52 start-page: 1158 year: 2009 end-page: 1166 article-title: Adaptive phase field simulation of dendritic crystal growth in a forced flow: 2d vs. 3d morphologies publication-title: International Journal of HeatMass Transfer – year: 2016 article-title: Efficient, accurate, and unconditionally energy stable numerical schemes for the binary fluid‐surfactant phase field model publication-title: submitted – volume: 28 start-page: 405 issue: 1 year: 2010 end-page: 423 article-title: Unconditionally stable schemes for equations of thin film epitaxy publication-title: Discrete and Continuous Dynamical Systems – volume: 55 start-page: 041602 year: 2001 article-title: Phase field model for three‐dimensional dendritic growth with fluid flow publication-title: Physical Review E – year: 2016 article-title: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn‐Hilliard‐Navier‐Stokes system publication-title: Arxiv – volume: 28 start-page: 1169 year: 2010 end-page: 1691 article-title: Numerical approximations of allen‐cahn and cahn‐hilliard equations publication-title: DCDS, Series A – volume: 43 start-page: 689 year: 1995 end-page: 703 article-title: Prediction of dentric growth and microsegregation patterns in a binary alloy using the phase field method publication-title: Acta Metallurgica et Materialia – volume: 44 start-page: 1759 year: 2006 end-page: 1779 article-title: Stability analysis of large time‐stepping methods for epitaxial growth models publication-title: Liquid Crystals – year: 2016 article-title: Numerical approximations for the molecular beam epitaxial growth model based on energy quadratization methods publication-title: Journal of Computational Physics, – ident: e_1_2_7_38_1 doi: 10.1016/j.cma.2010.04.011 – ident: e_1_2_7_27_1 doi: 10.1007/s10915-016-0177-x – ident: e_1_2_7_41_1 doi: 10.1007/s00211-004-0546-5 – ident: e_1_2_7_5_1 doi: 10.1103/PhysRevE.60.3614 – ident: e_1_2_7_10_1 doi: 10.1006/jcph.2000.6634 – start-page: 39 volume-title: In Computational and mathematical models of microstruc‐ tural evolution (San Francisco, CA, 1998) 529 of Mater. Res. Soc. Sympos. Proc year: 1998 ident: e_1_2_7_30_1 – ident: e_1_2_7_12_1 doi: 10.1006/jcph.2001.6726 – ident: e_1_2_7_36_1 doi: 10.1103/PhysRevE.79.031926 – ident: e_1_2_7_23_1 doi: 10.1016/j.jcp.2016.09.029 – ident: e_1_2_7_2_1 doi: 10.1016/j.ijheatmasstransfer.2008.09.014 – ident: e_1_2_7_11_1 doi: 10.4236/wjm.2014.45015 – ident: e_1_2_7_35_1 doi: 10.4208/cicp.301110.040811a – ident: e_1_2_7_32_1 doi: 10.1137/090752675 – ident: e_1_2_7_14_1 doi: 10.1103/PhysRevE.64.041602 – ident: e_1_2_7_4_1 doi: 10.1103/PhysRevE.57.4323 – ident: e_1_2_7_24_1 doi: 10.1016/j.cma.2016.06.008 – ident: e_1_2_7_33_1 article-title: Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals publication-title: SIAM Journal on Scientific Computing – ident: e_1_2_7_20_1 doi: 10.1016/j.jcp.2016.09.029 – ident: e_1_2_7_3_1 doi: 10.1103/PhysRevB.10.139 – ident: e_1_2_7_15_1 doi: 10.1016/j.ijheatmasstransfer.2012.08.009 – ident: e_1_2_7_16_1 doi: 10.1016/j.jcp.2005.01.018 – volume: 28 start-page: 1169 year: 2010 ident: e_1_2_7_25_1 article-title: Numerical approximations of allen‐cahn and cahn‐hilliard equations publication-title: DCDS, Series A – ident: e_1_2_7_7_1 doi: 10.1016/j.jcrysgro.2011.02.042 – ident: e_1_2_7_13_1 doi: 10.1016/0956-7151(94)00285-P – year: 2016 ident: e_1_2_7_21_1 article-title: Efficient, accurate, and unconditionally energy stable numerical schemes for the binary fluid‐surfactant phase field model publication-title: submitted – ident: e_1_2_7_9_1 doi: 10.1103/PhysRevE.78.020601 – year: 2016 ident: e_1_2_7_22_1 article-title: On stable linear algorithms for variable motility Cahn‐Hilliard type equation with flory huggins potential publication-title: submitted – ident: e_1_2_7_31_1 doi: 10.3934/dcds.2010.28.405 – volume: 44 start-page: 1759 year: 2006 ident: e_1_2_7_26_1 article-title: Stability analysis of large time‐stepping methods for epitaxial growth models publication-title: Liquid Crystals – ident: e_1_2_7_28_1 doi: 10.1016/j.jcp.2015.09.044 – year: 2016 ident: e_1_2_7_19_1 article-title: Numerical analysis of second order, fully discrete energy stable schemes for phase field models of two phase incompressible flows publication-title: in press, Journal of Scientific Computing – ident: e_1_2_7_29_1 doi: 10.1007/s10915-011-9559-2 – ident: e_1_2_7_37_1 doi: 10.1080/14786431003773015 – ident: e_1_2_7_8_1 doi: 10.1103/PhysRevE.88.052409 – ident: e_1_2_7_18_1 doi: 10.1103/PhysRevE.69.051607 – ident: e_1_2_7_39_1 doi: 10.1137/130950628 – year: 2016 ident: e_1_2_7_40_1 article-title: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn‐Hilliard‐Navier‐Stokes system publication-title: Arxiv – year: 2016 ident: e_1_2_7_34_1 article-title: Numerical approximations for the molecular beam epitaxial growth model based on energy quadratization methods publication-title: Journal of Computational Physics, – ident: e_1_2_7_6_1 doi: 10.1016/j.physd.2005.06.021 – ident: e_1_2_7_17_1 doi: 10.1103/PhysRevLett.80.3308 |
| SSID | ssj0011503 |
| Score | 2.602657 |
| Snippet | Summary
We present two accurate and efficient numerical schemes for a phase field dendritic crystal growth model, which is derived from the variation of a... We present two accurate and efficient numerical schemes for a phase field dendritic crystal growth model, which is derived from the variation of a free‐energy... Summary We present two accurate and efficient numerical schemes for a phase field dendritic crystal growth model, which is derived from the variation of a... We present two accurate and efficient numerical schemes for a phase field dendritic crystal growth model, which is derived from the variation of a free-energy... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 279 |
| SubjectTerms | Anisotropy Dendritic Crystal Growth Dendritic crystals Entropy Invariant Energy Quadratization Invariants Linear Elliptic Equations Mathematical analysis Mathematical models Nonlinearity Phase‐field models Quadratic forms Second Order Unconditional Energy Stability |
| Title | Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.5372 https://www.proquest.com/docview/1878225418 https://www.proquest.com/docview/1893903897 |
| Volume | 110 |
| WOSCitedRecordID | wos000397802700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0207 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011503 issn: 0029-5981 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VSw9wgPJSl9JqkBCcArHjJM6xAlY9wAqhInGLHMeBlZbsdrOL4NS_3rHz6FaiEhKnKMrkIc_rc-z5BuBQFsYIo5jHCl96hP9zL-NZ5IUJZ5GSuoi5cs0m4uFQ3t0l182uSlsLU_NDdD_crGe4eG0dXGXV6RJp6KM5CYOYwu8KJ7MNe7ByfjO4vezWEAjqBO0GjzCRrKWe9flpe--_yegvwlzGqS7RDDbe84mfYL2Bl_i9todN-GDKLdhooCY2jlxtwdoSDyGdXXXkrdU2_B4u6mWcMTrG8edRXd5YIQFcVDh9oMyHbusbUtTKXbME1LMXAppjvKd5_fwBXYcdtDkyx0mJ9HgclU80MSdNonEFh_hroXJrgHUlKLb05jtwO7j4efbDa_o0eJrQFfd0ofwoT5gyQvlhzvJIkaJJ90pngVKG0qQsMhkHOoloNiN1TK5vmIiTeiEv2IVeOSnNZ0AWKiPDLGfccEHYRQkhjIgLSTAp4hnrw3GrsFQ3JOa2l8Y4remXeUpjntox78NBJzmtiTtekdlvdZ42rlulTFrQFAom6RHdZXI6u5KiSjNZWJkkSCw1YdyHI2cB_31HOry6sMe9twp-gVVuoYMvKILtQ28-W5iv8FE_zUfV7Ftj5H8AsncCKg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD6UVrA-WK0V17b2CKJPsZnJJJnQp9J2qbgbRFroW5hMJnZhzdbNbtGn_vWemVxcQUHoUwiZTMKc2zeX8x2Ad7I0RhjFPFb60iP8X3g5zyMvTDiLlNRlzJUrNhGnqby6Sr6swVGXC9PwQ_QLbtYynL-2Bm4XpA9XWEO_m49hEJP_3RCkRaTeG6dfh5ejfhOBsE7QnfAIE8k67lmfH3bv_hmNfkPMVaDqIs1w60H_-AyetgATjxuNeA5rptqGrRZsYmvK9TY8WWEipLtxT99av4C7dNls5EzRcY7_nDQJjjUSxEWFN9cU-9AdfkPyW4Url4B6_oug5hS_0cx-cY2uxg7aKFngrELqHifVLU3NSZZoXMoh_liqwqpgkwuKHcH5DlwOzy5Ozr22UoOnCV9xT5fKj4qEKSOUHxasiBSJmqSvdB4oZShQyjKXcaCTiOYzUsdk_IaJOGm28oKXsF7NKvMKkIXKyDAvGDdcEHpRQggj4lISUIp4zgbwoZNYplsac1tNY5o1BMw8ozHP7JgP4G3f8qah7vhLm71O6FlrvHXGpIVNoWCSuugfk9nZvRRVmdnStkmCxJITxgN471Tgn9_I0vGZvb7-34YH8Pj8YjzKRp_Sz7uwyS2Q8AX5sz1YX8yXZh8e6dvFpJ6_aTX-HhxHBho |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_KVUQfrFbF06ojiD7FZjebZEOfSttDsQ1FLPQtbHY39uDMnZe7ok_-653dfHiCguBTCJl8sDOz89vMzm8AXsvKWmEVC1gVyoDwvwlKXiZBnHGWKKmrlCvfbCLNc3l5mZ1vwUFfC9PyQww_3Jxn-PnaObhdmGp_gzX0q30XRynNv9vC9ZAZwfbxp8nF6ZBEIKwT9Ts84kyynns25Pv9vb9Ho18QcxOo-kgz2fmvb7wP9zqAiYetRTyALVvvwk4HNrFz5WYX7m4wEdLZ2UDf2jyEn_m6TeTM0HOOf5-2BY4NEsRFhYsrin3oN78hzVvGt0tAvfxBUHOGX2hlv7pC32MHXZQ0OK-RHo_T-pqW5qRLtL7kEL-tlXEm2NaCYk9w_gguJiefj94HXaeGQBO-4oGuVJiYjCkrVBgbZhJFqibtK11GSlkKlLIqZRrpLKH1jNQpOb9lIs3aVF70GEb1vLZPAFmsrIxLw7jlgtCLEkJYkVaSgFLCSzaGt73GCt3RmLtuGrOiJWDmBY154cZ8DK8GyUVL3fEHmb1e6UXnvE3BpINNsWCSHjFcJrdzuRRV2_nayWRR5sgJ0zG88Sbw13cU-dmJOz79V8GXcPv8eFKcfsg_PoM73OGIUNB0tgej1XJtn8Mtfb2aNssXncHfAJ84BZU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+approximations+for+a+phase+field+dendritic+crystal+growth+model+based+on+the+invariant+energy+quadratization+approach&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Zhao%2C+Jia&rft.au=Wang%2C+Qi&rft.au=Yang%2C+Xiaofeng&rft.date=2017-04-20&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=110&rft.issue=3&rft.spage=279&rft.epage=300&rft_id=info:doi/10.1002%2Fnme.5372&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |