On-chip generation of high-dimensional entangled quantum states and their coherent control

The on-chip generation of high-dimensional frequency-entangled states and their spectral-domain manipulation are demonstrated, introducing a powerful and practical platform for quantum information processing. Entangled qudits for quick communications Qubits, the quantum version of bits, are construc...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) Vol. 546; no. 7660; pp. 622 - 626
Main Authors: Kues, Michael, Reimer, Christian, Roztocki, Piotr, Cortés, Luis Romero, Sciara, Stefania, Wetzel, Benjamin, Zhang, Yanbing, Cino, Alfonso, Chu, Sai T., Little, Brent E., Moss, David J., Caspani, Lucia, Azaña, José, Morandotti, Roberto
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 29.06.2017
Nature Publishing Group
Subjects:
ISSN:0028-0836, 1476-4687, 1476-4687
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The on-chip generation of high-dimensional frequency-entangled states and their spectral-domain manipulation are demonstrated, introducing a powerful and practical platform for quantum information processing. Entangled qudits for quick communications Qubits, the quantum version of bits, are constructed from two-level quantum systems, but in principle a quantum information processor could exploit higher-dimensional quantum systems for operation. These systems with an arbitrary number of levels are often termed qudits and can be generated, for example, from photons. Using qudits instead of qubits can increase sensitivity in quantum imaging and can boost quantum communication schemes. Here, Michael Kues et al . generate two entangled qudits on an integrated photonic chip using a four-wave mixing process. Each qudit encodes a 10-dimensional state, enabling the realization of a quantum system with 100 dimensions. This technique could find application in fibre-based quantum communications. Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science 1 . Specifically, the realization of high-dimensional states ( D -level quantum systems, that is, qudits, with D  > 2) and their control are necessary for fundamental investigations of quantum mechanics 2 , for increasing the sensitivity of quantum imaging schemes 3 , for improving the robustness and key rate of quantum communication protocols 4 , for enabling a richer variety of quantum simulations 5 , and for achieving more efficient and error-tolerant quantum computation 6 . Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states 7 . However, so far, integrated entangled quantum sources have been limited to qubits ( D  = 2) 8 , 9 , 10 , 11 . Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D  = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.
AbstractList Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of nonclassical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple highpurity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-ofthe- art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.
Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.
Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.
The on-chip generation of high-dimensional frequency-entangled states and their spectral-domain manipulation are demonstrated, introducing a powerful and practical platform for quantum information processing. Entangled qudits for quick communications Qubits, the quantum version of bits, are constructed from two-level quantum systems, but in principle a quantum information processor could exploit higher-dimensional quantum systems for operation. These systems with an arbitrary number of levels are often termed qudits and can be generated, for example, from photons. Using qudits instead of qubits can increase sensitivity in quantum imaging and can boost quantum communication schemes. Here, Michael Kues et al . generate two entangled qudits on an integrated photonic chip using a four-wave mixing process. Each qudit encodes a 10-dimensional state, enabling the realization of a quantum system with 100 dimensions. This technique could find application in fibre-based quantum communications. Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science 1 . Specifically, the realization of high-dimensional states ( D -level quantum systems, that is, qudits, with D  > 2) and their control are necessary for fundamental investigations of quantum mechanics 2 , for increasing the sensitivity of quantum imaging schemes 3 , for improving the robustness and key rate of quantum communication protocols 4 , for enabling a richer variety of quantum simulations 5 , and for achieving more efficient and error-tolerant quantum computation 6 . Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states 7 . However, so far, integrated entangled quantum sources have been limited to qubits ( D  = 2) 8 , 9 , 10 , 11 . Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D  = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.
Author Cortés, Luis Romero
Cino, Alfonso
Caspani, Lucia
Zhang, Yanbing
Little, Brent E.
Reimer, Christian
Wetzel, Benjamin
Morandotti, Roberto
Azaña, José
Chu, Sai T.
Roztocki, Piotr
Sciara, Stefania
Moss, David J.
Kues, Michael
Author_xml – sequence: 1
  givenname: Michael
  surname: Kues
  fullname: Kues, Michael
  email: michael.kues@emt.inrs.ca
  organization: Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet, School of Engineering, University of Glasgow, Rankine Building
– sequence: 2
  givenname: Christian
  surname: Reimer
  fullname: Reimer, Christian
  organization: Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet
– sequence: 3
  givenname: Piotr
  surname: Roztocki
  fullname: Roztocki, Piotr
  organization: Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet
– sequence: 4
  givenname: Luis Romero
  surname: Cortés
  fullname: Cortés, Luis Romero
  organization: Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet
– sequence: 5
  givenname: Stefania
  surname: Sciara
  fullname: Sciara, Stefania
  organization: Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet, Department of Energy, Information Engineering and Mathematical Models, University of Palermo
– sequence: 6
  givenname: Benjamin
  surname: Wetzel
  fullname: Wetzel, Benjamin
  organization: Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet, School of Mathematical and Physical Sciences, University of Sussex
– sequence: 7
  givenname: Yanbing
  surname: Zhang
  fullname: Zhang, Yanbing
  organization: Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet
– sequence: 8
  givenname: Alfonso
  surname: Cino
  fullname: Cino, Alfonso
  organization: Department of Energy, Information Engineering and Mathematical Models, University of Palermo
– sequence: 9
  givenname: Sai T.
  surname: Chu
  fullname: Chu, Sai T.
  organization: Department of Physics and Material Science, City University of Hong Kong
– sequence: 10
  givenname: Brent E.
  surname: Little
  fullname: Little, Brent E.
  organization: State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science
– sequence: 11
  givenname: David J.
  surname: Moss
  fullname: Moss, David J.
  organization: Centre for Micro Photonics, Swinburne University of Technology
– sequence: 12
  givenname: Lucia
  surname: Caspani
  fullname: Caspani, Lucia
  organization: Department of Physics, Institute of Photonics, University of Strathclyde, Institute of Photonics and Quantum Sciences, Heriot-Watt University
– sequence: 13
  givenname: José
  surname: Azaña
  fullname: Azaña, José
  organization: Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet
– sequence: 14
  givenname: Roberto
  surname: Morandotti
  fullname: Morandotti, Roberto
  email: morandotti@emt.inrs.ca
  organization: Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, National Research University of Information Technologies, Mechanics and Optics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28658228$$D View this record in MEDLINE/PubMed
BookMark eNpt0UFrFTEQB_AgFftaPXmXgBehrk6y-7LZoxSrQqEXvXhZZpPZtym7yWuSPfTbm-droZSeEsJvhsx_ztiJD54Yey_gi4Baf_WY10hSdlq9YhvRtKpqlG5P2AZA6gp0rU7ZWUq3ALAVbfOGnUqttlpKvWF_b3xlJrfnO_IUMbvgeRj55HZTZd1CPpUXnDn5jH43k-V3K_q8LjxlzJQ4esvzRC5yEyaKxZWLzzHMb9nrEedE7x7Oc_bn6vvvy5_V9c2PX5ffritTdyJXY9t0ODZqMGR0M5AhPdjBqnpAayXKYWx0B6oTRtZjO4otoABEC129hbob6nP26dh3H8PdSin3i0uG5hk9hTX1ohONPiQiCv34jN6GNZb5DkqCkhKgLerDg1qHhWy_j27BeN8_plaAOAITQ0qRxt64_D-7HNHNvYD-sJn-yWZKzcWzmse2L-vPR52K8juKTz76Av8H8iCgqA
CitedBy_id crossref_primary_10_1002_qute_202300354
crossref_primary_10_1080_23746149_2023_2165452
crossref_primary_10_1088_2040_8986_ac2eab
crossref_primary_10_1038_s41566_019_0532_1
crossref_primary_10_1002_lpor_202401687
crossref_primary_10_3390_mi13111925
crossref_primary_10_1116_1_5112027
crossref_primary_10_1186_s43593_022_00027_x
crossref_primary_10_1038_s41566_021_00901_z
crossref_primary_10_1038_s41534_021_00504_0
crossref_primary_10_1088_1361_6455_ab7556
crossref_primary_10_1088_1402_4896_adbe0b
crossref_primary_10_1515_nanoph_2022_0134
crossref_primary_10_1038_s41377_024_01645_5
crossref_primary_10_1063_1_5018016
crossref_primary_10_1364_OE_552079
crossref_primary_10_1103_PhysRevResearch_7_023038
crossref_primary_10_1038_s41534_020_0260_x
crossref_primary_10_1088_1674_1056_ac89e7
crossref_primary_10_1038_s41534_018_0121_z
crossref_primary_10_1088_2040_8986_ada0c5
crossref_primary_10_1063_1_5045509
crossref_primary_10_1109_JSTQE_2023_3266662
crossref_primary_10_1063_5_0009361
crossref_primary_10_1038_s41566_019_0363_0
crossref_primary_10_1088_2040_8986_ac5476
crossref_primary_10_1103_rq78_1qbh
crossref_primary_10_1126_science_aar7053
crossref_primary_10_1155_2023_5792902
crossref_primary_10_1038_s42005_023_01370_2
crossref_primary_10_1103_PhysRevLett_134_050601
crossref_primary_10_1038_s41534_025_01007_y
crossref_primary_10_1109_JSTQE_2019_2899757
crossref_primary_10_1109_JSTQE_2018_2805814
crossref_primary_10_1103_PhysRevApplied_20_064032
crossref_primary_10_1109_JLT_2022_3214466
crossref_primary_10_1002_smll_201906563
crossref_primary_10_1038_s41377_022_01029_7
crossref_primary_10_1007_s12200_024_00133_3
crossref_primary_10_1109_JLT_2018_2880934
crossref_primary_10_1088_1361_6633_ab5005
crossref_primary_10_1002_smll_202311621
crossref_primary_10_3390_s23125749
crossref_primary_10_1103_PhysRevApplied_12_054054
crossref_primary_10_1103_PhysRevResearch_3_013235
crossref_primary_10_1103_PhysRevApplied_21_054058
crossref_primary_10_1515_nanoph_2024_0149
crossref_primary_10_1063_5_0181707
crossref_primary_10_1038_s41467_019_10810_z
crossref_primary_10_1038_s41467_021_24693_6
crossref_primary_10_1038_s41534_019_0137_z
crossref_primary_10_1364_PRJ_538355
crossref_primary_10_1063_5_0276410
crossref_primary_10_1088_1751_8121_ac3a32
crossref_primary_10_1109_JLT_2021_3059721
crossref_primary_10_1007_s11467_020_1010_4
crossref_primary_10_3390_e26100857
crossref_primary_10_1007_s12200_018_0814_0
crossref_primary_10_1007_s10699_021_09781_6
crossref_primary_10_1103_PhysRevResearch_2_033128
crossref_primary_10_1063_5_0056359
crossref_primary_10_1515_nanoph_2021_0789
crossref_primary_10_1038_s41377_024_01439_9
crossref_primary_10_1103_PhysRevApplied_17_034012
crossref_primary_10_3390_mi14020307
crossref_primary_10_1038_s41377_025_01856_4
crossref_primary_10_1088_1555_6611_ab85c9
crossref_primary_10_1103_PhysRevApplied_18_054025
crossref_primary_10_1103_PhysRevApplied_19_034058
crossref_primary_10_1038_s42005_021_00524_4
crossref_primary_10_1063_5_0261065
crossref_primary_10_1038_s41567_021_01302_3
crossref_primary_10_1364_PRJ_6_000B67
crossref_primary_10_1088_2040_8986_ab3d8b
crossref_primary_10_1002_lpor_202300172
crossref_primary_10_1117_1_AP_2_3_034001
crossref_primary_10_1038_s41586_018_0551_y
crossref_primary_10_1038_s41534_021_00398_y
crossref_primary_10_1051_epjconf_202023801004
crossref_primary_10_1007_s11128_020_02855_7
crossref_primary_10_1103_PRXQuantum_5_040331
crossref_primary_10_1002_lpor_202000464
crossref_primary_10_1038_s41586_025_08899_y
crossref_primary_10_1103_PhysRevApplied_19_064026
crossref_primary_10_1364_OL_562079
crossref_primary_10_1002_lpor_202401110
crossref_primary_10_1016_j_physleta_2018_04_007
crossref_primary_10_1515_nanoph_2021_0510
crossref_primary_10_3390_s23249767
crossref_primary_10_1038_s41467_024_45876_x
crossref_primary_10_1002_qute_202300012
crossref_primary_10_1002_adma_202006415
crossref_primary_10_1109_JSTQE_2019_2960937
crossref_primary_10_3390_e27090963
crossref_primary_10_1364_PRJ_6_000B50
crossref_primary_10_1038_s41377_024_01696_8
crossref_primary_10_3389_aot_2025_1560084
crossref_primary_10_1002_qute_201900038
crossref_primary_10_1038_s42254_025_00825_5
crossref_primary_10_1080_23746149_2021_1905544
crossref_primary_10_1103_PRXQuantum_5_040321
crossref_primary_10_1134_S0040577924040032
crossref_primary_10_1186_s43593_024_00062_w
crossref_primary_10_1088_2515_7647_ac1ef4
crossref_primary_10_1109_JLT_2020_3013445
crossref_primary_10_1103_PhysRevApplied_14_064071
crossref_primary_10_1515_nanoph_2018_0078
crossref_primary_10_1103_PRXQuantum_5_040329
crossref_primary_10_1002_qute_202300158
crossref_primary_10_1080_09500340_2019_1660814
crossref_primary_10_1088_1402_4896_ad848e
crossref_primary_10_1002_qute_202000132
crossref_primary_10_1103_PRXQuantum_5_010101
crossref_primary_10_1038_s41567_018_0394_3
crossref_primary_10_1007_s41745_022_00336_7
crossref_primary_10_1080_23746149_2022_2067487
crossref_primary_10_1088_2632_2153_ad7457
crossref_primary_10_1016_j_newton_2025_100024
crossref_primary_10_1038_s41467_019_09429_x
crossref_primary_10_1103_3x44_664w
crossref_primary_10_1038_s41566_018_0317_y
crossref_primary_10_1088_1361_6455_ac31c7
crossref_primary_10_1007_s42484_024_00146_3
crossref_primary_10_1002_lpor_202000128
crossref_primary_10_1103_PhysRevApplied_18_054006
crossref_primary_10_1103_PhysRevX_13_021028
crossref_primary_10_1088_1402_4896_acf740
crossref_primary_10_1126_science_aat9042
crossref_primary_10_3390_e24070963
crossref_primary_10_1038_s41566_023_01193_1
crossref_primary_10_1038_s41586_021_03999_x
crossref_primary_10_1002_andp_202400360
crossref_primary_10_1002_lpor_202400166
crossref_primary_10_1016_j_orgel_2023_106858
crossref_primary_10_1364_OPTICAQ_545703
crossref_primary_10_4213_tmf10618
crossref_primary_10_1063_5_0177134
crossref_primary_10_1007_s11467_020_1028_7
crossref_primary_10_1088_1674_4926_42_4_041305
crossref_primary_10_1038_s41534_022_00531_5
crossref_primary_10_1364_JOSAB_36_001758
crossref_primary_10_1364_OL_567098
crossref_primary_10_1088_1674_4926_42_4_041302
crossref_primary_10_1002_lpor_202401023
crossref_primary_10_1038_s41467_019_09850_2
crossref_primary_10_1103_PhysRevApplied_17_034009
crossref_primary_10_1088_1674_1056_ac3507
crossref_primary_10_1364_PRJ_7_000019
crossref_primary_10_1007_s41683_023_00115_1
crossref_primary_10_1038_s41377_021_00537_2
crossref_primary_10_1038_s41566_024_01493_0
crossref_primary_10_1088_1367_2630_ac38cd
crossref_primary_10_1038_s41534_019_0188_1
crossref_primary_10_1364_PRJ_384449
crossref_primary_10_22331_q_2025_04_18_1711
crossref_primary_10_1007_s11432_022_3602_0
crossref_primary_10_3390_e25020387
crossref_primary_10_1109_ACCESS_2020_2987333
crossref_primary_10_1364_OL_573688
crossref_primary_10_1515_nanoph_2024_0172
crossref_primary_10_1016_j_progsurf_2020_100584
crossref_primary_10_1002_qute_202400149
crossref_primary_10_1088_1751_8121_ab9aea
crossref_primary_10_1002_lpor_202500973
crossref_primary_10_1002_lpor_202401395
crossref_primary_10_1088_2040_8986_ace4dc
crossref_primary_10_1038_s41377_025_01781_6
crossref_primary_10_1364_PRJ_435837
crossref_primary_10_1103_PhysRevApplied_19_034019
crossref_primary_10_1088_1742_6596_1124_5_051047
crossref_primary_10_1364_PRJ_483570
crossref_primary_10_1007_s11082_018_1609_7
crossref_primary_10_1038_s41578_024_00668_z
crossref_primary_10_1038_s44172_023_00135_7
crossref_primary_10_1063_5_0192602
crossref_primary_10_1002_qute_201900074
crossref_primary_10_7566_JPSJ_90_114002
crossref_primary_10_1038_s41534_019_0237_9
crossref_primary_10_1109_JPHOT_2025_3550712
crossref_primary_10_1007_s11433_022_2072_4
crossref_primary_10_1063_1_5115814
crossref_primary_10_1117_1_AP_6_3_036003
crossref_primary_10_1002_lpor_202100467
crossref_primary_10_1002_adom_202001048
crossref_primary_10_1063_1_5144119
crossref_primary_10_1002_qute_202500370
crossref_primary_10_1103_PhysRevApplied_18_024059
crossref_primary_10_1140_epjqt_s40507_024_00250_0
crossref_primary_10_1038_s41534_020_00310_0
crossref_primary_10_1039_D4TC05290K
crossref_primary_10_3390_e24010006
crossref_primary_10_1038_s41534_024_00837_6
crossref_primary_10_1515_nanoph_2020_0593
crossref_primary_10_1088_1674_1056_acf205
crossref_primary_10_1002_andp_202400144
crossref_primary_10_1038_s42005_024_01558_0
crossref_primary_10_1038_s41598_024_63627_2
crossref_primary_10_1038_s41467_021_25054_z
crossref_primary_10_1038_s41534_021_00388_0
crossref_primary_10_1186_s43593_024_00066_6
crossref_primary_10_1103_PhysRevX_15_011024
crossref_primary_10_1515_nanoph_2024_0550
crossref_primary_10_1007_s11432_019_2662_x
crossref_primary_10_1088_2632_2153_ad0100
crossref_primary_10_1063_5_0088592
crossref_primary_10_1088_2058_9565_ab3f59
crossref_primary_10_1103_PRXQuantum_5_020346
crossref_primary_10_1002_qute_202100068
crossref_primary_10_1038_s41467_022_35773_6
crossref_primary_10_1103_PhysRevApplied_17_024062
crossref_primary_10_29026_oes_2025_250006
crossref_primary_10_1038_s41534_018_0101_3
crossref_primary_10_1126_science_aan8083
crossref_primary_10_1103_PhysRevA_111_043711
crossref_primary_10_1038_s41467_025_58711_8
crossref_primary_10_1088_1367_2630_ac8a67
crossref_primary_10_1063_5_0030258
crossref_primary_10_1103_PhysRevApplied_18_034028
crossref_primary_10_1103_PhysRevResearch_4_023045
crossref_primary_10_1038_s41467_022_31639_z
crossref_primary_10_1088_1751_8121_acbace
crossref_primary_10_1080_09500340_2022_2073613
crossref_primary_10_1038_s41598_022_12691_7
crossref_primary_10_1038_s41566_019_0379_5
crossref_primary_10_1038_546602a
crossref_primary_10_1063_5_0174697
crossref_primary_10_1088_1555_6611_adf837
crossref_primary_10_1002_lpor_201900176
crossref_primary_10_1016_j_cpc_2023_109017
crossref_primary_10_1103_PhysRevResearch_3_013199
crossref_primary_10_1103_RevModPhys_97_021003
crossref_primary_10_1038_s41467_022_28702_0
crossref_primary_10_1088_2058_9565_ad37d4
crossref_primary_10_1109_LPT_2019_2944564
crossref_primary_10_1038_s41534_023_00725_5
crossref_primary_10_1038_s41567_018_0347_x
crossref_primary_10_1063_5_0069383
crossref_primary_10_1103_PhysRevResearch_2_023050
crossref_primary_10_1088_2058_9565_adac06
crossref_primary_10_1063_1_5028339
crossref_primary_10_1002_adom_201901526
crossref_primary_10_1038_s41534_021_00462_7
crossref_primary_10_1088_1572_9494_ad48fb
crossref_primary_10_1038_s41467_023_43949_x
crossref_primary_10_1080_23746149_2020_1838946
crossref_primary_10_1364_PRJ_435521
crossref_primary_10_1016_j_physleta_2022_128059
crossref_primary_10_1103_PhysRevX_14_041058
crossref_primary_10_1038_s41467_020_15625_x
crossref_primary_10_1038_s41567_018_0203_z
crossref_primary_10_1088_2058_9565_aa97b6
crossref_primary_10_1140_epjp_s13360_022_02936_9
crossref_primary_10_3390_quantum7020019
crossref_primary_10_1007_s40766_023_00040_x
crossref_primary_10_1088_1612_202X_adc552
crossref_primary_10_1364_OPTICAQ_560373
crossref_primary_10_1063_5_0229124
crossref_primary_10_1140_epjqt_s40507_022_00122_5
crossref_primary_10_1109_LPT_2019_2911876
crossref_primary_10_1038_s41570_022_00458_7
crossref_primary_10_1109_LPT_2019_2942136
crossref_primary_10_1002_qute_202400229
crossref_primary_10_1109_JLT_2020_2997699
crossref_primary_10_3390_e26121129
crossref_primary_10_1002_lpor_202200512
crossref_primary_10_1088_2058_9565_ad7315
crossref_primary_10_1103_PhysRevResearch_2_022057
crossref_primary_10_1016_j_pquantelec_2022_100437
crossref_primary_10_1109_JLT_2025_3552182
crossref_primary_10_1109_TQE_2021_3050848
crossref_primary_10_1088_1367_2630_acae3c
crossref_primary_10_1103_9dxw_4c7y
crossref_primary_10_1109_JSTQE_2024_3402679
crossref_primary_10_1038_s41534_021_00393_3
crossref_primary_10_1002_andp_202000254
crossref_primary_10_1063_5_0261470
crossref_primary_10_1109_TCYB_2025_3595007
crossref_primary_10_1063_5_0089313
crossref_primary_10_1007_s11467_023_1357_4
crossref_primary_10_1063_5_0253731
crossref_primary_10_1038_s41598_017_19078_z
crossref_primary_10_37188_lam_2023_039
crossref_primary_10_1038_s41534_019_0205_4
crossref_primary_10_1103_PhysRevA_111_042433
crossref_primary_10_1109_LPT_2022_3209965
crossref_primary_10_1088_2040_8986_ac3a9d
crossref_primary_10_1016_j_yofte_2021_102689
crossref_primary_10_1088_1367_2630_ab09a7
crossref_primary_10_1103_PhysRevApplied_14_024027
crossref_primary_10_1007_s11128_019_2327_1
crossref_primary_10_1073_pnas_2011405117
crossref_primary_10_1364_AOP_533504
crossref_primary_10_3788_COL202422_111302
crossref_primary_10_1038_s41467_022_33132_z
crossref_primary_10_1109_JLT_2018_2819172
crossref_primary_10_1186_s43593_024_00071_9
crossref_primary_10_1103_PhysRevLett_128_213605
crossref_primary_10_1002_adpr_202300343
crossref_primary_10_1016_j_nuclphysb_2019_114914
crossref_primary_10_1103_PhysRevA_104_022411
crossref_primary_10_1002_lpor_202000524
crossref_primary_10_1038_s41467_023_39003_5
crossref_primary_10_1063_5_0250593
crossref_primary_10_3390_e21090870
crossref_primary_10_1063_5_0232085
crossref_primary_10_1002_andp_201900337
crossref_primary_10_1038_s42005_023_01372_0
crossref_primary_10_1063_1_5131683
crossref_primary_10_1002_qute_201900011
crossref_primary_10_1016_j_neunet_2021_01_003
crossref_primary_10_1038_s41467_023_37472_2
crossref_primary_10_1109_JPHOT_2024_3383780
crossref_primary_10_3390_photonics12070661
crossref_primary_10_1038_s41534_020_00327_5
crossref_primary_10_1088_1612_202X_ace9cd
crossref_primary_10_1515_nanoph_2024_0585
crossref_primary_10_1002_qute_201900017
crossref_primary_10_1038_s41377_020_0290_3
crossref_primary_10_1088_1361_6455_ab1303
crossref_primary_10_4028_www_scientific_net_AMM_879_178
crossref_primary_10_1007_s11433_022_1936_5
crossref_primary_10_1038_s41586_022_04957_x
crossref_primary_10_1007_s40820_022_00957_8
crossref_primary_10_3390_e24101334
crossref_primary_10_1002_lpor_202200388
crossref_primary_10_3390_math12223541
crossref_primary_10_3390_quantum7030035
crossref_primary_10_1007_s10773_021_04886_x
crossref_primary_10_1002_lpor_202201010
crossref_primary_10_1038_s42005_018_0051_2
crossref_primary_10_1103_nzrc_8yrt
crossref_primary_10_1007_s43673_023_00082_7
crossref_primary_10_1038_s44310_025_00060_x
crossref_primary_10_1038_s41467_024_55345_0
crossref_primary_10_1088_1402_4896_ad69d9
crossref_primary_10_1038_s41467_020_16265_x
crossref_primary_10_1088_1555_6611_aae279
crossref_primary_10_1088_2040_8986_acfbe9
crossref_primary_10_1109_JLT_2022_3192759
crossref_primary_10_1063_5_0011077
crossref_primary_10_1007_s11433_022_1926_0
crossref_primary_10_1002_admt_202000963
crossref_primary_10_1038_s41467_024_51434_2
crossref_primary_10_1007_s11128_022_03713_4
crossref_primary_10_1038_s41566_023_01257_2
crossref_primary_10_1038_s41467_018_08099_5
crossref_primary_10_1088_1612_202X_adf03e
crossref_primary_10_1088_2040_8986_aa912a
crossref_primary_10_1007_s11433_024_2414_0
crossref_primary_10_1103_PhysRevApplied_11_064058
crossref_primary_10_1103_PhysRevResearch_6_L012043
crossref_primary_10_1002_qute_202000063
crossref_primary_10_1109_JSTQE_2022_3224812
crossref_primary_10_1109_JPHOT_2019_2922282
crossref_primary_10_1038_s41534_019_0173_8
Cites_doi 10.1038/srep02314
10.1364/OL.40.001422
10.1364/OPTICA.3.001171
10.1103/PhysRevA.82.013804
10.1080/00107514.2013.878554
10.1103/PhysRevLett.86.5188
10.1016/j.procs.2011.12.018
10.1038/35059017
10.1103/PhysRevA.66.012303
10.1364/OE.20.016145
10.1038/nphys1150
10.1038/ncomms2838
10.1103/PhysRevLett.94.073601
10.1038/ncomms8948
10.1364/OPTICA.2.000724
10.1126/sciadv.1501165
10.1103/PhysRevLett.88.040404
10.1364/OL.35.003006
10.1103/PhysRevLett.84.5304
10.1126/science.aad8532
10.1038/nnano.2010.6
10.1109/JQE.2008.2002673
10.1364/JOSAB.27.00A119
10.1103/PhysRevLett.92.210403
10.1126/science.1160627
10.1103/PhysRevA.68.062303
10.1002/lpor.201100010
10.1126/science.1173440
10.1103/PhysRevLett.98.060503
10.1126/science.1107451
10.1038/srep00817
10.1103/PhysRevA.64.052312
10.1088/1367-2630/13/3/033027
10.1038/nphys1996
10.1038/nphoton.2016.228
10.1016/j.revip.2016.11.003
10.1364/OPTICA.4.000008
10.1364/OE.21.029186
10.1038/35051009
10.1364/OPTICA.2.000088
10.1103/PhysRevA.88.032322
10.1038/nphoton.2010.190
10.1364/CLEO_AT.2017.JTh5B.3
ContentType Journal Article
Copyright Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017
Copyright Nature Publishing Group Jun 29, 2017
Copyright_xml – notice: Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017
– notice: Copyright Nature Publishing Group Jun 29, 2017
DBID AAYXX
CITATION
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/nature22986
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PATMY
  name: Environmental Science Database
  url: http://search.proquest.com/environmentalscience
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 626
ExternalDocumentID 28658228
10_1038_nature22986
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EJD
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ABUFD
ACSTC
ADXHL
AETEA
AFANA
AFFHD
AGSTI
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
TUS
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
PUEGO
ID FETCH-LOGICAL-c391t-f749af46bcec84bece8bdbd63badd2a2bf4890691c23f7f150a10aad0935039b3
IEDL.DBID M7P
ISICitedReferencesCount 650
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404332000041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-0836
1476-4687
IngestDate Tue Sep 30 23:51:00 EDT 2025
Sat Nov 29 14:34:08 EST 2025
Wed Feb 19 02:01:26 EST 2025
Tue Nov 18 21:20:22 EST 2025
Sat Nov 29 02:12:24 EST 2025
Fri Feb 21 02:37:02 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7660
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-f749af46bcec84bece8bdbd63badd2a2bf4890691c23f7f150a10aad0935039b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://ir.opt.ac.cn/handle/181661/29087
PMID 28658228
PQID 1920622007
PQPubID 40569
PageCount 5
ParticipantIDs proquest_miscellaneous_1914846871
proquest_journals_1920622007
pubmed_primary_28658228
crossref_citationtrail_10_1038_nature22986
crossref_primary_10_1038_nature22986
springer_journals_10_1038_nature22986
PublicationCentury 2000
PublicationDate 2017-06-29
PublicationDateYYYYMMDD 2017-06-29
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-29
  day: 29
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Christ, Laiho, Eckstein, Cassemiro, Silberhorn (CR40) 2011; 13
Law, Walmsley, Eberly (CR38) 2000; 84
Zhou, Zeng, Xu, Sun (CR26) 2003; 68
Förtsch (CR41) 2013; 4
Thew, Nemoto, White, Munro (CR44) 2002; 66
Horn (CR9) 2013; 3
Ali-Khan, Broadbent, Howell (CR4) 2007; 98
Zhang (CR16) 2016; 2
Ishizawa (CR34) 2013; 21
Xuan (CR35) 2016; 3
Karpiński, Jachura, Wright, Smith (CR33) 2017; 11
CR12
Helt, Yang, Liscidini, Sipe (CR42) 2010; 35
Dada, Leach, Buller, Padgett, Andersson (CR18) 2011; 7
CR32
Grassani (CR15) 2015; 2
Raussendorf, Briegel (CR27) 2001; 86
Neeley (CR5) 2009; 325
Lukens, Lougovski (CR30) 2017; 4
Schaeff (CR20) 2012; 20
Bernhard, Bessire, Feurer, Stefanov (CR24) 2013; 88
James, Kwiat, Munro, White (CR43) 2001; 64
Solntsev, Sukhorukov (CR14) 2016; 2
Barreiro, Meschede, Polzik, Arimondo, Lugiato (CR29) 2011; 7
Collins, Gisin, Linden, Massar, Popescu (CR2) 2002; 88
Babinec (CR13) 2010; 5
Thew, Acin, Zbinden, Gisin (CR21) 2004; 4
Pe’er, Dayan, Friesem, Silberberg (CR23) 2005; 94
Matsuda (CR8) 2012; 2
Olislager (CR22) 2010; 82
Capmany, Fernández-Pousa (CR37) 2010; 27
Tanzilli (CR7) 2012; 6
Reimer (CR17) 2016; 351
CR45
Xiong (CR11) 2015; 2
Walmsley, Raymer (CR25) 2005; 307
Kumar, Prabhakar (CR36) 2009; 45
Knill, Laflamme, Milburn (CR1) 2001; 409
Lloyd (CR3) 2008; 321
Howell, Bennink, Bentley, Boyd (CR19) 2004; 92
Lanyon (CR6) 2009; 5
Finot (CR28) 2015; 40
Kwiat, Barraza-Lopez, Stefanov, Gisin (CR31) 2001; 409
Silverstone (CR10) 2015; 6
Fedorov, Miklin (CR39) 2014; 55
R Raussendorf (BFnature22986_CR27) 2001; 86
AC Dada (BFnature22986_CR18) 2011; 7
C Finot (BFnature22986_CR28) 2015; 40
MV Fedorov (BFnature22986_CR39) 2014; 55
S Tanzilli (BFnature22986_CR7) 2012; 6
JT Barreiro (BFnature22986_CR29) 2011; 7
J Capmany (BFnature22986_CR37) 2010; 27
JW Silverstone (BFnature22986_CR10) 2015; 6
R Thew (BFnature22986_CR21) 2004; 4
CK Law (BFnature22986_CR38) 2000; 84
RT Horn (BFnature22986_CR9) 2013; 3
I Ali-Khan (BFnature22986_CR4) 2007; 98
S Lloyd (BFnature22986_CR3) 2008; 321
BFnature22986_CR32
BFnature22986_CR12
P Kumar (BFnature22986_CR36) 2009; 45
M Karpiński (BFnature22986_CR33) 2017; 11
D Collins (BFnature22986_CR2) 2002; 88
C Schaeff (BFnature22986_CR20) 2012; 20
A Pe’er (BFnature22986_CR23) 2005; 94
TM Babinec (BFnature22986_CR13) 2010; 5
D Zhou (BFnature22986_CR26) 2003; 68
Y Xuan (BFnature22986_CR35) 2016; 3
RT Thew (BFnature22986_CR44) 2002; 66
LG Helt (BFnature22986_CR42) 2010; 35
JM Lukens (BFnature22986_CR30) 2017; 4
IA Walmsley (BFnature22986_CR25) 2005; 307
PG Kwiat (BFnature22986_CR31) 2001; 409
M Neeley (BFnature22986_CR5) 2009; 325
A Christ (BFnature22986_CR40) 2011; 13
Y Zhang (BFnature22986_CR16) 2016; 2
E Knill (BFnature22986_CR1) 2001; 409
D Grassani (BFnature22986_CR15) 2015; 2
C Bernhard (BFnature22986_CR24) 2013; 88
C Xiong (BFnature22986_CR11) 2015; 2
L Olislager (BFnature22986_CR22) 2010; 82
A Ishizawa (BFnature22986_CR34) 2013; 21
M Förtsch (BFnature22986_CR41) 2013; 4
N Matsuda (BFnature22986_CR8) 2012; 2
JC Howell (BFnature22986_CR19) 2004; 92
AS Solntsev (BFnature22986_CR14) 2016; 2
BFnature22986_CR45
DFV James (BFnature22986_CR43) 2001; 64
C Reimer (BFnature22986_CR17) 2016; 351
BP Lanyon (BFnature22986_CR6) 2009; 5
24514470 - Opt Express. 2013 Dec 2;21(24):29186-94
20154687 - Nat Nanotechnol. 2010 Mar;5(3):195-9
23652006 - Nat Commun. 2013;4:1818
23896982 - Sci Rep. 2013;3:2314
18787162 - Science. 2008 Sep 12;321(5895):1463-5
17358925 - Phys Rev Lett. 2007 Feb 9;98(6):060503
15774749 - Science. 2005 Mar 18;307(5716):1733-4
26245267 - Nat Commun. 2015 Aug 06;6:7948
11801097 - Phys Rev Lett. 2002 Jan 28;88(4):040404
11384453 - Phys Rev Lett. 2001 May 28;86(22):5188-91
25831348 - Opt Lett. 2015 Apr 1;40(7):1422-5
28658224 - Nature. 2017 Jun 28;546(7660):602-603
19661423 - Science. 2009 Aug 7;325(5941):722-5
10990929 - Phys Rev Lett. 2000 Jun 5;84(23):5304-7
26965623 - Science. 2016 Mar 11;351(6278):1176-80
11343107 - Nature. 2001 Jan 4;409(6816):46-52
11234004 - Nature. 2001 Feb 22;409(6823):1014-7
20847760 - Opt Lett. 2010 Sep 15;35(18):3006-8
15245267 - Phys Rev Lett. 2004 May 28;92(21):210403
15783815 - Phys Rev Lett. 2005 Feb 25;94(7):073601
23150781 - Sci Rep. 2012;2:817
26933685 - Sci Adv. 2016 Feb 26;2(2):e1501165
References_xml – ident: CR45
– volume: 3
  start-page: 2314
  year: 2013
  ident: CR9
  article-title: Inherent polarization entanglement generated from a monolithic semiconductor chip
  publication-title: Sci. Rep.
  doi: 10.1038/srep02314
– volume: 40
  start-page: 1422
  year: 2015
  end-page: 1425
  ident: CR28
  article-title: Photonic waveform generator by linear shaping of four spectral sidebands
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.001422
– volume: 3
  start-page: 1171
  year: 2016
  end-page: 1180
  ident: CR35
  article-title: High- silicon nitride microresonators exhibiting low-power frequency comb initiation
  publication-title: Optica
  doi: 10.1364/OPTICA.3.001171
– volume: 82
  start-page: 013804
  year: 2010
  ident: CR22
  article-title: Frequency-bin entangled photons
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.013804
– ident: CR12
– volume: 55
  start-page: 94
  year: 2014
  end-page: 109
  ident: CR39
  article-title: Schmidt modes and entanglement
  publication-title: Contemp. Phys.
  doi: 10.1080/00107514.2013.878554
– volume: 86
  start-page: 5188
  year: 2001
  end-page: 5191
  ident: CR27
  article-title: A one-way quantum computer
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.5188
– volume: 7
  start-page: 52
  year: 2011
  end-page: 55
  ident: CR29
  article-title: Atoms, photons and entanglement for quantum information technologies
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2011.12.018
– volume: 409
  start-page: 1014
  year: 2001
  end-page: 1017
  ident: CR31
  article-title: Experimental entanglement distillation and ‘hidden’ non-locality
  publication-title: Nature
  doi: 10.1038/35059017
– volume: 66
  start-page: 012303
  year: 2002
  ident: CR44
  article-title: Qudit quantum-state tomography
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.66.012303
– volume: 4
  start-page: 93
  year: 2004
  ident: CR21
  article-title: Experimental realization of entangled qutrits for quantum communication
  publication-title: Quantum Inf. Comput.
– volume: 20
  start-page: 16145
  year: 2012
  ident: CR20
  article-title: Scalable fiber integrated source for higher-dimensional path-entangled photonic quNits
  publication-title: Opt. Express
  doi: 10.1364/OE.20.016145
– volume: 5
  start-page: 134
  year: 2009
  end-page: 140
  ident: CR6
  article-title: Simplifying quantum logic using higher-dimensional Hilbert spaces
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1150
– volume: 4
  start-page: 1818
  year: 2013
  ident: CR41
  article-title: A versatile source of single photons for quantum information processing
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2838
– volume: 94
  start-page: 073601
  year: 2005
  ident: CR23
  article-title: Temporal shaping of entangled photons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.073601
– volume: 6
  start-page: 7948
  year: 2015
  ident: CR10
  article-title: Qubit entanglement between ring-resonator photon-pair sources on a silicon chip
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8948
– volume: 2
  start-page: 724
  year: 2015
  end-page: 727
  ident: CR11
  article-title: Compact and reconfigurable silicon nitride time-bin entanglement circuit
  publication-title: Optica
  doi: 10.1364/OPTICA.2.000724
– volume: 2
  start-page: e1501165
  year: 2016
  ident: CR16
  article-title: Engineering two-photon high-dimensional states through quantum interference
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501165
– volume: 88
  start-page: 040404
  year: 2002
  ident: CR2
  article-title: Bell inequalities for arbitrarily high-dimensional systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.040404
– volume: 35
  start-page: 3006
  year: 2010
  end-page: 3008
  ident: CR42
  article-title: Spontaneous four-wave mixing in microring resonators
  publication-title: Opt. Lett.
  doi: 10.1364/OL.35.003006
– volume: 84
  start-page: 5304
  year: 2000
  end-page: 5307
  ident: CR38
  article-title: Continuous frequency entanglement: effective finite Hilbert space and entropy control
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.5304
– volume: 351
  start-page: 1176
  year: 2016
  end-page: 1180
  ident: CR17
  article-title: Generation of multiphoton entangled quantum states by means of integrated frequency combs
  publication-title: Science
  doi: 10.1126/science.aad8532
– volume: 5
  start-page: 195
  year: 2010
  end-page: 199
  ident: CR13
  article-title: A diamond nanowire single-photon source
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.6
– volume: 45
  start-page: 149
  year: 2009
  end-page: 156
  ident: CR36
  article-title: Evolution of quantum states in an electro-optic phase modulator
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/JQE.2008.2002673
– volume: 27
  start-page: A119
  year: 2010
  end-page: A129
  ident: CR37
  article-title: Quantum model for electro-optical phase modulation
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.27.00A119
– volume: 92
  start-page: 210403
  year: 2004
  ident: CR19
  article-title: Realization of the Einstein-Podolsky-Rosen paradox using momentum and position-entangled photons from spontaneous parametric down conversion
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.210403
– volume: 321
  start-page: 1463
  year: 2008
  end-page: 1465
  ident: CR3
  article-title: Enhanced sensitivity of photodetection via quantum illumination
  publication-title: Science
  doi: 10.1126/science.1160627
– volume: 68
  start-page: 062303
  year: 2003
  ident: CR26
  article-title: Quantum computation based on -level cluster state
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.68.062303
– volume: 6
  start-page: 115
  year: 2012
  end-page: 143
  ident: CR7
  article-title: On the genesis and evolution of integrated quantum optics
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201100010
– volume: 325
  start-page: 722
  year: 2009
  end-page: 725
  ident: CR5
  article-title: Emulation of a quantum spin with a superconducting phase qudit
  publication-title: Science
  doi: 10.1126/science.1173440
– ident: CR32
– volume: 98
  start-page: 060503
  year: 2007
  ident: CR4
  article-title: Large-alphabet quantum key distribution using energy-time entangled bipartite states
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.060503
– volume: 307
  start-page: 1733
  year: 2005
  end-page: 1734
  ident: CR25
  article-title: Toward quantum-information processing with photons
  publication-title: Science
  doi: 10.1126/science.1107451
– volume: 2
  start-page: 817
  year: 2012
  ident: CR8
  article-title: A monolithically integrated polarization entangled photon pair source on a silicon chip
  publication-title: Sci. Rep.
  doi: 10.1038/srep00817
– volume: 64
  start-page: 052312
  year: 2001
  ident: CR43
  article-title: Measurement of qubits
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.64.052312
– volume: 13
  start-page: 033027
  year: 2011
  ident: CR40
  article-title: Probing multimode squeezing with correlation functions
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/13/3/033027
– volume: 7
  start-page: 677
  year: 2011
  end-page: 680
  ident: CR18
  article-title: Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1996
– volume: 11
  start-page: 53
  year: 2017
  end-page: 57
  ident: CR33
  article-title: Bandwidth manipulation of quantum light by an electro-optic time lens
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2016.228
– volume: 2
  start-page: 19
  year: 2016
  end-page: 31
  ident: CR14
  article-title: Path-entangled photon sources on nonlinear chips
  publication-title: Rev. Phys.
  doi: 10.1016/j.revip.2016.11.003
– volume: 4
  start-page: 8
  year: 2017
  end-page: 16
  ident: CR30
  article-title: Frequency-encoded photonic qubits for scalable quantum information processing
  publication-title: Optica
  doi: 10.1364/OPTICA.4.000008
– volume: 21
  start-page: 29186
  year: 2013
  end-page: 29194
  ident: CR34
  article-title: Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser
  publication-title: Opt. Express
  doi: 10.1364/OE.21.029186
– volume: 409
  start-page: 46
  year: 2001
  end-page: 52
  ident: CR1
  article-title: A scheme for efficient quantum computation with linear optics
  publication-title: Nature
  doi: 10.1038/35051009
– volume: 2
  start-page: 88
  year: 2015
  end-page: 94
  ident: CR15
  article-title: Micrometer-scale integrated silicon source of time-energy entangled photons
  publication-title: Optica
  doi: 10.1364/OPTICA.2.000088
– volume: 88
  start-page: 032322
  year: 2013
  ident: CR24
  article-title: Shaping frequency-entangled qudits
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.032322
– volume: 3
  start-page: 1171
  year: 2016
  ident: BFnature22986_CR35
  publication-title: Optica
  doi: 10.1364/OPTICA.3.001171
– volume: 4
  start-page: 1818
  year: 2013
  ident: BFnature22986_CR41
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2838
– volume: 325
  start-page: 722
  year: 2009
  ident: BFnature22986_CR5
  publication-title: Science
  doi: 10.1126/science.1173440
– volume: 2
  start-page: 724
  year: 2015
  ident: BFnature22986_CR11
  publication-title: Optica
  doi: 10.1364/OPTICA.2.000724
– volume: 20
  start-page: 16145
  year: 2012
  ident: BFnature22986_CR20
  publication-title: Opt. Express
  doi: 10.1364/OE.20.016145
– ident: BFnature22986_CR12
  doi: 10.1038/nphoton.2010.190
– ident: BFnature22986_CR45
  doi: 10.1364/CLEO_AT.2017.JTh5B.3
– volume: 68
  start-page: 062303
  year: 2003
  ident: BFnature22986_CR26
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.68.062303
– volume: 35
  start-page: 3006
  year: 2010
  ident: BFnature22986_CR42
  publication-title: Opt. Lett.
  doi: 10.1364/OL.35.003006
– volume: 64
  start-page: 052312
  year: 2001
  ident: BFnature22986_CR43
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.64.052312
– volume: 55
  start-page: 94
  year: 2014
  ident: BFnature22986_CR39
  publication-title: Contemp. Phys.
  doi: 10.1080/00107514.2013.878554
– volume: 98
  start-page: 060503
  year: 2007
  ident: BFnature22986_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.060503
– ident: BFnature22986_CR32
– volume: 4
  start-page: 93
  year: 2004
  ident: BFnature22986_CR21
  publication-title: Quantum Inf. Comput.
– volume: 6
  start-page: 115
  year: 2012
  ident: BFnature22986_CR7
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201100010
– volume: 45
  start-page: 149
  year: 2009
  ident: BFnature22986_CR36
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/JQE.2008.2002673
– volume: 2
  start-page: 88
  year: 2015
  ident: BFnature22986_CR15
  publication-title: Optica
  doi: 10.1364/OPTICA.2.000088
– volume: 92
  start-page: 210403
  year: 2004
  ident: BFnature22986_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.210403
– volume: 5
  start-page: 195
  year: 2010
  ident: BFnature22986_CR13
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.6
– volume: 7
  start-page: 677
  year: 2011
  ident: BFnature22986_CR18
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1996
– volume: 351
  start-page: 1176
  year: 2016
  ident: BFnature22986_CR17
  publication-title: Science
  doi: 10.1126/science.aad8532
– volume: 40
  start-page: 1422
  year: 2015
  ident: BFnature22986_CR28
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.001422
– volume: 66
  start-page: 012303
  year: 2002
  ident: BFnature22986_CR44
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.66.012303
– volume: 7
  start-page: 52
  year: 2011
  ident: BFnature22986_CR29
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2011.12.018
– volume: 27
  start-page: A119
  year: 2010
  ident: BFnature22986_CR37
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.27.00A119
– volume: 4
  start-page: 8
  year: 2017
  ident: BFnature22986_CR30
  publication-title: Optica
  doi: 10.1364/OPTICA.4.000008
– volume: 6
  start-page: 7948
  year: 2015
  ident: BFnature22986_CR10
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8948
– volume: 2
  start-page: 19
  year: 2016
  ident: BFnature22986_CR14
  publication-title: Rev. Phys.
  doi: 10.1016/j.revip.2016.11.003
– volume: 13
  start-page: 033027
  year: 2011
  ident: BFnature22986_CR40
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/13/3/033027
– volume: 88
  start-page: 040404
  year: 2002
  ident: BFnature22986_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.040404
– volume: 409
  start-page: 1014
  year: 2001
  ident: BFnature22986_CR31
  publication-title: Nature
  doi: 10.1038/35059017
– volume: 21
  start-page: 29186
  year: 2013
  ident: BFnature22986_CR34
  publication-title: Opt. Express
  doi: 10.1364/OE.21.029186
– volume: 86
  start-page: 5188
  year: 2001
  ident: BFnature22986_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.5188
– volume: 2
  start-page: e1501165
  year: 2016
  ident: BFnature22986_CR16
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501165
– volume: 11
  start-page: 53
  year: 2017
  ident: BFnature22986_CR33
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2016.228
– volume: 84
  start-page: 5304
  year: 2000
  ident: BFnature22986_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.5304
– volume: 94
  start-page: 073601
  year: 2005
  ident: BFnature22986_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.073601
– volume: 409
  start-page: 46
  year: 2001
  ident: BFnature22986_CR1
  publication-title: Nature
  doi: 10.1038/35051009
– volume: 321
  start-page: 1463
  year: 2008
  ident: BFnature22986_CR3
  publication-title: Science
  doi: 10.1126/science.1160627
– volume: 88
  start-page: 032322
  year: 2013
  ident: BFnature22986_CR24
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.032322
– volume: 82
  start-page: 013804
  year: 2010
  ident: BFnature22986_CR22
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.013804
– volume: 5
  start-page: 134
  year: 2009
  ident: BFnature22986_CR6
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1150
– volume: 3
  start-page: 2314
  year: 2013
  ident: BFnature22986_CR9
  publication-title: Sci. Rep.
  doi: 10.1038/srep02314
– volume: 2
  start-page: 817
  year: 2012
  ident: BFnature22986_CR8
  publication-title: Sci. Rep.
  doi: 10.1038/srep00817
– volume: 307
  start-page: 1733
  year: 2005
  ident: BFnature22986_CR25
  publication-title: Science
  doi: 10.1126/science.1107451
– reference: 15245267 - Phys Rev Lett. 2004 May 28;92(21):210403
– reference: 11234004 - Nature. 2001 Feb 22;409(6823):1014-7
– reference: 24514470 - Opt Express. 2013 Dec 2;21(24):29186-94
– reference: 15783815 - Phys Rev Lett. 2005 Feb 25;94(7):073601
– reference: 26245267 - Nat Commun. 2015 Aug 06;6:7948
– reference: 11343107 - Nature. 2001 Jan 4;409(6816):46-52
– reference: 10990929 - Phys Rev Lett. 2000 Jun 5;84(23):5304-7
– reference: 23150781 - Sci Rep. 2012;2:817
– reference: 11801097 - Phys Rev Lett. 2002 Jan 28;88(4):040404
– reference: 19661423 - Science. 2009 Aug 7;325(5941):722-5
– reference: 23896982 - Sci Rep. 2013;3:2314
– reference: 20154687 - Nat Nanotechnol. 2010 Mar;5(3):195-9
– reference: 17358925 - Phys Rev Lett. 2007 Feb 9;98(6):060503
– reference: 26933685 - Sci Adv. 2016 Feb 26;2(2):e1501165
– reference: 18787162 - Science. 2008 Sep 12;321(5895):1463-5
– reference: 26965623 - Science. 2016 Mar 11;351(6278):1176-80
– reference: 20847760 - Opt Lett. 2010 Sep 15;35(18):3006-8
– reference: 23652006 - Nat Commun. 2013;4:1818
– reference: 28658224 - Nature. 2017 Jun 28;546(7660):602-603
– reference: 15774749 - Science. 2005 Mar 18;307(5716):1733-4
– reference: 11384453 - Phys Rev Lett. 2001 May 28;86(22):5188-91
– reference: 25831348 - Opt Lett. 2015 Apr 1;40(7):1422-5
SSID ssj0005174
Score 2.6997743
Snippet The on-chip generation of high-dimensional frequency-entangled states and their spectral-domain manipulation are demonstrated, introducing a powerful and...
Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 622
SubjectTerms 639/624/400/482
639/766/400/3925
Bell's inequality
Coherence
Computer simulation
Dimensional measurement
Entangled states
Humanities and Social Sciences
letter
multidisciplinary
Optical data processing
Photonics
Photons
Quantum computing
Quantum mechanics
Quantum phenomena
Quantum theory
Qubits (quantum computing)
Robustness
Science
Superposition (mathematics)
Title On-chip generation of high-dimensional entangled quantum states and their coherent control
URI https://link.springer.com/article/10.1038/nature22986
https://www.ncbi.nlm.nih.gov/pubmed/28658228
https://www.proquest.com/docview/1920622007
https://www.proquest.com/docview/1914846871
Volume 546
WOSCitedRecordID wos000404332000041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQT
  databaseName: Nature
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: RNT
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.nature.com
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: P5Z
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agriculture Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M0K
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PCBAR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7S
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PATMY
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7X7
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: KB.
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7RV
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: BENPR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2M
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8C1
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2O
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSRegI2vwKiMNCRAMnPskNhPaJs2IY120RhTt5fIduxt0ki6peXvx3bdrqKIF15-UpJLYun8cfbd_Q5gi9fKOKvDB0lJhjNGLRamyHEh3OrLmNR5SKQ9_VYMBnw4FGU8cOtiWOVsTgwTdd1qf0a-7SwRklN_svZldIN91SjvXY0lNFZgzbMksBC6V96FePzBwhzz8wjj21PaTEqFT6JeXJGWzMwlF2lYeQ4e_2-bn8CjaHOinWknWYd7ptmAByH2U3cbsB7Hd4feRxLqD0_h_KjB-vJqhC7CLa8-1Frk2Y1x7SsCTNk8kA89by6uTY1uJk5Jk58opCh1SDY1Cl4IpNtLn1M4RjEs_hn8ONg_2fuKYx0GrJlIx9gWmZA2y5U2mmdO6YarWtU5U25ypJIqm3FBcpFqymxhnYkpUyJl7X2shAnFnsNq0zbmJSBmCuIk8lRblamsUEwRkwtZW5IpamkCH2e6qHQkKfe1Mq6r4CxnvFpQXAJbc-HRlJvj72KbM-1UcYB21Z1qEng7f-yGlveXyMa0Ey_j9opZ7raUCbyYdob5f3xCr7OteALvZr1j4ePLjXj170a8hofU2wskx1Rswur4dmLewH39a3zV3fZgpTg-9TgsAnKHfC_twdru_qA8dleHu58c9smhR9oPeBSw7IUxEfC7w_LzuXuv3Dnpn_0G7voPiA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAqKXQssrpYCRWgmQrCZ25MQHhBBQteqyIFSqikvws61Ukm2zW8Sf4jfiyWO7YhG3HrgmI8eOP4_Hnm9mADZyq12wOpAkpThNOfNUukzQTIbdl3NlRBNIezDIhsP88FB-WoBffSwM0ip7ndgoalsZvCPfCpZILBjerL0enVGsGoXe1b6ERguLPffzRziy1a9234X53WRs-_3-2x3aVRWghstkTH2WSuVToY0zeRqG4HJttRVch6XOFNM-zWUsZGIY95kPBpNKYqUsegxjLjUP7V6D60GPJ0ghyz4fXFJK_sj63MUDxjzfatN0MiYxaHt2B5wza-dcss1Ot337f_tHd2C5s6nJm3YRrMCCK1fhZsNtNfUqrHT6qybPuyTbL-7C148lNccnI3LUPEJ4ksoTzN5MLVY8aLOVEKTWl0enzpKzSQDh5DtpQrBqokpLGi8LMdUxxkyOSUf7vwdfrmS092GxrEr3EAh3WRwkRGK8TnWaaa5jJ6SyPk418yyCl_3cF6ZLwo61QE6LhgzA82IGKBFsTIVHbe6Rv4ut92goOgVUF5dQiODZ9HVQHegPUqWrJigTzsKpCEfmCB604Jt-BwOWg-2YR7DZo3Gm8flOrP27E0_h1s7-h0Ex2B3uPYIlhrZRLCiT67A4Pp-4x3DDXIxP6vMnzYoi8O2q4fkbXIViCQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAXoOUVKGCkVgIka7225cQHhFDLiqrV0gOgiktqO3ZbqSTbZhfEX-PX4cljWbGIWw9ck5FjO5_HY898MwCbWWF9tDowSMoIKgUPVPtU0VTH3VcI41RDpP28n47H2eGhPliBnz0XBsMqe53YKOqicnhHPoiWCFMcb9YGoQuLONgZvZmcU6wghZ7WvpxGC5E9_-N7PL7Vr3d34r_e4nz07uP2e9pVGKBO6OGUhlRqE6SyzrtMxuH4zBa2UMLGZc8Nt0Fmmik9dFyENETjyQyZMQV6D5nQVsR2r8DVVEQUI0t9eyG85I8M0B03kIls0Kbs5FwjgXtxN1wycZfcs82uN7r9P8_XHbjV2drkbbs41mDFl-twvYl5dfU6rHV6rSYvuuTbL-_Clw8ldSenE3LcPELYkioQzOpMC6yE0GYxIRhyXx6f-YKczyI4Z19JQ82qiSkL0nhfiKtOkEs5JR0d4B58upTR3ofVsir9QyDCpyxKqKELVlqZWmGZV9oUgUnLA0_gVY-D3HXJ2bFGyFneBAmILF8ATQKbc-FJm5Pk72IbPTLyTjHV-W9YJPB8_jqqFPQTmdJXM5SJZ2Sp4lE6gQctEOffQSJztCmzBLZ6ZC40vtyJR__uxDO4EVGZ7--O9x7DTY4mE1OU6w1YnV7M_BO45r5NT-uLp83iInB02ej8BaKcamQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-chip+generation+of+high-dimensional+entangled+quantum+states+and+their+coherent+control&rft.jtitle=Nature+%28London%29&rft.au=Kues%2C+Michael&rft.au=Reimer%2C+Christian&rft.au=Roztocki%2C+Piotr&rft.au=Cort%C3%A9s%2C+Luis+Romero&rft.date=2017-06-29&rft.eissn=1476-4687&rft.volume=546&rft.issue=7660&rft.spage=622&rft_id=info:doi/10.1038%2Fnature22986&rft_id=info%3Apmid%2F28658228&rft.externalDocID=28658228
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon