On-chip generation of high-dimensional entangled quantum states and their coherent control
The on-chip generation of high-dimensional frequency-entangled states and their spectral-domain manipulation are demonstrated, introducing a powerful and practical platform for quantum information processing. Entangled qudits for quick communications Qubits, the quantum version of bits, are construc...
Gespeichert in:
| Veröffentlicht in: | Nature (London) Jg. 546; H. 7660; S. 622 - 626 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
29.06.2017
Nature Publishing Group |
| Schlagworte: | |
| ISSN: | 0028-0836, 1476-4687, 1476-4687 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The on-chip generation of high-dimensional frequency-entangled states and their spectral-domain manipulation are demonstrated, introducing a powerful and practical platform for quantum information processing.
Entangled qudits for quick communications
Qubits, the quantum version of bits, are constructed from two-level quantum systems, but in principle a quantum information processor could exploit higher-dimensional quantum systems for operation. These systems with an arbitrary number of levels are often termed qudits and can be generated, for example, from photons. Using qudits instead of qubits can increase sensitivity in quantum imaging and can boost quantum communication schemes. Here, Michael Kues
et al
. generate two entangled qudits on an integrated photonic chip using a four-wave mixing process. Each qudit encodes a 10-dimensional state, enabling the realization of a quantum system with 100 dimensions. This technique could find application in fibre-based quantum communications.
Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science
1
. Specifically, the realization of high-dimensional states (
D
-level quantum systems, that is, qudits, with
D
> 2) and their control are necessary for fundamental investigations of quantum mechanics
2
, for increasing the sensitivity of quantum imaging schemes
3
, for improving the robustness and key rate of quantum communication protocols
4
, for enabling a richer variety of quantum simulations
5
, and for achieving more efficient and error-tolerant quantum computation
6
. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states
7
. However, so far, integrated entangled quantum sources have been limited to qubits (
D
= 2)
8
,
9
,
10
,
11
. Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with
D
= 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode. |
|---|---|
| AbstractList | Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of nonclassical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple highpurity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-ofthe- art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode. Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode. Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode. The on-chip generation of high-dimensional frequency-entangled states and their spectral-domain manipulation are demonstrated, introducing a powerful and practical platform for quantum information processing. Entangled qudits for quick communications Qubits, the quantum version of bits, are constructed from two-level quantum systems, but in principle a quantum information processor could exploit higher-dimensional quantum systems for operation. These systems with an arbitrary number of levels are often termed qudits and can be generated, for example, from photons. Using qudits instead of qubits can increase sensitivity in quantum imaging and can boost quantum communication schemes. Here, Michael Kues et al . generate two entangled qudits on an integrated photonic chip using a four-wave mixing process. Each qudit encodes a 10-dimensional state, enabling the realization of a quantum system with 100 dimensions. This technique could find application in fibre-based quantum communications. Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science 1 . Specifically, the realization of high-dimensional states ( D -level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics 2 , for increasing the sensitivity of quantum imaging schemes 3 , for improving the robustness and key rate of quantum communication protocols 4 , for enabling a richer variety of quantum simulations 5 , and for achieving more efficient and error-tolerant quantum computation 6 . Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states 7 . However, so far, integrated entangled quantum sources have been limited to qubits ( D = 2) 8 , 9 , 10 , 11 . Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode. |
| Author | Cortés, Luis Romero Cino, Alfonso Caspani, Lucia Zhang, Yanbing Little, Brent E. Reimer, Christian Wetzel, Benjamin Morandotti, Roberto Azaña, José Chu, Sai T. Roztocki, Piotr Sciara, Stefania Moss, David J. Kues, Michael |
| Author_xml | – sequence: 1 givenname: Michael surname: Kues fullname: Kues, Michael email: michael.kues@emt.inrs.ca organization: Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet, School of Engineering, University of Glasgow, Rankine Building – sequence: 2 givenname: Christian surname: Reimer fullname: Reimer, Christian organization: Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet – sequence: 3 givenname: Piotr surname: Roztocki fullname: Roztocki, Piotr organization: Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet – sequence: 4 givenname: Luis Romero surname: Cortés fullname: Cortés, Luis Romero organization: Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet – sequence: 5 givenname: Stefania surname: Sciara fullname: Sciara, Stefania organization: Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet, Department of Energy, Information Engineering and Mathematical Models, University of Palermo – sequence: 6 givenname: Benjamin surname: Wetzel fullname: Wetzel, Benjamin organization: Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet, School of Mathematical and Physical Sciences, University of Sussex – sequence: 7 givenname: Yanbing surname: Zhang fullname: Zhang, Yanbing organization: Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet – sequence: 8 givenname: Alfonso surname: Cino fullname: Cino, Alfonso organization: Department of Energy, Information Engineering and Mathematical Models, University of Palermo – sequence: 9 givenname: Sai T. surname: Chu fullname: Chu, Sai T. organization: Department of Physics and Material Science, City University of Hong Kong – sequence: 10 givenname: Brent E. surname: Little fullname: Little, Brent E. organization: State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science – sequence: 11 givenname: David J. surname: Moss fullname: Moss, David J. organization: Centre for Micro Photonics, Swinburne University of Technology – sequence: 12 givenname: Lucia surname: Caspani fullname: Caspani, Lucia organization: Department of Physics, Institute of Photonics, University of Strathclyde, Institute of Photonics and Quantum Sciences, Heriot-Watt University – sequence: 13 givenname: José surname: Azaña fullname: Azaña, José organization: Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet – sequence: 14 givenname: Roberto surname: Morandotti fullname: Morandotti, Roberto email: morandotti@emt.inrs.ca organization: Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécommunications (INRS-EMT) 1650 Boulevard Lionel-Boulet, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, National Research University of Information Technologies, Mechanics and Optics |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28658228$$D View this record in MEDLINE/PubMed |
| BookMark | eNpt0UFrFTEQB_AgFftaPXmXgBehrk6y-7LZoxSrQqEXvXhZZpPZtym7yWuSPfTbm-droZSeEsJvhsx_ztiJD54Yey_gi4Baf_WY10hSdlq9YhvRtKpqlG5P2AZA6gp0rU7ZWUq3ALAVbfOGnUqttlpKvWF_b3xlJrfnO_IUMbvgeRj55HZTZd1CPpUXnDn5jH43k-V3K_q8LjxlzJQ4esvzRC5yEyaKxZWLzzHMb9nrEedE7x7Oc_bn6vvvy5_V9c2PX5ffritTdyJXY9t0ODZqMGR0M5AhPdjBqnpAayXKYWx0B6oTRtZjO4otoABEC129hbob6nP26dh3H8PdSin3i0uG5hk9hTX1ohONPiQiCv34jN6GNZb5DkqCkhKgLerDg1qHhWy_j27BeN8_plaAOAITQ0qRxt64_D-7HNHNvYD-sJn-yWZKzcWzmse2L-vPR52K8juKTz76Av8H8iCgqA |
| CitedBy_id | crossref_primary_10_1002_qute_202300354 crossref_primary_10_1080_23746149_2023_2165452 crossref_primary_10_1088_2040_8986_ac2eab crossref_primary_10_1038_s41566_019_0532_1 crossref_primary_10_1002_lpor_202401687 crossref_primary_10_3390_mi13111925 crossref_primary_10_1116_1_5112027 crossref_primary_10_1186_s43593_022_00027_x crossref_primary_10_1038_s41566_021_00901_z crossref_primary_10_1038_s41534_021_00504_0 crossref_primary_10_1088_1361_6455_ab7556 crossref_primary_10_1088_1402_4896_adbe0b crossref_primary_10_1515_nanoph_2022_0134 crossref_primary_10_1038_s41377_024_01645_5 crossref_primary_10_1063_1_5018016 crossref_primary_10_1364_OE_552079 crossref_primary_10_1103_PhysRevResearch_7_023038 crossref_primary_10_1038_s41534_020_0260_x crossref_primary_10_1088_1674_1056_ac89e7 crossref_primary_10_1038_s41534_018_0121_z crossref_primary_10_1088_2040_8986_ada0c5 crossref_primary_10_1063_1_5045509 crossref_primary_10_1109_JSTQE_2023_3266662 crossref_primary_10_1063_5_0009361 crossref_primary_10_1038_s41566_019_0363_0 crossref_primary_10_1088_2040_8986_ac5476 crossref_primary_10_1103_rq78_1qbh crossref_primary_10_1126_science_aar7053 crossref_primary_10_1155_2023_5792902 crossref_primary_10_1038_s42005_023_01370_2 crossref_primary_10_1103_PhysRevLett_134_050601 crossref_primary_10_1038_s41534_025_01007_y crossref_primary_10_1109_JSTQE_2019_2899757 crossref_primary_10_1109_JSTQE_2018_2805814 crossref_primary_10_1103_PhysRevApplied_20_064032 crossref_primary_10_1109_JLT_2022_3214466 crossref_primary_10_1002_smll_201906563 crossref_primary_10_1038_s41377_022_01029_7 crossref_primary_10_1007_s12200_024_00133_3 crossref_primary_10_1109_JLT_2018_2880934 crossref_primary_10_1088_1361_6633_ab5005 crossref_primary_10_1002_smll_202311621 crossref_primary_10_3390_s23125749 crossref_primary_10_1103_PhysRevApplied_12_054054 crossref_primary_10_1103_PhysRevResearch_3_013235 crossref_primary_10_1103_PhysRevApplied_21_054058 crossref_primary_10_1515_nanoph_2024_0149 crossref_primary_10_1063_5_0181707 crossref_primary_10_1038_s41467_019_10810_z crossref_primary_10_1038_s41467_021_24693_6 crossref_primary_10_1038_s41534_019_0137_z crossref_primary_10_1364_PRJ_538355 crossref_primary_10_1063_5_0276410 crossref_primary_10_1088_1751_8121_ac3a32 crossref_primary_10_1109_JLT_2021_3059721 crossref_primary_10_1007_s11467_020_1010_4 crossref_primary_10_3390_e26100857 crossref_primary_10_1007_s12200_018_0814_0 crossref_primary_10_1007_s10699_021_09781_6 crossref_primary_10_1103_PhysRevResearch_2_033128 crossref_primary_10_1063_5_0056359 crossref_primary_10_1515_nanoph_2021_0789 crossref_primary_10_1038_s41377_024_01439_9 crossref_primary_10_1103_PhysRevApplied_17_034012 crossref_primary_10_3390_mi14020307 crossref_primary_10_1038_s41377_025_01856_4 crossref_primary_10_1088_1555_6611_ab85c9 crossref_primary_10_1103_PhysRevApplied_18_054025 crossref_primary_10_1103_PhysRevApplied_19_034058 crossref_primary_10_1038_s42005_021_00524_4 crossref_primary_10_1063_5_0261065 crossref_primary_10_1038_s41567_021_01302_3 crossref_primary_10_1364_PRJ_6_000B67 crossref_primary_10_1088_2040_8986_ab3d8b crossref_primary_10_1002_lpor_202300172 crossref_primary_10_1117_1_AP_2_3_034001 crossref_primary_10_1038_s41586_018_0551_y crossref_primary_10_1038_s41534_021_00398_y crossref_primary_10_1051_epjconf_202023801004 crossref_primary_10_1007_s11128_020_02855_7 crossref_primary_10_1103_PRXQuantum_5_040331 crossref_primary_10_1002_lpor_202000464 crossref_primary_10_1038_s41586_025_08899_y crossref_primary_10_1103_PhysRevApplied_19_064026 crossref_primary_10_1364_OL_562079 crossref_primary_10_1002_lpor_202401110 crossref_primary_10_1016_j_physleta_2018_04_007 crossref_primary_10_1515_nanoph_2021_0510 crossref_primary_10_3390_s23249767 crossref_primary_10_1038_s41467_024_45876_x crossref_primary_10_1002_qute_202300012 crossref_primary_10_1002_adma_202006415 crossref_primary_10_1109_JSTQE_2019_2960937 crossref_primary_10_3390_e27090963 crossref_primary_10_1364_PRJ_6_000B50 crossref_primary_10_1038_s41377_024_01696_8 crossref_primary_10_3389_aot_2025_1560084 crossref_primary_10_1002_qute_201900038 crossref_primary_10_1038_s42254_025_00825_5 crossref_primary_10_1080_23746149_2021_1905544 crossref_primary_10_1103_PRXQuantum_5_040321 crossref_primary_10_1134_S0040577924040032 crossref_primary_10_1186_s43593_024_00062_w crossref_primary_10_1088_2515_7647_ac1ef4 crossref_primary_10_1109_JLT_2020_3013445 crossref_primary_10_1103_PhysRevApplied_14_064071 crossref_primary_10_1515_nanoph_2018_0078 crossref_primary_10_1103_PRXQuantum_5_040329 crossref_primary_10_1002_qute_202300158 crossref_primary_10_1080_09500340_2019_1660814 crossref_primary_10_1088_1402_4896_ad848e crossref_primary_10_1002_qute_202000132 crossref_primary_10_1103_PRXQuantum_5_010101 crossref_primary_10_1038_s41567_018_0394_3 crossref_primary_10_1007_s41745_022_00336_7 crossref_primary_10_1080_23746149_2022_2067487 crossref_primary_10_1088_2632_2153_ad7457 crossref_primary_10_1016_j_newton_2025_100024 crossref_primary_10_1038_s41467_019_09429_x crossref_primary_10_1103_3x44_664w crossref_primary_10_1038_s41566_018_0317_y crossref_primary_10_1088_1361_6455_ac31c7 crossref_primary_10_1007_s42484_024_00146_3 crossref_primary_10_1002_lpor_202000128 crossref_primary_10_1103_PhysRevApplied_18_054006 crossref_primary_10_1103_PhysRevX_13_021028 crossref_primary_10_1088_1402_4896_acf740 crossref_primary_10_1126_science_aat9042 crossref_primary_10_3390_e24070963 crossref_primary_10_1038_s41566_023_01193_1 crossref_primary_10_1038_s41586_021_03999_x crossref_primary_10_1002_andp_202400360 crossref_primary_10_1002_lpor_202400166 crossref_primary_10_1016_j_orgel_2023_106858 crossref_primary_10_1364_OPTICAQ_545703 crossref_primary_10_4213_tmf10618 crossref_primary_10_1063_5_0177134 crossref_primary_10_1007_s11467_020_1028_7 crossref_primary_10_1088_1674_4926_42_4_041305 crossref_primary_10_1038_s41534_022_00531_5 crossref_primary_10_1364_JOSAB_36_001758 crossref_primary_10_1364_OL_567098 crossref_primary_10_1088_1674_4926_42_4_041302 crossref_primary_10_1002_lpor_202401023 crossref_primary_10_1038_s41467_019_09850_2 crossref_primary_10_1103_PhysRevApplied_17_034009 crossref_primary_10_1088_1674_1056_ac3507 crossref_primary_10_1364_PRJ_7_000019 crossref_primary_10_1007_s41683_023_00115_1 crossref_primary_10_1038_s41377_021_00537_2 crossref_primary_10_1038_s41566_024_01493_0 crossref_primary_10_1088_1367_2630_ac38cd crossref_primary_10_1038_s41534_019_0188_1 crossref_primary_10_1364_PRJ_384449 crossref_primary_10_22331_q_2025_04_18_1711 crossref_primary_10_1007_s11432_022_3602_0 crossref_primary_10_3390_e25020387 crossref_primary_10_1109_ACCESS_2020_2987333 crossref_primary_10_1364_OL_573688 crossref_primary_10_1515_nanoph_2024_0172 crossref_primary_10_1016_j_progsurf_2020_100584 crossref_primary_10_1002_qute_202400149 crossref_primary_10_1088_1751_8121_ab9aea crossref_primary_10_1002_lpor_202500973 crossref_primary_10_1002_lpor_202401395 crossref_primary_10_1088_2040_8986_ace4dc crossref_primary_10_1038_s41377_025_01781_6 crossref_primary_10_1364_PRJ_435837 crossref_primary_10_1103_PhysRevApplied_19_034019 crossref_primary_10_1088_1742_6596_1124_5_051047 crossref_primary_10_1364_PRJ_483570 crossref_primary_10_1007_s11082_018_1609_7 crossref_primary_10_1038_s41578_024_00668_z crossref_primary_10_1038_s44172_023_00135_7 crossref_primary_10_1063_5_0192602 crossref_primary_10_1002_qute_201900074 crossref_primary_10_7566_JPSJ_90_114002 crossref_primary_10_1038_s41534_019_0237_9 crossref_primary_10_1109_JPHOT_2025_3550712 crossref_primary_10_1007_s11433_022_2072_4 crossref_primary_10_1063_1_5115814 crossref_primary_10_1117_1_AP_6_3_036003 crossref_primary_10_1002_lpor_202100467 crossref_primary_10_1002_adom_202001048 crossref_primary_10_1063_1_5144119 crossref_primary_10_1002_qute_202500370 crossref_primary_10_1103_PhysRevApplied_18_024059 crossref_primary_10_1140_epjqt_s40507_024_00250_0 crossref_primary_10_1038_s41534_020_00310_0 crossref_primary_10_1039_D4TC05290K crossref_primary_10_3390_e24010006 crossref_primary_10_1038_s41534_024_00837_6 crossref_primary_10_1515_nanoph_2020_0593 crossref_primary_10_1088_1674_1056_acf205 crossref_primary_10_1002_andp_202400144 crossref_primary_10_1038_s42005_024_01558_0 crossref_primary_10_1038_s41598_024_63627_2 crossref_primary_10_1038_s41467_021_25054_z crossref_primary_10_1038_s41534_021_00388_0 crossref_primary_10_1186_s43593_024_00066_6 crossref_primary_10_1103_PhysRevX_15_011024 crossref_primary_10_1515_nanoph_2024_0550 crossref_primary_10_1007_s11432_019_2662_x crossref_primary_10_1088_2632_2153_ad0100 crossref_primary_10_1063_5_0088592 crossref_primary_10_1088_2058_9565_ab3f59 crossref_primary_10_1103_PRXQuantum_5_020346 crossref_primary_10_1002_qute_202100068 crossref_primary_10_1038_s41467_022_35773_6 crossref_primary_10_1103_PhysRevApplied_17_024062 crossref_primary_10_29026_oes_2025_250006 crossref_primary_10_1038_s41534_018_0101_3 crossref_primary_10_1126_science_aan8083 crossref_primary_10_1103_PhysRevA_111_043711 crossref_primary_10_1038_s41467_025_58711_8 crossref_primary_10_1088_1367_2630_ac8a67 crossref_primary_10_1063_5_0030258 crossref_primary_10_1103_PhysRevApplied_18_034028 crossref_primary_10_1103_PhysRevResearch_4_023045 crossref_primary_10_1038_s41467_022_31639_z crossref_primary_10_1088_1751_8121_acbace crossref_primary_10_1080_09500340_2022_2073613 crossref_primary_10_1038_s41598_022_12691_7 crossref_primary_10_1038_s41566_019_0379_5 crossref_primary_10_1038_546602a crossref_primary_10_1063_5_0174697 crossref_primary_10_1088_1555_6611_adf837 crossref_primary_10_1002_lpor_201900176 crossref_primary_10_1016_j_cpc_2023_109017 crossref_primary_10_1103_PhysRevResearch_3_013199 crossref_primary_10_1103_RevModPhys_97_021003 crossref_primary_10_1038_s41467_022_28702_0 crossref_primary_10_1088_2058_9565_ad37d4 crossref_primary_10_1109_LPT_2019_2944564 crossref_primary_10_1038_s41534_023_00725_5 crossref_primary_10_1038_s41567_018_0347_x crossref_primary_10_1063_5_0069383 crossref_primary_10_1103_PhysRevResearch_2_023050 crossref_primary_10_1088_2058_9565_adac06 crossref_primary_10_1063_1_5028339 crossref_primary_10_1002_adom_201901526 crossref_primary_10_1038_s41534_021_00462_7 crossref_primary_10_1088_1572_9494_ad48fb crossref_primary_10_1038_s41467_023_43949_x crossref_primary_10_1080_23746149_2020_1838946 crossref_primary_10_1364_PRJ_435521 crossref_primary_10_1016_j_physleta_2022_128059 crossref_primary_10_1103_PhysRevX_14_041058 crossref_primary_10_1038_s41467_020_15625_x crossref_primary_10_1038_s41567_018_0203_z crossref_primary_10_1088_2058_9565_aa97b6 crossref_primary_10_1140_epjp_s13360_022_02936_9 crossref_primary_10_3390_quantum7020019 crossref_primary_10_1007_s40766_023_00040_x crossref_primary_10_1088_1612_202X_adc552 crossref_primary_10_1364_OPTICAQ_560373 crossref_primary_10_1063_5_0229124 crossref_primary_10_1140_epjqt_s40507_022_00122_5 crossref_primary_10_1109_LPT_2019_2911876 crossref_primary_10_1038_s41570_022_00458_7 crossref_primary_10_1109_LPT_2019_2942136 crossref_primary_10_1002_qute_202400229 crossref_primary_10_1109_JLT_2020_2997699 crossref_primary_10_3390_e26121129 crossref_primary_10_1002_lpor_202200512 crossref_primary_10_1088_2058_9565_ad7315 crossref_primary_10_1103_PhysRevResearch_2_022057 crossref_primary_10_1016_j_pquantelec_2022_100437 crossref_primary_10_1109_JLT_2025_3552182 crossref_primary_10_1109_TQE_2021_3050848 crossref_primary_10_1088_1367_2630_acae3c crossref_primary_10_1103_9dxw_4c7y crossref_primary_10_1109_JSTQE_2024_3402679 crossref_primary_10_1038_s41534_021_00393_3 crossref_primary_10_1002_andp_202000254 crossref_primary_10_1063_5_0261470 crossref_primary_10_1109_TCYB_2025_3595007 crossref_primary_10_1063_5_0089313 crossref_primary_10_1007_s11467_023_1357_4 crossref_primary_10_1063_5_0253731 crossref_primary_10_1038_s41598_017_19078_z crossref_primary_10_37188_lam_2023_039 crossref_primary_10_1038_s41534_019_0205_4 crossref_primary_10_1103_PhysRevA_111_042433 crossref_primary_10_1109_LPT_2022_3209965 crossref_primary_10_1088_2040_8986_ac3a9d crossref_primary_10_1016_j_yofte_2021_102689 crossref_primary_10_1088_1367_2630_ab09a7 crossref_primary_10_1103_PhysRevApplied_14_024027 crossref_primary_10_1007_s11128_019_2327_1 crossref_primary_10_1073_pnas_2011405117 crossref_primary_10_1364_AOP_533504 crossref_primary_10_3788_COL202422_111302 crossref_primary_10_1038_s41467_022_33132_z crossref_primary_10_1109_JLT_2018_2819172 crossref_primary_10_1186_s43593_024_00071_9 crossref_primary_10_1103_PhysRevLett_128_213605 crossref_primary_10_1002_adpr_202300343 crossref_primary_10_1016_j_nuclphysb_2019_114914 crossref_primary_10_1103_PhysRevA_104_022411 crossref_primary_10_1002_lpor_202000524 crossref_primary_10_1038_s41467_023_39003_5 crossref_primary_10_1063_5_0250593 crossref_primary_10_3390_e21090870 crossref_primary_10_1063_5_0232085 crossref_primary_10_1002_andp_201900337 crossref_primary_10_1038_s42005_023_01372_0 crossref_primary_10_1063_1_5131683 crossref_primary_10_1002_qute_201900011 crossref_primary_10_1016_j_neunet_2021_01_003 crossref_primary_10_1038_s41467_023_37472_2 crossref_primary_10_1109_JPHOT_2024_3383780 crossref_primary_10_3390_photonics12070661 crossref_primary_10_1038_s41534_020_00327_5 crossref_primary_10_1088_1612_202X_ace9cd crossref_primary_10_1515_nanoph_2024_0585 crossref_primary_10_1002_qute_201900017 crossref_primary_10_1038_s41377_020_0290_3 crossref_primary_10_1088_1361_6455_ab1303 crossref_primary_10_4028_www_scientific_net_AMM_879_178 crossref_primary_10_1007_s11433_022_1936_5 crossref_primary_10_1038_s41586_022_04957_x crossref_primary_10_1007_s40820_022_00957_8 crossref_primary_10_3390_e24101334 crossref_primary_10_1002_lpor_202200388 crossref_primary_10_3390_math12223541 crossref_primary_10_3390_quantum7030035 crossref_primary_10_1007_s10773_021_04886_x crossref_primary_10_1002_lpor_202201010 crossref_primary_10_1038_s42005_018_0051_2 crossref_primary_10_1103_nzrc_8yrt crossref_primary_10_1007_s43673_023_00082_7 crossref_primary_10_1038_s44310_025_00060_x crossref_primary_10_1038_s41467_024_55345_0 crossref_primary_10_1088_1402_4896_ad69d9 crossref_primary_10_1038_s41467_020_16265_x crossref_primary_10_1088_1555_6611_aae279 crossref_primary_10_1088_2040_8986_acfbe9 crossref_primary_10_1109_JLT_2022_3192759 crossref_primary_10_1063_5_0011077 crossref_primary_10_1007_s11433_022_1926_0 crossref_primary_10_1002_admt_202000963 crossref_primary_10_1038_s41467_024_51434_2 crossref_primary_10_1007_s11128_022_03713_4 crossref_primary_10_1038_s41566_023_01257_2 crossref_primary_10_1038_s41467_018_08099_5 crossref_primary_10_1088_1612_202X_adf03e crossref_primary_10_1088_2040_8986_aa912a crossref_primary_10_1007_s11433_024_2414_0 crossref_primary_10_1103_PhysRevApplied_11_064058 crossref_primary_10_1103_PhysRevResearch_6_L012043 crossref_primary_10_1002_qute_202000063 crossref_primary_10_1109_JSTQE_2022_3224812 crossref_primary_10_1109_JPHOT_2019_2922282 crossref_primary_10_1038_s41534_019_0173_8 |
| Cites_doi | 10.1038/srep02314 10.1364/OL.40.001422 10.1364/OPTICA.3.001171 10.1103/PhysRevA.82.013804 10.1080/00107514.2013.878554 10.1103/PhysRevLett.86.5188 10.1016/j.procs.2011.12.018 10.1038/35059017 10.1103/PhysRevA.66.012303 10.1364/OE.20.016145 10.1038/nphys1150 10.1038/ncomms2838 10.1103/PhysRevLett.94.073601 10.1038/ncomms8948 10.1364/OPTICA.2.000724 10.1126/sciadv.1501165 10.1103/PhysRevLett.88.040404 10.1364/OL.35.003006 10.1103/PhysRevLett.84.5304 10.1126/science.aad8532 10.1038/nnano.2010.6 10.1109/JQE.2008.2002673 10.1364/JOSAB.27.00A119 10.1103/PhysRevLett.92.210403 10.1126/science.1160627 10.1103/PhysRevA.68.062303 10.1002/lpor.201100010 10.1126/science.1173440 10.1103/PhysRevLett.98.060503 10.1126/science.1107451 10.1038/srep00817 10.1103/PhysRevA.64.052312 10.1088/1367-2630/13/3/033027 10.1038/nphys1996 10.1038/nphoton.2016.228 10.1016/j.revip.2016.11.003 10.1364/OPTICA.4.000008 10.1364/OE.21.029186 10.1038/35051009 10.1364/OPTICA.2.000088 10.1103/PhysRevA.88.032322 10.1038/nphoton.2010.190 10.1364/CLEO_AT.2017.JTh5B.3 |
| ContentType | Journal Article |
| Copyright | Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017 Copyright Nature Publishing Group Jun 29, 2017 |
| Copyright_xml | – notice: Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017 – notice: Copyright Nature Publishing Group Jun 29, 2017 |
| DBID | AAYXX CITATION NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
| DOI | 10.1038/nature22986 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni) Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Agricultural Science Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PATMY name: Environmental Science Database url: http://search.proquest.com/environmentalscience sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 1476-4687 |
| EndPage | 626 |
| ExternalDocumentID | 28658228 10_1038_nature22986 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EJD EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ABUFD ACSTC ADXHL AETEA AFANA AFFHD AGSTI ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB TUS NPM 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 PUEGO |
| ID | FETCH-LOGICAL-c391t-f749af46bcec84bece8bdbd63badd2a2bf4890691c23f7f150a10aad0935039b3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 650 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404332000041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-0836 1476-4687 |
| IngestDate | Tue Sep 30 23:51:00 EDT 2025 Sat Nov 29 14:34:08 EST 2025 Wed Feb 19 02:01:26 EST 2025 Tue Nov 18 21:20:22 EST 2025 Sat Nov 29 02:12:24 EST 2025 Fri Feb 21 02:37:02 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7660 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c391t-f749af46bcec84bece8bdbd63badd2a2bf4890691c23f7f150a10aad0935039b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://ir.opt.ac.cn/handle/181661/29087 |
| PMID | 28658228 |
| PQID | 1920622007 |
| PQPubID | 40569 |
| PageCount | 5 |
| ParticipantIDs | proquest_miscellaneous_1914846871 proquest_journals_1920622007 pubmed_primary_28658228 crossref_citationtrail_10_1038_nature22986 crossref_primary_10_1038_nature22986 springer_journals_10_1038_nature22986 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-06-29 |
| PublicationDateYYYYMMDD | 2017-06-29 |
| PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-29 day: 29 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | International weekly journal of science |
| PublicationTitle | Nature (London) |
| PublicationTitleAbbrev | Nature |
| PublicationTitleAlternate | Nature |
| PublicationYear | 2017 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Christ, Laiho, Eckstein, Cassemiro, Silberhorn (CR40) 2011; 13 Law, Walmsley, Eberly (CR38) 2000; 84 Zhou, Zeng, Xu, Sun (CR26) 2003; 68 Förtsch (CR41) 2013; 4 Thew, Nemoto, White, Munro (CR44) 2002; 66 Horn (CR9) 2013; 3 Ali-Khan, Broadbent, Howell (CR4) 2007; 98 Zhang (CR16) 2016; 2 Ishizawa (CR34) 2013; 21 Xuan (CR35) 2016; 3 Karpiński, Jachura, Wright, Smith (CR33) 2017; 11 CR12 Helt, Yang, Liscidini, Sipe (CR42) 2010; 35 Dada, Leach, Buller, Padgett, Andersson (CR18) 2011; 7 CR32 Grassani (CR15) 2015; 2 Raussendorf, Briegel (CR27) 2001; 86 Neeley (CR5) 2009; 325 Lukens, Lougovski (CR30) 2017; 4 Schaeff (CR20) 2012; 20 Bernhard, Bessire, Feurer, Stefanov (CR24) 2013; 88 James, Kwiat, Munro, White (CR43) 2001; 64 Solntsev, Sukhorukov (CR14) 2016; 2 Barreiro, Meschede, Polzik, Arimondo, Lugiato (CR29) 2011; 7 Collins, Gisin, Linden, Massar, Popescu (CR2) 2002; 88 Babinec (CR13) 2010; 5 Thew, Acin, Zbinden, Gisin (CR21) 2004; 4 Pe’er, Dayan, Friesem, Silberberg (CR23) 2005; 94 Matsuda (CR8) 2012; 2 Olislager (CR22) 2010; 82 Capmany, Fernández-Pousa (CR37) 2010; 27 Tanzilli (CR7) 2012; 6 Reimer (CR17) 2016; 351 CR45 Xiong (CR11) 2015; 2 Walmsley, Raymer (CR25) 2005; 307 Kumar, Prabhakar (CR36) 2009; 45 Knill, Laflamme, Milburn (CR1) 2001; 409 Lloyd (CR3) 2008; 321 Howell, Bennink, Bentley, Boyd (CR19) 2004; 92 Lanyon (CR6) 2009; 5 Finot (CR28) 2015; 40 Kwiat, Barraza-Lopez, Stefanov, Gisin (CR31) 2001; 409 Silverstone (CR10) 2015; 6 Fedorov, Miklin (CR39) 2014; 55 R Raussendorf (BFnature22986_CR27) 2001; 86 AC Dada (BFnature22986_CR18) 2011; 7 C Finot (BFnature22986_CR28) 2015; 40 MV Fedorov (BFnature22986_CR39) 2014; 55 S Tanzilli (BFnature22986_CR7) 2012; 6 JT Barreiro (BFnature22986_CR29) 2011; 7 J Capmany (BFnature22986_CR37) 2010; 27 JW Silverstone (BFnature22986_CR10) 2015; 6 R Thew (BFnature22986_CR21) 2004; 4 CK Law (BFnature22986_CR38) 2000; 84 RT Horn (BFnature22986_CR9) 2013; 3 I Ali-Khan (BFnature22986_CR4) 2007; 98 S Lloyd (BFnature22986_CR3) 2008; 321 BFnature22986_CR32 BFnature22986_CR12 P Kumar (BFnature22986_CR36) 2009; 45 M Karpiński (BFnature22986_CR33) 2017; 11 D Collins (BFnature22986_CR2) 2002; 88 C Schaeff (BFnature22986_CR20) 2012; 20 A Pe’er (BFnature22986_CR23) 2005; 94 TM Babinec (BFnature22986_CR13) 2010; 5 D Zhou (BFnature22986_CR26) 2003; 68 Y Xuan (BFnature22986_CR35) 2016; 3 RT Thew (BFnature22986_CR44) 2002; 66 LG Helt (BFnature22986_CR42) 2010; 35 JM Lukens (BFnature22986_CR30) 2017; 4 IA Walmsley (BFnature22986_CR25) 2005; 307 PG Kwiat (BFnature22986_CR31) 2001; 409 M Neeley (BFnature22986_CR5) 2009; 325 A Christ (BFnature22986_CR40) 2011; 13 Y Zhang (BFnature22986_CR16) 2016; 2 E Knill (BFnature22986_CR1) 2001; 409 D Grassani (BFnature22986_CR15) 2015; 2 C Bernhard (BFnature22986_CR24) 2013; 88 C Xiong (BFnature22986_CR11) 2015; 2 L Olislager (BFnature22986_CR22) 2010; 82 A Ishizawa (BFnature22986_CR34) 2013; 21 M Förtsch (BFnature22986_CR41) 2013; 4 N Matsuda (BFnature22986_CR8) 2012; 2 JC Howell (BFnature22986_CR19) 2004; 92 AS Solntsev (BFnature22986_CR14) 2016; 2 BFnature22986_CR45 DFV James (BFnature22986_CR43) 2001; 64 C Reimer (BFnature22986_CR17) 2016; 351 BP Lanyon (BFnature22986_CR6) 2009; 5 24514470 - Opt Express. 2013 Dec 2;21(24):29186-94 20154687 - Nat Nanotechnol. 2010 Mar;5(3):195-9 23652006 - Nat Commun. 2013;4:1818 23896982 - Sci Rep. 2013;3:2314 18787162 - Science. 2008 Sep 12;321(5895):1463-5 17358925 - Phys Rev Lett. 2007 Feb 9;98(6):060503 15774749 - Science. 2005 Mar 18;307(5716):1733-4 26245267 - Nat Commun. 2015 Aug 06;6:7948 11801097 - Phys Rev Lett. 2002 Jan 28;88(4):040404 11384453 - Phys Rev Lett. 2001 May 28;86(22):5188-91 25831348 - Opt Lett. 2015 Apr 1;40(7):1422-5 28658224 - Nature. 2017 Jun 28;546(7660):602-603 19661423 - Science. 2009 Aug 7;325(5941):722-5 10990929 - Phys Rev Lett. 2000 Jun 5;84(23):5304-7 26965623 - Science. 2016 Mar 11;351(6278):1176-80 11343107 - Nature. 2001 Jan 4;409(6816):46-52 11234004 - Nature. 2001 Feb 22;409(6823):1014-7 20847760 - Opt Lett. 2010 Sep 15;35(18):3006-8 15245267 - Phys Rev Lett. 2004 May 28;92(21):210403 15783815 - Phys Rev Lett. 2005 Feb 25;94(7):073601 23150781 - Sci Rep. 2012;2:817 26933685 - Sci Adv. 2016 Feb 26;2(2):e1501165 |
| References_xml | – ident: CR45 – volume: 3 start-page: 2314 year: 2013 ident: CR9 article-title: Inherent polarization entanglement generated from a monolithic semiconductor chip publication-title: Sci. Rep. doi: 10.1038/srep02314 – volume: 40 start-page: 1422 year: 2015 end-page: 1425 ident: CR28 article-title: Photonic waveform generator by linear shaping of four spectral sidebands publication-title: Opt. Lett. doi: 10.1364/OL.40.001422 – volume: 3 start-page: 1171 year: 2016 end-page: 1180 ident: CR35 article-title: High- silicon nitride microresonators exhibiting low-power frequency comb initiation publication-title: Optica doi: 10.1364/OPTICA.3.001171 – volume: 82 start-page: 013804 year: 2010 ident: CR22 article-title: Frequency-bin entangled photons publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.013804 – ident: CR12 – volume: 55 start-page: 94 year: 2014 end-page: 109 ident: CR39 article-title: Schmidt modes and entanglement publication-title: Contemp. Phys. doi: 10.1080/00107514.2013.878554 – volume: 86 start-page: 5188 year: 2001 end-page: 5191 ident: CR27 article-title: A one-way quantum computer publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.5188 – volume: 7 start-page: 52 year: 2011 end-page: 55 ident: CR29 article-title: Atoms, photons and entanglement for quantum information technologies publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2011.12.018 – volume: 409 start-page: 1014 year: 2001 end-page: 1017 ident: CR31 article-title: Experimental entanglement distillation and ‘hidden’ non-locality publication-title: Nature doi: 10.1038/35059017 – volume: 66 start-page: 012303 year: 2002 ident: CR44 article-title: Qudit quantum-state tomography publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.66.012303 – volume: 4 start-page: 93 year: 2004 ident: CR21 article-title: Experimental realization of entangled qutrits for quantum communication publication-title: Quantum Inf. Comput. – volume: 20 start-page: 16145 year: 2012 ident: CR20 article-title: Scalable fiber integrated source for higher-dimensional path-entangled photonic quNits publication-title: Opt. Express doi: 10.1364/OE.20.016145 – volume: 5 start-page: 134 year: 2009 end-page: 140 ident: CR6 article-title: Simplifying quantum logic using higher-dimensional Hilbert spaces publication-title: Nat. Phys. doi: 10.1038/nphys1150 – volume: 4 start-page: 1818 year: 2013 ident: CR41 article-title: A versatile source of single photons for quantum information processing publication-title: Nat. Commun. doi: 10.1038/ncomms2838 – volume: 94 start-page: 073601 year: 2005 ident: CR23 article-title: Temporal shaping of entangled photons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.073601 – volume: 6 start-page: 7948 year: 2015 ident: CR10 article-title: Qubit entanglement between ring-resonator photon-pair sources on a silicon chip publication-title: Nat. Commun. doi: 10.1038/ncomms8948 – volume: 2 start-page: 724 year: 2015 end-page: 727 ident: CR11 article-title: Compact and reconfigurable silicon nitride time-bin entanglement circuit publication-title: Optica doi: 10.1364/OPTICA.2.000724 – volume: 2 start-page: e1501165 year: 2016 ident: CR16 article-title: Engineering two-photon high-dimensional states through quantum interference publication-title: Sci. Adv. doi: 10.1126/sciadv.1501165 – volume: 88 start-page: 040404 year: 2002 ident: CR2 article-title: Bell inequalities for arbitrarily high-dimensional systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.040404 – volume: 35 start-page: 3006 year: 2010 end-page: 3008 ident: CR42 article-title: Spontaneous four-wave mixing in microring resonators publication-title: Opt. Lett. doi: 10.1364/OL.35.003006 – volume: 84 start-page: 5304 year: 2000 end-page: 5307 ident: CR38 article-title: Continuous frequency entanglement: effective finite Hilbert space and entropy control publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.5304 – volume: 351 start-page: 1176 year: 2016 end-page: 1180 ident: CR17 article-title: Generation of multiphoton entangled quantum states by means of integrated frequency combs publication-title: Science doi: 10.1126/science.aad8532 – volume: 5 start-page: 195 year: 2010 end-page: 199 ident: CR13 article-title: A diamond nanowire single-photon source publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.6 – volume: 45 start-page: 149 year: 2009 end-page: 156 ident: CR36 article-title: Evolution of quantum states in an electro-optic phase modulator publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.2008.2002673 – volume: 27 start-page: A119 year: 2010 end-page: A129 ident: CR37 article-title: Quantum model for electro-optical phase modulation publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.27.00A119 – volume: 92 start-page: 210403 year: 2004 ident: CR19 article-title: Realization of the Einstein-Podolsky-Rosen paradox using momentum and position-entangled photons from spontaneous parametric down conversion publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.210403 – volume: 321 start-page: 1463 year: 2008 end-page: 1465 ident: CR3 article-title: Enhanced sensitivity of photodetection via quantum illumination publication-title: Science doi: 10.1126/science.1160627 – volume: 68 start-page: 062303 year: 2003 ident: CR26 article-title: Quantum computation based on -level cluster state publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.68.062303 – volume: 6 start-page: 115 year: 2012 end-page: 143 ident: CR7 article-title: On the genesis and evolution of integrated quantum optics publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201100010 – volume: 325 start-page: 722 year: 2009 end-page: 725 ident: CR5 article-title: Emulation of a quantum spin with a superconducting phase qudit publication-title: Science doi: 10.1126/science.1173440 – ident: CR32 – volume: 98 start-page: 060503 year: 2007 ident: CR4 article-title: Large-alphabet quantum key distribution using energy-time entangled bipartite states publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.060503 – volume: 307 start-page: 1733 year: 2005 end-page: 1734 ident: CR25 article-title: Toward quantum-information processing with photons publication-title: Science doi: 10.1126/science.1107451 – volume: 2 start-page: 817 year: 2012 ident: CR8 article-title: A monolithically integrated polarization entangled photon pair source on a silicon chip publication-title: Sci. Rep. doi: 10.1038/srep00817 – volume: 64 start-page: 052312 year: 2001 ident: CR43 article-title: Measurement of qubits publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.64.052312 – volume: 13 start-page: 033027 year: 2011 ident: CR40 article-title: Probing multimode squeezing with correlation functions publication-title: New J. Phys. doi: 10.1088/1367-2630/13/3/033027 – volume: 7 start-page: 677 year: 2011 end-page: 680 ident: CR18 article-title: Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities publication-title: Nat. Phys. doi: 10.1038/nphys1996 – volume: 11 start-page: 53 year: 2017 end-page: 57 ident: CR33 article-title: Bandwidth manipulation of quantum light by an electro-optic time lens publication-title: Nat. Photon. doi: 10.1038/nphoton.2016.228 – volume: 2 start-page: 19 year: 2016 end-page: 31 ident: CR14 article-title: Path-entangled photon sources on nonlinear chips publication-title: Rev. Phys. doi: 10.1016/j.revip.2016.11.003 – volume: 4 start-page: 8 year: 2017 end-page: 16 ident: CR30 article-title: Frequency-encoded photonic qubits for scalable quantum information processing publication-title: Optica doi: 10.1364/OPTICA.4.000008 – volume: 21 start-page: 29186 year: 2013 end-page: 29194 ident: CR34 article-title: Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser publication-title: Opt. Express doi: 10.1364/OE.21.029186 – volume: 409 start-page: 46 year: 2001 end-page: 52 ident: CR1 article-title: A scheme for efficient quantum computation with linear optics publication-title: Nature doi: 10.1038/35051009 – volume: 2 start-page: 88 year: 2015 end-page: 94 ident: CR15 article-title: Micrometer-scale integrated silicon source of time-energy entangled photons publication-title: Optica doi: 10.1364/OPTICA.2.000088 – volume: 88 start-page: 032322 year: 2013 ident: CR24 article-title: Shaping frequency-entangled qudits publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.032322 – volume: 3 start-page: 1171 year: 2016 ident: BFnature22986_CR35 publication-title: Optica doi: 10.1364/OPTICA.3.001171 – volume: 4 start-page: 1818 year: 2013 ident: BFnature22986_CR41 publication-title: Nat. Commun. doi: 10.1038/ncomms2838 – volume: 325 start-page: 722 year: 2009 ident: BFnature22986_CR5 publication-title: Science doi: 10.1126/science.1173440 – volume: 2 start-page: 724 year: 2015 ident: BFnature22986_CR11 publication-title: Optica doi: 10.1364/OPTICA.2.000724 – volume: 20 start-page: 16145 year: 2012 ident: BFnature22986_CR20 publication-title: Opt. Express doi: 10.1364/OE.20.016145 – ident: BFnature22986_CR12 doi: 10.1038/nphoton.2010.190 – ident: BFnature22986_CR45 doi: 10.1364/CLEO_AT.2017.JTh5B.3 – volume: 68 start-page: 062303 year: 2003 ident: BFnature22986_CR26 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.68.062303 – volume: 35 start-page: 3006 year: 2010 ident: BFnature22986_CR42 publication-title: Opt. Lett. doi: 10.1364/OL.35.003006 – volume: 64 start-page: 052312 year: 2001 ident: BFnature22986_CR43 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.64.052312 – volume: 55 start-page: 94 year: 2014 ident: BFnature22986_CR39 publication-title: Contemp. Phys. doi: 10.1080/00107514.2013.878554 – volume: 98 start-page: 060503 year: 2007 ident: BFnature22986_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.060503 – ident: BFnature22986_CR32 – volume: 4 start-page: 93 year: 2004 ident: BFnature22986_CR21 publication-title: Quantum Inf. Comput. – volume: 6 start-page: 115 year: 2012 ident: BFnature22986_CR7 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201100010 – volume: 45 start-page: 149 year: 2009 ident: BFnature22986_CR36 publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.2008.2002673 – volume: 2 start-page: 88 year: 2015 ident: BFnature22986_CR15 publication-title: Optica doi: 10.1364/OPTICA.2.000088 – volume: 92 start-page: 210403 year: 2004 ident: BFnature22986_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.210403 – volume: 5 start-page: 195 year: 2010 ident: BFnature22986_CR13 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.6 – volume: 7 start-page: 677 year: 2011 ident: BFnature22986_CR18 publication-title: Nat. Phys. doi: 10.1038/nphys1996 – volume: 351 start-page: 1176 year: 2016 ident: BFnature22986_CR17 publication-title: Science doi: 10.1126/science.aad8532 – volume: 40 start-page: 1422 year: 2015 ident: BFnature22986_CR28 publication-title: Opt. Lett. doi: 10.1364/OL.40.001422 – volume: 66 start-page: 012303 year: 2002 ident: BFnature22986_CR44 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.66.012303 – volume: 7 start-page: 52 year: 2011 ident: BFnature22986_CR29 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2011.12.018 – volume: 27 start-page: A119 year: 2010 ident: BFnature22986_CR37 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.27.00A119 – volume: 4 start-page: 8 year: 2017 ident: BFnature22986_CR30 publication-title: Optica doi: 10.1364/OPTICA.4.000008 – volume: 6 start-page: 7948 year: 2015 ident: BFnature22986_CR10 publication-title: Nat. Commun. doi: 10.1038/ncomms8948 – volume: 2 start-page: 19 year: 2016 ident: BFnature22986_CR14 publication-title: Rev. Phys. doi: 10.1016/j.revip.2016.11.003 – volume: 13 start-page: 033027 year: 2011 ident: BFnature22986_CR40 publication-title: New J. Phys. doi: 10.1088/1367-2630/13/3/033027 – volume: 88 start-page: 040404 year: 2002 ident: BFnature22986_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.040404 – volume: 409 start-page: 1014 year: 2001 ident: BFnature22986_CR31 publication-title: Nature doi: 10.1038/35059017 – volume: 21 start-page: 29186 year: 2013 ident: BFnature22986_CR34 publication-title: Opt. Express doi: 10.1364/OE.21.029186 – volume: 86 start-page: 5188 year: 2001 ident: BFnature22986_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.5188 – volume: 2 start-page: e1501165 year: 2016 ident: BFnature22986_CR16 publication-title: Sci. Adv. doi: 10.1126/sciadv.1501165 – volume: 11 start-page: 53 year: 2017 ident: BFnature22986_CR33 publication-title: Nat. Photon. doi: 10.1038/nphoton.2016.228 – volume: 84 start-page: 5304 year: 2000 ident: BFnature22986_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.5304 – volume: 94 start-page: 073601 year: 2005 ident: BFnature22986_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.073601 – volume: 409 start-page: 46 year: 2001 ident: BFnature22986_CR1 publication-title: Nature doi: 10.1038/35051009 – volume: 321 start-page: 1463 year: 2008 ident: BFnature22986_CR3 publication-title: Science doi: 10.1126/science.1160627 – volume: 88 start-page: 032322 year: 2013 ident: BFnature22986_CR24 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.032322 – volume: 82 start-page: 013804 year: 2010 ident: BFnature22986_CR22 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.013804 – volume: 5 start-page: 134 year: 2009 ident: BFnature22986_CR6 publication-title: Nat. Phys. doi: 10.1038/nphys1150 – volume: 3 start-page: 2314 year: 2013 ident: BFnature22986_CR9 publication-title: Sci. Rep. doi: 10.1038/srep02314 – volume: 2 start-page: 817 year: 2012 ident: BFnature22986_CR8 publication-title: Sci. Rep. doi: 10.1038/srep00817 – volume: 307 start-page: 1733 year: 2005 ident: BFnature22986_CR25 publication-title: Science doi: 10.1126/science.1107451 – reference: 15245267 - Phys Rev Lett. 2004 May 28;92(21):210403 – reference: 11234004 - Nature. 2001 Feb 22;409(6823):1014-7 – reference: 24514470 - Opt Express. 2013 Dec 2;21(24):29186-94 – reference: 15783815 - Phys Rev Lett. 2005 Feb 25;94(7):073601 – reference: 26245267 - Nat Commun. 2015 Aug 06;6:7948 – reference: 11343107 - Nature. 2001 Jan 4;409(6816):46-52 – reference: 10990929 - Phys Rev Lett. 2000 Jun 5;84(23):5304-7 – reference: 23150781 - Sci Rep. 2012;2:817 – reference: 11801097 - Phys Rev Lett. 2002 Jan 28;88(4):040404 – reference: 19661423 - Science. 2009 Aug 7;325(5941):722-5 – reference: 23896982 - Sci Rep. 2013;3:2314 – reference: 20154687 - Nat Nanotechnol. 2010 Mar;5(3):195-9 – reference: 17358925 - Phys Rev Lett. 2007 Feb 9;98(6):060503 – reference: 26933685 - Sci Adv. 2016 Feb 26;2(2):e1501165 – reference: 18787162 - Science. 2008 Sep 12;321(5895):1463-5 – reference: 26965623 - Science. 2016 Mar 11;351(6278):1176-80 – reference: 20847760 - Opt Lett. 2010 Sep 15;35(18):3006-8 – reference: 23652006 - Nat Commun. 2013;4:1818 – reference: 28658224 - Nature. 2017 Jun 28;546(7660):602-603 – reference: 15774749 - Science. 2005 Mar 18;307(5716):1733-4 – reference: 11384453 - Phys Rev Lett. 2001 May 28;86(22):5188-91 – reference: 25831348 - Opt Lett. 2015 Apr 1;40(7):1422-5 |
| SSID | ssj0005174 |
| Score | 2.6997743 |
| Snippet | The on-chip generation of high-dimensional frequency-entangled states and their spectral-domain manipulation are demonstrated, introducing a powerful and... Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 622 |
| SubjectTerms | 639/624/400/482 639/766/400/3925 Bell's inequality Coherence Computer simulation Dimensional measurement Entangled states Humanities and Social Sciences letter multidisciplinary Optical data processing Photonics Photons Quantum computing Quantum mechanics Quantum phenomena Quantum theory Qubits (quantum computing) Robustness Science Superposition (mathematics) |
| Title | On-chip generation of high-dimensional entangled quantum states and their coherent control |
| URI | https://link.springer.com/article/10.1038/nature22986 https://www.ncbi.nlm.nih.gov/pubmed/28658228 https://www.proquest.com/docview/1920622007 https://www.proquest.com/docview/1914846871 |
| Volume | 546 |
| WOSCitedRecordID | wos000404332000041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQT databaseName: Nature customDbUrl: eissn: 1476-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: RNT dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.nature.com providerName: Nature Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: P5Z dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M0K dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7P dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PCBAR dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7S dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PATMY dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7X7 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: KB. dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7RV dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: BENPR dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2M dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8C1 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2O dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2P dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xaI-l0Fd4rFyJSm0lQ2KbxD5VgECV6C4RpdWWSxQ7CSDRZCG7_f31ON5l1a166eWTkjiJpfF4xvME2LUSCjuFaIrHCyq0VlTHnNHS6hJCWwmljaP0l2QwkMOhSr3BrfVhldM90W3URWPQRr5vNZEwZmhZ-zS6p9g1Cr2rvoXGMqxilQTuQvfSxxCPP6ow-_y8kMv9rmwmYwqTqOcl0oKaueAidZLndO1_5_wcnnmdkxx2i2Qdlsp6A5662E_TbsC65--WvPdFqD-8gKvzmpqb2xG5dreQfKSpCFY3pgV2BOiqeRAMPa-v78qC3E8skSY_iUtRakleF8R5IYhpbjCncEx8WPxL-HZ6cnn8mfo-DNRwFY1plQiVVyLWpjRSWKKXUhe6iLm2myPLma6EVGGsIsN4lVRWxcyjMM8L9LGGXGn-Clbqpi7fYIa4UIIbra1mInhhZKxMpULOKhVVuWEBfJzSIjO-SDn2yrjLnLOcy2yOcAHszgaPutocfx-2PaVO5hm0zR5JE8Db2WPLWugvyeuymeAYe1YUsT1SBvC6Wwyz_2BCr9WtZADvpqtj7uOLk9j89yS20F6AseCcRmobVsYPk3IHnphf49v2oQfLycV3xGHiUFqUx1EPVo9OBumFvTo72rPYD88QWd_hucO053jC4VeL6cGVfS89vOz_-A0DGw8S |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL0PIKFDBSKwGS1cS2svEBIQRUrbosCBVU9RJix24rlWTb7IL4U_xGZpxku2IRtx64JpZjx59nPnteAOuooahSiOF0vODKGM1NKgV3yCWUQQ1lbFjp4WA0yvb39ccl-NXHwpBbZS8Tg6Aua0t35JvIROJU0M3aq_Epp6pRZF3tS2i0sNh1P3_gka15ufMW13dDiK13e2-2eVdVgFupkwn3A6ULr1Jjnc0UTsFlpjRlKg1udVEI41Wm41QnVkg_8EiYiiQuipIshrHURmK_l-AyyvGEXMgGn76cu5T8kfW5iweMZbbZpukUQlPQ9rwGXKC1CybZoOm2bv5v_-gW3Og4NXvdboIVWHLVKlwNvq22WYWVTn417FmXZPv5bTj4UHF7dDxmh-ERwZPVnlH2Zl5SxYM2Wwkj1_rq8MSV7HSKIJx-YyEEq2FFVbJgZWG2PqKYyQnr3P7vwOcLme1dWK7qyt2nCHillbTGIPNSsrRZqq3XsRReJ76wIoIX_drntkvCTrVATvLgDCCzfA4oEazPGo_b3CN_b7bWoyHvBFCTn0Mhgqez1yg6yB5UVK6eUhs8C6sUj8wR3GvBN_sOBSwjd8wi2OjRONf54iAe_HsQT-Da9t77YT7cGe0-hOuCuFGccqHXYHlyNnWP4Ir9Pjluzh6HHcXg60XD8zdQYmGf |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2V8iEuQAuU0AJGaiVAsjZrW9n4UFWoZUXVaukBpIpLiB27rdQm22YXxF_j13XGSZYVi7j1wDWxHDt-nhl75s0AbKKGokohhtPxgitjNDeJFNyhLaEMaihjw0ofDkaj9PhYHy3Br44LQ2GVnUwMgrqoLN2R99ASiRNBN2s934ZFHO0Nd8aXnCpIkae1K6fRQOTA_fyBx7d6e38P13pLiOGHz7sfeVthgFup-xPuB0rnXiXGOpsqnI5LTWGKRBrc9iIXxqtUx4nuWyH9wKPxlPfjPC_IexhLbST2ewtuDySimFjqu3PhJX9kgG65gbFMe03KTiE0EbjnteGCibvgng1ab_jwf_5fj-BBa2uz983mWIElV67C3RDzautVWGnlWs3etMm33z6Gr59Kbk_PxuwkPCLYssozyurMC6qE0GQxYRRyX56cu4JdThGc0wsWqFk1y8uCBe8Ls9UpcSknrKUDPIEvNzLbp7BcVqV7Rsx4pZW0xqBFpmRh00Rbr2MpvO773IoI3nU4yGybnJ1qhJxnIUhAptkcaCLYnDUeNzlJ_t5so0NG1gqmOvsNiwhez16jSCE_UV66akpt8IysEjxKR7DWAHH2HSIyo02ZRrDVIXOu88VBPP_3IF7BPURldrg_OliH-4JMpjjhQm_A8uRq6l7AHft9clZfvQybi8G3m0bnNZQrafo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-chip+generation+of+high-dimensional+entangled+quantum+states+and+their+coherent+control&rft.jtitle=Nature+%28London%29&rft.au=Kues%2C+Michael&rft.au=Reimer%2C+Christian&rft.au=Roztocki%2C+Piotr&rft.au=Cort%C3%A9s%2C+Luis+Romero&rft.date=2017-06-29&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=546&rft.issue=7660&rft.spage=622&rft.epage=626&rft_id=info:doi/10.1038%2Fnature22986&rft.externalDocID=10_1038_nature22986 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |