A Novel Grouping Method for Lithium Iron Phosphate Batteries Based on a Fractional Joint Kalman Filter and a New Modified K-Means Clustering Algorithm

This paper presents a novel grouping method for lithium iron phosphate batteries. In this method, a simplified electrochemical impedance spectroscopy (EIS) model is utilized to describe the battery characteristics. Dynamic stress test (DST) and fractional joint Kalman filter (FJKF) are used to extra...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) Vol. 8; no. 8; pp. 7703 - 7728
Main Authors: Li, Xiaoyu, Song, Kai, Wei, Guo, Lu, Rengui, Zhu, Chunbo
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.08.2015
Subjects:
ISSN:1996-1073, 1996-1073
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a novel grouping method for lithium iron phosphate batteries. In this method, a simplified electrochemical impedance spectroscopy (EIS) model is utilized to describe the battery characteristics. Dynamic stress test (DST) and fractional joint Kalman filter (FJKF) are used to extract battery model parameters. In order to realize equal-number grouping of batteries, a new modified K-means clustering algorithm is proposed. Two rules are designed to equalize the numbers of elements in each group and exchange samples among groups. In this paper, the principles of battery model selection, physical meaning and identification method of model parameters, data preprocessing and equal-number clustering method for battery grouping are comprehensively described. Additionally, experiments for battery grouping and method validation are designed. This method is meaningful to application involving the grouping of fresh batteries for electric vehicles (EVs) and screening of aged batteries for recycling.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1996-1073
1996-1073
DOI:10.3390/en8087703