Laser: Efficient Language-Guided Segmentation in Neural Radiance Fields
In this work, we propose a method that leverages CLIP feature distillation, achieving efficient 3D segmentation through language guidance. Unlike previous methods that rely on multi-scale CLIP features and are limited by processing speed and storage requirements, our approach aims to streamline the...
Uložené v:
| Vydané v: | IEEE transactions on pattern analysis and machine intelligence Ročník 47; číslo 5; s. 3922 - 3934 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.05.2025
|
| Predmet: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this work, we propose a method that leverages CLIP feature distillation, achieving efficient 3D segmentation through language guidance. Unlike previous methods that rely on multi-scale CLIP features and are limited by processing speed and storage requirements, our approach aims to streamline the workflow by directly and effectively distilling dense CLIP features, thereby achieving precise segmentation of 3D scenes using text. To achieve this, we introduce an adapter module and mitigate the noise issue in the dense CLIP feature distillation process through a self-cross-training strategy. Moreover, to enhance the accuracy of segmentation edges, this work presents a low-rank transient query attention mechanism. To ensure the consistency of segmentation for similar colors under different viewpoints, we convert the segmentation task into a classification task through label volume, which significantly improves the consistency of segmentation in color-similar areas. We also propose a simplified text augmentation strategy to alleviate the issue of ambiguity in the correspondence between CLIP features and text. Extensive experimental results show that our method surpasses current state-of-the-art technologies in both training speed and performance. |
|---|---|
| AbstractList | In this work, we propose a method that leverages CLIP feature distillation, achieving efficient 3D segmentation through language guidance. Unlike previous methods that rely on multi-scale CLIP features and are limited by processing speed and storage requirements, our approach aims to streamline the workflow by directly and effectively distilling dense CLIP features, thereby achieving precise segmentation of 3D scenes using text. To achieve this, we introduce an adapter module and mitigate the noise issue in the dense CLIP feature distillation process through a self-cross-training strategy. Moreover, to enhance the accuracy of segmentation edges, this work presents a low-rank transient query attention mechanism. To ensure the consistency of segmentation for similar colors under different viewpoints, we convert the segmentation task into a classification task through label volume, which significantly improves the consistency of segmentation in color-similar areas. We also propose a simplified text augmentation strategy to alleviate the issue of ambiguity in the correspondence between CLIP features and text. Extensive experimental results show that our method surpasses current state-of-the-art technologies in both training speed and performance. Our code is available on: https://github.com/xingy038/Laser.git.In this work, we propose a method that leverages CLIP feature distillation, achieving efficient 3D segmentation through language guidance. Unlike previous methods that rely on multi-scale CLIP features and are limited by processing speed and storage requirements, our approach aims to streamline the workflow by directly and effectively distilling dense CLIP features, thereby achieving precise segmentation of 3D scenes using text. To achieve this, we introduce an adapter module and mitigate the noise issue in the dense CLIP feature distillation process through a self-cross-training strategy. Moreover, to enhance the accuracy of segmentation edges, this work presents a low-rank transient query attention mechanism. To ensure the consistency of segmentation for similar colors under different viewpoints, we convert the segmentation task into a classification task through label volume, which significantly improves the consistency of segmentation in color-similar areas. We also propose a simplified text augmentation strategy to alleviate the issue of ambiguity in the correspondence between CLIP features and text. Extensive experimental results show that our method surpasses current state-of-the-art technologies in both training speed and performance. Our code is available on: https://github.com/xingy038/Laser.git. In this work, we propose a method that leverages CLIP feature distillation, achieving efficient 3D segmentation through language guidance. Unlike previous methods that rely on multi-scale CLIP features and are limited by processing speed and storage requirements, our approach aims to streamline the workflow by directly and effectively distilling dense CLIP features, thereby achieving precise segmentation of 3D scenes using text. To achieve this, we introduce an adapter module and mitigate the noise issue in the dense CLIP feature distillation process through a self-cross-training strategy. Moreover, to enhance the accuracy of segmentation edges, this work presents a low-rank transient query attention mechanism. To ensure the consistency of segmentation for similar colors under different viewpoints, we convert the segmentation task into a classification task through label volume, which significantly improves the consistency of segmentation in color-similar areas. We also propose a simplified text augmentation strategy to alleviate the issue of ambiguity in the correspondence between CLIP features and text. Extensive experimental results show that our method surpasses current state-of-the-art technologies in both training speed and performance. |
| Author | Shao, Ling Shah, Tejal Song, Jun Miao, Xingyu Bai, Yang Duan, Haoran Long, Yang Ranjan, Rajiv |
| Author_xml | – sequence: 1 givenname: Xingyu orcidid: 0000-0003-1203-8279 surname: Miao fullname: Miao, Xingyu email: xingyu.miao@durham.ac.uk organization: Department of Computer Science, Durham University, Durham, U.K – sequence: 2 givenname: Haoran orcidid: 0000-0001-9956-7020 surname: Duan fullname: Duan, Haoran email: haoran.duan@ieee.org organization: School of Computing, Newcastle University, Newcastle upon Tyne, U.K – sequence: 3 givenname: Yang surname: Bai fullname: Bai, Yang email: bai_yang@ihpc.a-star.edu.sg organization: Institute of High Performance Computing (IHPC), ASTAR, Singapore – sequence: 4 givenname: Tejal surname: Shah fullname: Shah, Tejal email: tejal.shah@newcastle.ac.uk organization: School of Computing, Newcastle University, Newcastle upon Tyne, U.K – sequence: 5 givenname: Jun orcidid: 0000-0003-3820-7632 surname: Song fullname: Song, Jun email: songjun@cug.edu.cn organization: School of Computer Science, China University of Geosciences, Wuhan, China – sequence: 6 givenname: Yang orcidid: 0000-0002-2445-6112 surname: Long fullname: Long, Yang email: yang.long@ieee.org organization: Department of Computer Science, Durham University, Durham, U.K – sequence: 7 givenname: Rajiv orcidid: 0000-0002-6610-1328 surname: Ranjan fullname: Ranjan, Rajiv email: rranjans@gmail.com organization: School of Computing, Newcastle University, Newcastle upon Tyne, U.K – sequence: 8 givenname: Ling orcidid: 0000-0002-8264-6117 surname: Shao fullname: Shao, Ling email: ling.shao@ieee.org organization: UCAS-Terminus AI Lab, University of Chinese Academy of Sciences, Beijing, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40031329$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMtOwzAQRS0Eog_4AYRQlmxSxnacxOyqqi2VykNQ1pYTjyujPEqcLPh7UloQq5GuzrnS3BE5reoKCbmiMKEU5N3mZfq4mjBgYsIFF5LGJ2TIaAyhZJKdkiHQmIVpytIBGXn_AUAjAfycDCIATjmTQ7Jca4_NfTC31uUOqzZY62rb6S2Gy84ZNMEbbss-162rq8BVwRN2jS6CV22crnIMFg4L4y_ImdWFx8vjHZP3xXwzewjXz8vVbLoOcy5pG1qKAMaAocxEELEcLUAqMiGwDyObArecZplGqiGPI5uIXsBE6syw_jU-JreH3l1Tf3boW1U6n2NR6ArrzitOE94XQ8x69OaIdlmJRu0aV-rmS_0-3wPsAORN7X2D9g-hoPYLq5-F1X5hdVy4l64PkkPEf0IqEiEZ_wZ-z3W4 |
| CODEN | ITPIDJ |
| Cites_doi | 10.1109/CVPR52733.2024.01895 10.1109/ICCV48922.2021.00570 10.1109/CVPR52729.2023.00682 10.1109/3DV57658.2022.00056 10.1007/978-3-031-19824-3_20 10.1109/CVPR.2019.00845 10.1145/237170.237199 10.1109/CVPR46437.2021.01204 10.1109/ICCV51070.2023.01807 10.1007/978-3-031-19824-3_7 10.1109/CVPR52688.2022.00538 10.1109/CVPR52688.2022.00542 10.1145/237170.237200 10.1109/3DV57658.2022.00042 10.1109/CVPR52733.2024.02048 10.1109/CVPR46437.2021.00455 10.1145/237170.237191 10.1109/CVPR46437.2021.00930 10.1109/ICCVW60793.2023.00105 10.1145/3528223.3530127 10.1007/978-3-031-72664-4_18 10.1109/CVPR52729.2023.00873 10.1109/CVPR52733.2024.00510 10.1145/3272127.3275084 10.1109/CVPR52688.2022.00536 10.1109/CVPR52729.2023.00289 10.1145/2674559 10.1109/CVPR52688.2022.01571 10.1145/3130800.3130855 10.1145/344779.344932 10.1145/3503250 10.1109/ICCV48922.2021.00951 10.1109/JSTSP.2017.2747126 10.1109/CVPR52688.2022.01760 10.1145/2601097.2601195 10.1109/ICCV51070.2023.00371 10.1109/CVPR52733.2024.00394 10.1007/978-3-030-58529-7_37 10.1109/ICCV48922.2021.01554 10.1145/383259.383309 10.1145/2980179.2982420 10.1007/978-3-031-20059-5_31 10.1145/2980179.2980251 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TPAMI.2025.3535916 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 3934 |
| ExternalDocumentID | 40031329 10_1109_TPAMI_2025_3535916 10857592 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: International Exchanges 2022 grantid: IEC\NSFC\223523 – fundername: U.K. Medical Research Council grantid: MR/S003916/2 |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c391t-f1e00dd0d12d4042cef0085b55ed0d4f803f31bbae1a0c64f75e00e79abd22163 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001465416300041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Thu Oct 02 05:54:08 EDT 2025 Mon Jul 21 05:20:23 EDT 2025 Sat Nov 29 08:01:37 EST 2025 Wed Aug 27 02:04:40 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c391t-f1e00dd0d12d4042cef0085b55ed0d4f803f31bbae1a0c64f75e00e79abd22163 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-6610-1328 0000-0003-3820-7632 0000-0002-2445-6112 0000-0002-8264-6117 0000-0001-9956-7020 0000-0003-1203-8279 |
| OpenAccessLink | https://doi.org/10.1109/TPAMI.2025.3535916 |
| PMID | 40031329 |
| PQID | 3173404062 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_3173404062 pubmed_primary_40031329 crossref_primary_10_1109_TPAMI_2025_3535916 ieee_primary_10857592 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-01 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | Ding (ref13) ref57 ref12 ref56 ref15 ref59 ref14 Kobayashi (ref7) ref53 ref52 ref55 ref54 ref17 ref16 Devlin (ref11) 2018 ref19 ref18 ref51 ref50 ref46 ref47 ref42 ref44 ref49 ref3 Bucher (ref41); 32 ref5 ref40 ref35 Liu (ref6) ref34 Bhalgat (ref4) ref37 ref36 ref31 ref33 Li (ref9) 2023 ref32 Kerbl (ref2) 2023; 42 Liu (ref30) Flynn (ref23) ref1 ref39 ref38 Mikolov (ref43) 2013 Shen (ref48) 2023 Li (ref10) ref24 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Li (ref45) 2022 Radford (ref8) Straub (ref58) 2019 |
| References_xml | – ident: ref53 doi: 10.1109/CVPR52733.2024.01895 – ident: ref39 doi: 10.1109/ICCV48922.2021.00570 – ident: ref57 doi: 10.1109/CVPR52729.2023.00682 – ident: ref51 doi: 10.1109/3DV57658.2022.00056 – start-page: 15651 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref30 article-title: Neural sparse voxel fields – ident: ref36 doi: 10.1007/978-3-031-19824-3_20 – year: 2019 ident: ref58 article-title: The replica dataset: A digital replica of indoor spaces – volume: 42 issue: 4 volume-title: ACM Trans. Graph. year: 2023 ident: ref2 article-title: 3D Gaussian splatting for real-time radiance field rendering – ident: ref42 doi: 10.1109/CVPR.2019.00845 – ident: ref19 doi: 10.1145/237170.237199 – ident: ref29 doi: 10.1109/CVPR46437.2021.01204 – year: 2023 ident: ref9 article-title: BLIP-2: Bootstrapping language-image pre-training with frozen image encoders and large language models – ident: ref5 doi: 10.1109/ICCV51070.2023.01807 – ident: ref33 doi: 10.1007/978-3-031-19824-3_7 – volume-title: Proc. 37th Conf. Neural Inf. Process. Syst. ident: ref6 article-title: Weakly supervised 3D open-vocabulary segmentation – ident: ref38 doi: 10.1109/CVPR52688.2022.00538 – ident: ref40 doi: 10.1109/CVPR52688.2022.00542 – start-page: 8748 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref8 article-title: Learning transferable visual models from natural language supervision – ident: ref18 doi: 10.1145/237170.237200 – ident: ref47 doi: 10.1109/3DV57658.2022.00042 – ident: ref55 doi: 10.1109/CVPR52733.2024.02048 – ident: ref35 doi: 10.1109/CVPR46437.2021.00455 – ident: ref22 doi: 10.1145/237170.237191 – ident: ref32 doi: 10.1109/CVPR46437.2021.00930 – start-page: 8090 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref13 article-title: Open-vocabulary universal image segmentation with MaskCLIP – ident: ref59 doi: 10.1109/ICCVW60793.2023.00105 – ident: ref37 doi: 10.1145/3528223.3530127 – ident: ref15 doi: 10.1007/978-3-031-72664-4_18 – start-page: 12888 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref10 article-title: BLIP: Bootstrapping language-image pre-training for unified vision-language understanding and generation – start-page: 5515 volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. ident: ref23 article-title: DeepStereo: Learning to predict new views from the world’s imagery – ident: ref3 doi: 10.1109/CVPR52729.2023.00873 – ident: ref54 doi: 10.1109/CVPR52733.2024.00510 – ident: ref24 doi: 10.1145/3272127.3275084 – ident: ref34 doi: 10.1109/CVPR52688.2022.00536 – ident: ref49 doi: 10.1109/CVPR52729.2023.00289 – ident: ref56 doi: 10.1145/2674559 – ident: ref31 doi: 10.1109/CVPR52688.2022.01571 – ident: ref27 doi: 10.1145/3130800.3130855 – start-page: 23311 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref7 article-title: Decomposing NERF for editing via feature field distillation – ident: ref16 doi: 10.1145/344779.344932 – ident: ref1 doi: 10.1145/3503250 – ident: ref12 doi: 10.1109/ICCV48922.2021.00951 – ident: ref20 doi: 10.1109/JSTSP.2017.2747126 – year: 2023 ident: ref48 article-title: Anything-3D: Towards single-view anything reconstruction in the wild – volume: 32 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref41 article-title: Zero-shot semantic segmentation – year: 2022 ident: ref45 article-title: Language-driven semantic segmentation – year: 2018 ident: ref11 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding – ident: ref44 doi: 10.1109/CVPR52688.2022.01760 – ident: ref26 doi: 10.1145/2601097.2601195 – ident: ref52 doi: 10.1109/ICCV51070.2023.00371 – ident: ref14 doi: 10.1109/CVPR52733.2024.00394 – ident: ref28 doi: 10.1007/978-3-030-58529-7_37 – ident: ref50 doi: 10.1109/ICCV48922.2021.01554 – year: 2013 ident: ref43 article-title: Efficient estimation of word representations in vector space – ident: ref21 doi: 10.1145/383259.383309 – ident: ref25 doi: 10.1145/2980179.2982420 – ident: ref46 doi: 10.1007/978-3-031-20059-5_31 – ident: ref17 doi: 10.1145/2980179.2980251 – volume-title: Proc. 37th Conf. Neural Inf. Process. Syst. ident: ref4 article-title: Contrastive lift: 3D object instance segmentation by slow-fast contrastive fusion |
| SSID | ssj0014503 |
| Score | 2.5100396 |
| Snippet | In this work, we propose a method that leverages CLIP feature distillation, achieving efficient 3D segmentation through language guidance. Unlike previous... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 3922 |
| SubjectTerms | 3D segmentation Accuracy CLIP Feature extraction Image segmentation NeRF Neural radiance field Rendering (computer graphics) Semantics Solid modeling Three-dimensional displays Training Visualization |
| Title | Laser: Efficient Language-Guided Segmentation in Neural Radiance Fields |
| URI | https://ieeexplore.ieee.org/document/10857592 https://www.ncbi.nlm.nih.gov/pubmed/40031329 https://www.proquest.com/docview/3173404062 |
| Volume | 47 |
| WOSCitedRecordID | wos001465416300041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RhCp6KJTSdstDrtRbFbATO7F7Q4gFpC1CLZX2Fjn2uNoDWbSP_v6OnQTBgUNvkeVH4s8Tf_a8AL5aKi-1CpltZMhkbl2mDcrMFMp61KJ0IWUtmVQ3N3o6Nbe9s3ryhUHEZHyGJ_Ex6fL93K3jVdmp6PJJ0h_3VVVVnbPWo8pAqpQGmSgMiTidIwYPGW5O727PflzTWTBXJ4UqFDGibXgtu7CF5tmGlDKsvEw206Yz3vnP192Ftz27ZGfdcngHG9juwc6QuYH1grwHb56EIXwPlxPayhbf2UUKJ0F9skl_i5ldrmcePfuFf-57J6WWzVoWQ3rQOD9TYAOHbBzt4Jb78Ht8cXd-lfUJFjJXGLHKgkDOvede5F6S9DoMkYI1SiEVyqB5EQrRNBaF5a6UoVLUACtjG5_nxOQ-wGY7b_ETMKmw0dGJNrdellpYpb3w3DXc8CaEfATfhlmuH7o4GnU6f3BTJ3jqCE_dwzOC_TidT2p2MzmCLwMyNYlB1G3YFufrZU00qKBP4CXV-dhB9th6QPrzC70ewHYcvDNjPITN1WKNR7Dl_q5my8UxrbWpPk5r7R8Xns25 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hilp6gEKh3dIWI_VWBezEzsbcUMUCalihspW4RY49RnsgW-2jv79jJ0H0wIFbZNmOM-PJfPa8AL4Zas8L5RNTS5_I1Nik0CgTnSnjsBC59bFqSTkcj4u7O33TBavHWBhEjM5neBweoy3fzewqXJWdiLaeJP1xXykpU9GGaz0aDaSKhZAJxJCQ00mij5Hh-mRyc3Z9RafBVB1nKlOEiTbhtWwTF-r_VFKssfI83IxqZ7T9wgW_g60OX7KzdkPswBo2u7Dd125gnSjvwtsniQjfw0VJymx-ys5jQgmak5XdPWZysZo6dOwW7x-6MKWGTRsWknrQe37F1AYW2Sh4wi324PfofPLjMulKLCQ202KZeIGcO8edSJ0k-bXoAwirlUJqlL7gmc9EXRsUhttc-qGiATjUpnZpSlhuH9abWYMfgUmFdRHCaFPjZF4IowonHLc117z2Ph3A957K1Z82k0YVTyBcV5E9VWBP1bFnAHuBnE96tpQcwFHPmYoEIVg3TIOz1aIiIJTRJ_Cc-nxoWfY4uuf0p2dmPYQ3l5Prsiqvxj8PYDMspHVq_Azry_kKv8CG_bucLuZf4477Bx5h0Bg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser%3A+Efficient+Language-Guided+Segmentation+in+Neural+Radiance+Fields&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Miao%2C+Xingyu&rft.au=Duan%2C+Haoran&rft.au=Bai%2C+Yang&rft.au=Shah%2C+Tejal&rft.date=2025-05-01&rft.eissn=1939-3539&rft.volume=47&rft.issue=5&rft.spage=3922&rft_id=info:doi/10.1109%2FTPAMI.2025.3535916&rft_id=info%3Apmid%2F40031329&rft.externalDocID=40031329 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |