Learning to deep learning: statistics and a paradigm test in selecting a UNet architecture to enhance MRI

Objective This study aims to assess the statistical significance of training parameters in 240 dense UNets (DUNets) used for enhancing low Signal-to-Noise Ratio (SNR) and undersampled MRI in various acquisition protocols. The objective is to determine the validity of differences between different DU...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magma (New York, N.Y.) Jg. 37; H. 3; S. 507 - 528
Hauptverfasser: Sharma, Rishabh, Tsiamyrtzis, Panagiotis, Webb, Andrew G., Leiss, Ernst L., Tsekos, Nikolaos V.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.07.2024
Schlagworte:
ISSN:1352-8661, 1352-8661
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Objective This study aims to assess the statistical significance of training parameters in 240 dense UNets (DUNets) used for enhancing low Signal-to-Noise Ratio (SNR) and undersampled MRI in various acquisition protocols. The objective is to determine the validity of differences between different DUNet configurations and their impact on image quality metrics. Materials and Methods To achieve this, we trained all DUNets using the same learning rate and number of epochs, with variations in 5 acquisition protocols, 24 loss function weightings, and 2 ground truths. We calculated evaluation metrics for two metric regions of interest (ROI). We employed both Analysis of Variance (ANOVA) and Mixed Effects Model (MEM) to assess the statistical significance of the independent parameters, aiming to compare their efficacy in revealing differences and interactions among fixed parameters. Results ANOVA analysis showed that, except for the acquisition protocol, fixed variables were statistically insignificant. In contrast, MEM analysis revealed that all fixed parameters and their interactions held statistical significance. This emphasizes the need for advanced statistical analysis in comparative studies, where MEM can uncover finer distinctions often overlooked by ANOVA. Discussion These findings highlight the importance of utilizing appropriate statistical analysis when comparing different deep learning models. Additionally, the surprising effectiveness of the UNet architecture in enhancing various acquisition protocols underscores the potential for developing improved methods for characterizing and training deep learning models. This study serves as a stepping stone toward enhancing the transparency and comparability of deep learning techniques for medical imaging applications.
AbstractList Objective This study aims to assess the statistical significance of training parameters in 240 dense UNets (DUNets) used for enhancing low Signal-to-Noise Ratio (SNR) and undersampled MRI in various acquisition protocols. The objective is to determine the validity of differences between different DUNet configurations and their impact on image quality metrics. Materials and Methods To achieve this, we trained all DUNets using the same learning rate and number of epochs, with variations in 5 acquisition protocols, 24 loss function weightings, and 2 ground truths. We calculated evaluation metrics for two metric regions of interest (ROI). We employed both Analysis of Variance (ANOVA) and Mixed Effects Model (MEM) to assess the statistical significance of the independent parameters, aiming to compare their efficacy in revealing differences and interactions among fixed parameters. Results ANOVA analysis showed that, except for the acquisition protocol, fixed variables were statistically insignificant. In contrast, MEM analysis revealed that all fixed parameters and their interactions held statistical significance. This emphasizes the need for advanced statistical analysis in comparative studies, where MEM can uncover finer distinctions often overlooked by ANOVA. Discussion These findings highlight the importance of utilizing appropriate statistical analysis when comparing different deep learning models. Additionally, the surprising effectiveness of the UNet architecture in enhancing various acquisition protocols underscores the potential for developing improved methods for characterizing and training deep learning models. This study serves as a stepping stone toward enhancing the transparency and comparability of deep learning techniques for medical imaging applications.
This study aims to assess the statistical significance of training parameters in 240 dense UNets (DUNets) used for enhancing low Signal-to-Noise Ratio (SNR) and undersampled MRI in various acquisition protocols. The objective is to determine the validity of differences between different DUNet configurations and their impact on image quality metrics.OBJECTIVEThis study aims to assess the statistical significance of training parameters in 240 dense UNets (DUNets) used for enhancing low Signal-to-Noise Ratio (SNR) and undersampled MRI in various acquisition protocols. The objective is to determine the validity of differences between different DUNet configurations and their impact on image quality metrics.To achieve this, we trained all DUNets using the same learning rate and number of epochs, with variations in 5 acquisition protocols, 24 loss function weightings, and 2 ground truths. We calculated evaluation metrics for two metric regions of interest (ROI). We employed both Analysis of Variance (ANOVA) and Mixed Effects Model (MEM) to assess the statistical significance of the independent parameters, aiming to compare their efficacy in revealing differences and interactions among fixed parameters.MATERIALS AND METHODSTo achieve this, we trained all DUNets using the same learning rate and number of epochs, with variations in 5 acquisition protocols, 24 loss function weightings, and 2 ground truths. We calculated evaluation metrics for two metric regions of interest (ROI). We employed both Analysis of Variance (ANOVA) and Mixed Effects Model (MEM) to assess the statistical significance of the independent parameters, aiming to compare their efficacy in revealing differences and interactions among fixed parameters.ANOVA analysis showed that, except for the acquisition protocol, fixed variables were statistically insignificant. In contrast, MEM analysis revealed that all fixed parameters and their interactions held statistical significance. This emphasizes the need for advanced statistical analysis in comparative studies, where MEM can uncover finer distinctions often overlooked by ANOVA.RESULTSANOVA analysis showed that, except for the acquisition protocol, fixed variables were statistically insignificant. In contrast, MEM analysis revealed that all fixed parameters and their interactions held statistical significance. This emphasizes the need for advanced statistical analysis in comparative studies, where MEM can uncover finer distinctions often overlooked by ANOVA.These findings highlight the importance of utilizing appropriate statistical analysis when comparing different deep learning models. Additionally, the surprising effectiveness of the UNet architecture in enhancing various acquisition protocols underscores the potential for developing improved methods for characterizing and training deep learning models. This study serves as a stepping stone toward enhancing the transparency and comparability of deep learning techniques for medical imaging applications.DISCUSSIONThese findings highlight the importance of utilizing appropriate statistical analysis when comparing different deep learning models. Additionally, the surprising effectiveness of the UNet architecture in enhancing various acquisition protocols underscores the potential for developing improved methods for characterizing and training deep learning models. This study serves as a stepping stone toward enhancing the transparency and comparability of deep learning techniques for medical imaging applications.
This study aims to assess the statistical significance of training parameters in 240 dense UNets (DUNets) used for enhancing low Signal-to-Noise Ratio (SNR) and undersampled MRI in various acquisition protocols. The objective is to determine the validity of differences between different DUNet configurations and their impact on image quality metrics. To achieve this, we trained all DUNets using the same learning rate and number of epochs, with variations in 5 acquisition protocols, 24 loss function weightings, and 2 ground truths. We calculated evaluation metrics for two metric regions of interest (ROI). We employed both Analysis of Variance (ANOVA) and Mixed Effects Model (MEM) to assess the statistical significance of the independent parameters, aiming to compare their efficacy in revealing differences and interactions among fixed parameters. ANOVA analysis showed that, except for the acquisition protocol, fixed variables were statistically insignificant. In contrast, MEM analysis revealed that all fixed parameters and their interactions held statistical significance. This emphasizes the need for advanced statistical analysis in comparative studies, where MEM can uncover finer distinctions often overlooked by ANOVA. These findings highlight the importance of utilizing appropriate statistical analysis when comparing different deep learning models. Additionally, the surprising effectiveness of the UNet architecture in enhancing various acquisition protocols underscores the potential for developing improved methods for characterizing and training deep learning models. This study serves as a stepping stone toward enhancing the transparency and comparability of deep learning techniques for medical imaging applications.
Author Sharma, Rishabh
Leiss, Ernst L.
Tsekos, Nikolaos V.
Tsiamyrtzis, Panagiotis
Webb, Andrew G.
Author_xml – sequence: 1
  givenname: Rishabh
  surname: Sharma
  fullname: Sharma, Rishabh
  organization: Medical Robotics and Imaging Lab, Department of Computer Science, 501, Philip G. Hoffman Hall, University of Houston
– sequence: 2
  givenname: Panagiotis
  surname: Tsiamyrtzis
  fullname: Tsiamyrtzis, Panagiotis
  organization: Department of Mechanical Engineering, Politecnico Di Milano, Department of Statistics, Athens University of Economics and Business
– sequence: 3
  givenname: Andrew G.
  surname: Webb
  fullname: Webb, Andrew G.
  organization: C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center
– sequence: 4
  givenname: Ernst L.
  surname: Leiss
  fullname: Leiss, Ernst L.
  organization: Department of Computer Science, University of Houston
– sequence: 5
  givenname: Nikolaos V.
  surname: Tsekos
  fullname: Tsekos, Nikolaos V.
  email: nvtsekos@central.uh.edu
  organization: Medical Robotics and Imaging Lab, Department of Computer Science, 501, Philip G. Hoffman Hall, University of Houston
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37989921$$D View this record in MEDLINE/PubMed
BookMark eNp9kctOxCAUhonReH8BF4almyqXQqk7Y7xMMmpinDWh9HTEdOgIdOHbyzijMS5cQU6-70D-_wBt-8EDQieUnFNCqotICedlQRgvCKWsKuQW2qdcsEJJSbd_3ffQQYxvhDAqCN9Fe7yqVV0zuo_cFEzwzs9xGnALsMT9ZnCJYzLJxeRsxMa32OClCaZ18wVOEBN2HkfowaaVbfDsERI2wb66lGdjgNVG8K_GW8APz5MjtNOZPsLx5jxEs9ubl-v7Yvp0N7m-mhaW1zQV1hohGKVGdaqsWhBl13LGhFXQtLWVTJCuapuaNKqSpbSZEY1UklpFm7Ir-SE6W-9dhuF9zB_VCxct9L3xMIxRM1UzKZRkKqOnG3RsFtDqZXALEz70dzwZYGvAhiHGAN0PQoledaDXHejcgf7qQMssqT-SdaskB5-Ccf3_Kl-rMb_j5xD02zAGn-P6z_oEL_qadw
CitedBy_id crossref_primary_10_1007_s10334_024_01179_2
crossref_primary_10_1088_1361_6560_ad94c7
crossref_primary_10_1007_s44352_025_00012_3
crossref_primary_10_1007_s10278_024_01205_8
Cites_doi 10.1109/TMI.2014.2377694
10.1016/j.compmedimag.2018.10.005
10.3389/fcvm.2020.00017
10.1109/JBHI.2019.2912935
10.1016/j.patcog.2019.107038
10.1002/mp.12600
10.1109/TIP.2003.819861
10.1002/mrm.28117
10.21037/qims.2019.08.10
10.1109/TMI.2019.2927101
10.1002/mrm.28733
10.3389/fonc.2019.01010
10.1038/nature14539
10.1162/jocn.2007.19.9.1498
10.1109/TIP.2019.2895768
10.1016/j.cviu.2021.103329
10.1016/j.media.2023.102872
10.21037/qims-19-1090
10.1002/jmri.26534
10.1109/TBME.2018.2821699
10.1002/mrm.28962
10.1002/jmri.27585
10.1109/TMI.2022.3147426
10.1007/s10278-017-9983-4
10.1002/mrm.27690
10.1002/mrm.28274
10.1148/radiol.2020192173
10.1109/TCI.2020.2964201
10.1016/j.mri.2019.07.010
10.1007/s10334-022-01041-3
10.1002/mp.14006
10.3390/app122211758
10.3390/app10061902
10.1007/b98882
10.1002/mrm.27106
10.1109/TCI.2016.2644865
10.1109/TMI.2017.2785879
10.1109/TMI.2020.2974858
10.1002/mrm.28148
10.1088/1361-6560/aac71a
10.1038/s41598-020-70479-z
10.1016/j.compbiomed.2021.105010
10.1016/j.ejrad.2020.109430
10.1038/s41598-021-87482-7
10.1002/jmri.27078
10.1109/MSP.2019.2950433
10.3390/s22051766
10.1016/j.mri.2020.04.007
10.1109/CVPR42600.2020.01284
10.1109/ICCVW54120.2021.00217
10.1109/TSP.2019.8768829
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2015.7298594
10.18653/v1/P19-1266
10.1109/CVPRW.2019.00073
10.1109/VCIP.2017.8305143
10.23919/EUSIPCO54536.2021.9615963
10.1007/978-3-030-88081-1_60
10.1007/978-3-030-59861-7_64
10.1109/CVPR.2016.90
10.1007/978-3-030-33843-5_6
10.1007/978-3-030-11021-5_20
10.1109/ICASSP.2018.8461664
10.1007/978-3-031-43999-5_47
10.1109/NAECON46414.2019.9057834
10.1007/978-3-030-11726-9_21
10.1117/12.2513158
10.1007/978-3-030-00928-1_11
ContentType Journal Article
Copyright The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB).
Copyright_xml – notice: The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB).
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1007/s10334-023-01127-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1352-8661
EndPage 528
ExternalDocumentID 37989921
10_1007_s10334_023_01127_6
Genre Journal Article
GroupedDBID ---
--K
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1B1
1N0
1SB
203
28-
29M
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
7X7
88E
88I
8FE
8FG
8FH
8FI
8FJ
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANXM
AANZL
AAQFI
AAQXK
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIUM
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACRPL
ACSNA
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMUD
ADNMO
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FDB
FEDTE
FERAY
FFXSO
FGOYB
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK5
LLZTM
M1P
M2P
M41
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9S
PCBAR
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R2-
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SEW
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
SSZ
STPWE
SV3
SZ9
SZN
T13
T16
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UHS
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
YLTOR
Z45
Z7X
Z82
Z83
Z88
Z8R
Z8V
Z8W
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ADHKG
AEUPX
AFPUW
AGQPQ
CGR
CUY
CVF
ECM
EIF
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7X8
ID FETCH-LOGICAL-c391t-cca55211a8f847de54fd3225c8ebd9c6250f7db90b87646c47d5b6861c81b4f43
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001107753200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1352-8661
IngestDate Fri Sep 05 09:01:58 EDT 2025
Mon Jul 21 05:43:39 EDT 2025
Sat Nov 29 03:00:50 EST 2025
Tue Nov 18 22:18:17 EST 2025
Fri Feb 21 02:38:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Deep learning
Statistical significance
Mixed effects modeling
Enhance
UNet
Undersampled
Language English
License 2023. The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-cca55211a8f847de54fd3225c8ebd9c6250f7db90b87646c47d5b6861c81b4f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10334-023-01127-6.pdf
PMID 37989921
PQID 2892658628
PQPubID 23479
PageCount 22
ParticipantIDs proquest_miscellaneous_2892658628
pubmed_primary_37989921
crossref_primary_10_1007_s10334_023_01127_6
crossref_citationtrail_10_1007_s10334_023_01127_6
springer_journals_10_1007_s10334_023_01127_6
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
PublicationSubtitle Official Journal of the European Society for Magnetic Resonance in Medicine and Biology
PublicationTitle Magma (New York, N.Y.)
PublicationTitleAbbrev Magn Reson Mater Phy
PublicationTitleAlternate MAGMA
PublicationYear 2024
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Aghabiglou, Eksioglu (CR47) 2021; 139
Yang, Yu, Dong, Slabaugh, Dragotti, Ye, Liu, Arridge, Keegan, Guo, Firmin (CR29) 2018; 37
Dar, Özbey, Çatlı, Çukur (CR77) 2020; 84
Cuocolo, Comelli, Stefano, Benfante, Dahiya, Stanzione, Castaldo, De Lucia, Yezzi, Imbriaco (CR35) 2021; 54
CR39
CR38
CR37
Lyu, Shan, Steber, Helis, Whitlow, Chan, Wang (CR57) 2020; 39
Cole, Cheng, Pauly, Vasanawala (CR18) 2021; 86
CR32
CR31
Borji (CR72) 2022; 215
CR75
CR74
CR73
CR70
Sandino, Cheng, Chen, Mardani, Pauly, Vasanawala (CR5) 2020; 37
Lee, Yoo, Tak, Ye (CR9) 2018; 65
Glang, Deshmane, Prokudin, Martin, Herz, Lindig, Bender, Scheffler, Zaiss (CR20) 2020; 84
Zhao, Gallo, Frosio, Kautz (CR24) 2017; 3
Zaiss, Deshmane, Schuppert, Herz, Glang, Ehses, Lindig, Bender, Ernemann, Scheffler (CR21) 2019; 81
Wahlang, Maji, Saha, Chakrabarti, Jasinski, Leonowicz, Jasinska (CR34) 2022; 22
Korkmaz, Dar, Yurt, Ozbey, Cukur (CR78) 2022; 41
Kwon, Kim, Park (CR7) 2017; 44
Pinheiro, Bates (CR36) 2000
CR48
CR46
Ottesen, Caan, Groote, Bjørnerud (CR11) 2023; 36
CR44
Lin, Johnson, Knoll, Lui (CR25) 2021; 53
CR43
Ghodrati, Shao, Bydder, Zhou, Yin, Nguyen, Yang, Hu (CR50) 2019; 9
CR42
CR41
Marcus, Wang, Parker, Csernansky, Morris, Buckner (CR66) 2007; 19
Mazurowski, Buda, Saha, Bashir (CR1) 2019; 49
Han, Yoo, Kim, Shin, Sung, Ye (CR8) 2018; 80
Luo, Zhao, Jiang, Hui, Cao (CR30) 2020; 84
Koonjoo, Zhu, Bagnall, Bhutto, Rosen (CR62) 2021
Cai, Tian, Lui, Zeng, Wu, Chen (CR69) 2020; 10
Bressem, Adams, Erxleben, Hamm, Niehues, Vahldiek (CR76) 2020; 10
Do, Seo, Han, Ye, Choi, Park (CR4) 2020; 47
CR15
Mahapatra, Bozorgtabar, Garnavi (CR16) 2019; 71
Iqbal, Nguyen, Hangel, Motyka, Bogner, Jiang (CR19) 2019
CR56
CR55
CR54
Fuin, Bustin, Küstner, Oksuz, Clough, King, Schnabel, Botnar, Prieto (CR6) 2020; 70
CR53
Güngör, Dar, Öztürk, Korkmaz, Bedel, Elmas, Ozbey, Çukur (CR79) 2023; 88
Ueda, Ohno, Yamamoto, Iwase, Fukuba, Hanamatsu, Obama, Ikeda, Ikedo, Yui, Murayama, Toyama (CR3) 2021; 134
CR52
CR51
Sun, Fan, Ding, Huang, Paisley (CR64) 2019; 63
Akkus, Galimzianova, Hoogi, Rubin, Erickson (CR2) 2017; 30
Lyu, Shan, Wang (CR17) 2020; 6
Hashimoto, Ote, Oida, Teramoto, Ouchi (CR12) 2020; 10
Qiu, Chen, Ma, Fan, Moser, Maya, Christodoulou, Xie, Li (CR58) 2022; 87
LeCun, Bengio, Hinton (CR22) 2015; 521
Hyun, Kim, Lee, Lee, Seo (CR14) 2018; 63
Guan, Khan, Sikdar, Chitnis (CR45) 2020; 24
Li, Anwar, Porikli (CR59) 2020; 98
CR28
Wang, Bovik, Sheikh, Simoncelli (CR65) 2004; 13
CR27
Bustin, Fuin, Botnar, Prieto (CR13) 2020
CR26
Sharma, Tsiamyrtzis, Webb, Seimenis, Loukas, Leiss, Tsekos (CR49) 2022; 12
Abdollahi, Pradhan (CR60) 2021; 6
Han, Sunwoo, Ye (CR10) 2020; 39
CR68
CR23
CR67
Menze, Jakab, Bauer, Kalpathy-Cramer, Farahani, Kirby, Burren, Porz, Slotboom, Wiest, Lanczi, Gerstner, Weber, Arbel, Avants, Ayache, Buendia, Collins, Cordier, Corso, Criminisi, Das, Delingette, Demiralp, Durst, Dojat, Doyle, Festa, Forbes, Geremia, Glocker, Golland, Guo, Hamamci, Iftekharuddin, Jena, John, Konukoglu, Lashkari, Mariz, Meier, Pereira, Precup, Price, Raviv, Reza, Ryan, Sarikaya, Schwartz, Shin, Shotton, Silva, Sousa, Subbanna, Szekely, Taylor, Thomas, Tustison, Unal, Vasseur, Wintermark, Ye, Zhao, Zhao, Zikic, Prastawa, Reyes, Van Leemput (CR33) 2015; 34
Masutani, Bahrami, Hsiao (CR40) 2020; 295
Lauzon, Asman, Crainiceanu, Caffo, Landman, Fichtinger, Martel, Peters (CR61) 2011
CR63
Lucas, Tapia, Molina, Katsaggelos (CR71) 2018
Q Lyu (1127_CR57) 2020; 39
KK Bressem (1127_CR76) 2020; 10
C Li (1127_CR59) 2020; 98
SUH Dar (1127_CR77) 2020; 84
A Aghabiglou (1127_CR47) 2021; 139
A Borji (1127_CR72) 2022; 215
A Güngör (1127_CR79) 2023; 88
1127_CR48
1127_CR46
1127_CR44
Z Akkus (1127_CR2) 2017; 30
1127_CR43
Y LeCun (1127_CR22) 2015; 521
1127_CR42
S Guan (1127_CR45) 2020; 24
1127_CR41
CM Sandino (1127_CR5) 2020; 37
D Mahapatra (1127_CR16) 2019; 71
N Koonjoo (1127_CR62) 2021
Q Lyu (1127_CR17) 2020; 6
Z Wang (1127_CR65) 2004; 13
EM Masutani (1127_CR40) 2020; 295
1127_CR15
Y Han (1127_CR8) 2018; 80
1127_CR56
1127_CR55
1127_CR54
W Do (1127_CR4) 2020; 47
1127_CR53
1127_CR52
1127_CR51
V Ghodrati (1127_CR50) 2019; 9
A Bustin (1127_CR13) 2020
JA Ottesen (1127_CR11) 2023; 36
S Qiu (1127_CR58) 2022; 87
S Cai (1127_CR69) 2020; 10
H Zhao (1127_CR24) 2017; 3
K Kwon (1127_CR7) 2017; 44
DS Marcus (1127_CR66) 2007; 19
1127_CR28
1127_CR27
A Abdollahi (1127_CR60) 2021; 6
1127_CR26
CB Lauzon (1127_CR61) 2011
1127_CR68
1127_CR23
1127_CR67
Z Iqbal (1127_CR19) 2019
R Cuocolo (1127_CR35) 2021; 54
1127_CR63
JC Pinheiro (1127_CR36) 2000
D Lee (1127_CR9) 2018; 65
G Luo (1127_CR30) 2020; 84
T Ueda (1127_CR3) 2021; 134
R Sharma (1127_CR49) 2022; 12
M Zaiss (1127_CR21) 2019; 81
A Lucas (1127_CR71) 2018
Y Han (1127_CR10) 2020; 39
BH Menze (1127_CR33) 2015; 34
1127_CR39
L Sun (1127_CR64) 2019; 63
N Fuin (1127_CR6) 2020; 70
1127_CR38
MA Mazurowski (1127_CR1) 2019; 49
1127_CR37
DJ Lin (1127_CR25) 2021; 53
CM Hyun (1127_CR14) 2018; 63
E Cole (1127_CR18) 2021; 86
1127_CR32
1127_CR31
1127_CR75
1127_CR74
1127_CR73
I Wahlang (1127_CR34) 2022; 22
G Yang (1127_CR29) 2018; 37
1127_CR70
Y Korkmaz (1127_CR78) 2022; 41
F Hashimoto (1127_CR12) 2020; 10
F Glang (1127_CR20) 2020; 84
References_xml – volume: 34
  start-page: 1993
  year: 2015
  end-page: 2024
  ident: CR33
  article-title: The multimodal brain tumor image segmentation benchmark (BRATS)
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2014.2377694
– ident: CR70
– volume: 71
  start-page: 30
  year: 2019
  end-page: 39
  ident: CR16
  article-title: Image super-resolution using progressive generative adversarial networks for medical image analysis
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2018.10.005
– ident: CR68
– ident: CR74
– ident: CR39
– ident: CR51
– year: 2020
  ident: CR13
  article-title: From compressed-sensing to artificial intelligence-based cardiac MRI reconstruction
  publication-title: Front Cardiovasc Med
  doi: 10.3389/fcvm.2020.00017
– volume: 24
  start-page: 568
  year: 2020
  end-page: 576
  ident: CR45
  article-title: Fully dense UNet for 2-D sparse photoacoustic tomography artifact removal
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2912935
– ident: CR54
– volume: 98
  year: 2020
  ident: CR59
  article-title: Underwater scene prior inspired deep underwater image and video enhancement
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2019.107038
– volume: 44
  start-page: 6209
  year: 2017
  end-page: 6224
  ident: CR7
  article-title: A parallel MR imaging method using multilayer perceptron
  publication-title: Med Phys
  doi: 10.1002/mp.12600
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: CR65
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
– volume: 84
  start-page: 450
  year: 2020
  end-page: 466
  ident: CR20
  article-title: DeepCEST 3T: Robust MRI parameter determination and uncertainty quantification with neural networks—application to CEST imaging of the human brain at 3T
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28117
– volume: 9
  start-page: 1516
  year: 2019
  end-page: 1527
  ident: CR50
  article-title: MR image reconstruction using deep learning: evaluation of network structure and loss functions
  publication-title: Quant Imaging Med Surg
  doi: 10.21037/qims.2019.08.10
– volume: 39
  start-page: 377
  year: 2020
  end-page: 386
  ident: CR10
  article-title: k-space deep learning for accelerated MRI
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2019.2927101
– volume: 86
  start-page: 1093
  year: 2021
  end-page: 1109
  ident: CR18
  article-title: Analysis of deep complex-valued convolutional neural networks for MRI reconstruction and phase-focused applications
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28733
– year: 2019
  ident: CR19
  article-title: Super-resolution 1H magnetic resonance spectroscopic imaging utilizing deep learning
  publication-title: Front Oncol
  doi: 10.3389/fonc.2019.01010
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR22
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: CR42
– volume: 19
  start-page: 1498
  year: 2007
  end-page: 1507
  ident: CR66
  article-title: Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults
  publication-title: J Cogn Neurosci
  doi: 10.1162/jocn.2007.19.9.1498
– year: 2018
  ident: CR71
  article-title: Generative adversarial networks and perceptual losses for video super-resolution
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2019.2895768
– ident: CR46
– volume: 215
  year: 2022
  ident: CR72
  article-title: Pros and cons of GAN evaluation measures: new developments
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2021.103329
– volume: 88
  year: 2023
  ident: CR79
  article-title: Adaptive diffusion priors for accelerated MRI reconstruction
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2023.102872
– ident: CR67
– ident: CR75
– ident: CR15
– volume: 10
  start-page: 1275
  year: 2020
  end-page: 1285
  ident: CR69
  article-title: Dense-UNet: a novel multiphoton in vivo cellular image segmentation model based on a convolutional neural network
  publication-title: Quant Imaging Med Surg
  doi: 10.21037/qims-19-1090
– volume: 49
  start-page: 939
  year: 2019
  end-page: 954
  ident: CR1
  article-title: Deep learning in radiology: an overview of the concepts and a survey of the state of the art with focus on MRI
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.26534
– volume: 65
  start-page: 1985
  year: 2018
  end-page: 1995
  ident: CR9
  article-title: Deep residual learning for accelerated MRI using magnitude and phase networks
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2821699
– volume: 87
  start-page: 488
  year: 2022
  end-page: 495
  ident: CR58
  article-title: Multiparametric mapping in the brain from conventional contrast-weighted images using deep learning
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28962
– volume: 54
  start-page: 452
  year: 2021
  end-page: 459
  ident: CR35
  article-title: Deep learning whole-gland and zonal prostate segmentation on a public MRI dataset
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.27585
– ident: CR32
– volume: 41
  start-page: 1747
  year: 2022
  end-page: 1763
  ident: CR78
  article-title: Unsupervised MRI reconstruction via zero-shot learned adversarial transformers
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2022.3147426
– volume: 30
  start-page: 449
  year: 2017
  end-page: 459
  ident: CR2
  article-title: Deep learning for brain MRI segmentation: state of the art and future directions
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-017-9983-4
– volume: 81
  start-page: 3901
  year: 2019
  end-page: 3914
  ident: CR21
  article-title: DeepCEST: 9.4 T Chemical exchange saturation transfer MRI contrast predicted from 3 T data - a proof of concept study
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27690
– volume: 84
  start-page: 2246
  year: 2020
  end-page: 2261
  ident: CR30
  article-title: MRI reconstruction using deep Bayesian estimation
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28274
– ident: CR26
– volume: 295
  start-page: 552
  year: 2020
  end-page: 561
  ident: CR40
  article-title: Deep learning single-frame and multiframe super-resolution for cardiac MRI
  publication-title: Radiology
  doi: 10.1148/radiol.2020192173
– volume: 6
  start-page: 615
  year: 2020
  end-page: 624
  ident: CR17
  article-title: MRI super-resolution with ensemble learning and complementary priors
  publication-title: IEEE Trans Comput Imaging
  doi: 10.1109/TCI.2020.2964201
– volume: 63
  start-page: 185
  year: 2019
  end-page: 192
  ident: CR64
  article-title: Region-of-interest undersampled MRI reconstruction: a deep convolutional neural network approach
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2019.07.010
– volume: 36
  start-page: 65
  year: 2023
  end-page: 77
  ident: CR11
  article-title: A densely interconnected network for deep learning accelerated MRI
  publication-title: Magn Reson Mater Phys, Biol Med
  doi: 10.1007/s10334-022-01041-3
– ident: CR43
– start-page: 107
  year: 2011
  end-page: 115
  ident: CR61
  article-title: Assessment of bias for MRI diffusion tensor imaging using SIMEX
  publication-title: Medical image computing and computer-assisted intervention—MICCAI 2011
– volume: 47
  start-page: 983
  year: 2020
  end-page: 997
  ident: CR4
  article-title: Reconstruction of multicontrast MR images through deep learning
  publication-title: Med Phys
  doi: 10.1002/mp.14006
– volume: 12
  start-page: 11758
  year: 2022
  ident: CR49
  article-title: A deep learning approach to upscaling “low-quality” MR Images: an in silico comparison study based on the UNet framework
  publication-title: Appl Sci
  doi: 10.3390/app122211758
– ident: CR37
– ident: CR53
– volume: 10
  start-page: 1902
  year: 2020
  ident: CR12
  article-title: Compressed-sensing magnetic resonance image reconstruction using an iterative convolutional neural network approach
  publication-title: Appl Sci
  doi: 10.3390/app10061902
– year: 2000
  ident: CR36
  article-title: Mixed-effects models in S and S-PLUS
  publication-title: Springer, Berlin
  doi: 10.1007/b98882
– volume: 80
  start-page: 1189
  year: 2018
  end-page: 1205
  ident: CR8
  article-title: Deep learning with domain adaptation for accelerated projection-reconstruction MR
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27106
– ident: CR56
– volume: 3
  start-page: 47
  year: 2017
  end-page: 57
  ident: CR24
  article-title: Loss functions for image restoration with neural networks
  publication-title: IEEE Trans Comput Imaging
  doi: 10.1109/TCI.2016.2644865
– volume: 37
  start-page: 1310
  year: 2018
  end-page: 1321
  ident: CR29
  article-title: DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2785879
– ident: CR63
– volume: 39
  start-page: 2738
  year: 2020
  end-page: 2749
  ident: CR57
  article-title: Multi-contrast super-resolution MRI through a progressive network
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.2974858
– ident: CR27
– volume: 84
  start-page: 663
  year: 2020
  end-page: 685
  ident: CR77
  article-title: A transfer-learning approach for accelerated MRI using deep neural networks
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28148
– ident: CR23
– volume: 63
  year: 2018
  ident: CR14
  article-title: Deep learning for undersampled MRI reconstruction
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aac71a
– volume: 10
  start-page: 13590
  year: 2020
  ident: CR76
  article-title: Comparing different deep learning architectures for classification of chest radiographs
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-70479-z
– ident: CR44
– ident: CR48
– ident: CR73
– volume: 139
  year: 2021
  ident: CR47
  article-title: MR image reconstruction using densely connected residual convolutional networks
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.105010
– ident: CR38
– ident: CR52
– volume: 6
  year: 2021
  ident: CR60
  article-title: Integrating semantic edges and segmentation information for building extraction from aerial images using UNet
  publication-title: Mach Learn Appl
– ident: CR31
– volume: 134
  year: 2021
  ident: CR3
  article-title: Compressed sensing and deep learning reconstruction for women’s pelvic MRI denoising: utility for improving image quality and examination time in routine clinical practice
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2020.109430
– year: 2021
  ident: CR62
  article-title: Boosting the signal-to-noise of low-field MRI with deep learning image reconstruction
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-87482-7
– volume: 53
  start-page: 1015
  year: 2021
  end-page: 1028
  ident: CR25
  article-title: Artificial intelligence for mr image reconstruction: an overview for clinicians
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.27078
– ident: CR55
– volume: 37
  start-page: 117
  year: 2020
  end-page: 127
  ident: CR5
  article-title: Compressed sensing: from research to clinical practice with deep neural networks: shortening scan times for magnetic resonance imaging
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2019.2950433
– ident: CR28
– ident: CR41
– volume: 22
  start-page: 1766
  year: 2022
  ident: CR34
  article-title: Brain magnetic resonance imaging classification using deep learning architectures with gender and age
  publication-title: Sensors
  doi: 10.3390/s22051766
– volume: 70
  start-page: 155
  year: 2020
  end-page: 167
  ident: CR6
  article-title: A multi-scale variational neural network for accelerating motion-compensated whole-heart 3D coronary MR angiography
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2020.04.007
– volume: 49
  start-page: 939
  year: 2019
  ident: 1127_CR1
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.26534
– ident: 1127_CR67
– ident: 1127_CR73
– volume: 80
  start-page: 1189
  year: 2018
  ident: 1127_CR8
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27106
– volume: 3
  start-page: 47
  year: 2017
  ident: 1127_CR24
  publication-title: IEEE Trans Comput Imaging
  doi: 10.1109/TCI.2016.2644865
– volume: 521
  start-page: 436
  year: 2015
  ident: 1127_CR22
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 65
  start-page: 1985
  year: 2018
  ident: 1127_CR9
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2821699
– volume: 39
  start-page: 377
  year: 2020
  ident: 1127_CR10
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2019.2927101
– year: 2021
  ident: 1127_CR62
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-87482-7
– ident: 1127_CR53
  doi: 10.1109/CVPR42600.2020.01284
– ident: 1127_CR23
  doi: 10.1109/ICCVW54120.2021.00217
– ident: 1127_CR46
  doi: 10.1109/TSP.2019.8768829
– year: 2019
  ident: 1127_CR19
  publication-title: Front Oncol
  doi: 10.3389/fonc.2019.01010
– volume: 88
  year: 2023
  ident: 1127_CR79
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2023.102872
– ident: 1127_CR37
  doi: 10.1007/978-3-319-24574-4_28
– start-page: 107
  volume-title: Medical image computing and computer-assisted intervention—MICCAI 2011
  year: 2011
  ident: 1127_CR61
– ident: 1127_CR27
  doi: 10.1109/CVPR.2015.7298594
– ident: 1127_CR31
  doi: 10.18653/v1/P19-1266
– ident: 1127_CR70
– volume: 19
  start-page: 1498
  year: 2007
  ident: 1127_CR66
  publication-title: J Cogn Neurosci
  doi: 10.1162/jocn.2007.19.9.1498
– volume: 215
  year: 2022
  ident: 1127_CR72
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2021.103329
– volume: 30
  start-page: 449
  year: 2017
  ident: 1127_CR2
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-017-9983-4
– volume: 84
  start-page: 450
  year: 2020
  ident: 1127_CR20
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28117
– ident: 1127_CR68
– volume: 34
  start-page: 1993
  year: 2015
  ident: 1127_CR33
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2014.2377694
– volume: 13
  start-page: 600
  year: 2004
  ident: 1127_CR65
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
– volume: 22
  start-page: 1766
  year: 2022
  ident: 1127_CR34
  publication-title: Sensors
  doi: 10.3390/s22051766
– ident: 1127_CR38
  doi: 10.1109/CVPRW.2019.00073
– year: 2018
  ident: 1127_CR71
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2019.2895768
– volume: 134
  year: 2021
  ident: 1127_CR3
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2020.109430
– ident: 1127_CR32
– volume: 81
  start-page: 3901
  year: 2019
  ident: 1127_CR21
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27690
– ident: 1127_CR54
  doi: 10.1109/VCIP.2017.8305143
– year: 2000
  ident: 1127_CR36
  publication-title: Springer, Berlin
  doi: 10.1007/b98882
– volume: 12
  start-page: 11758
  year: 2022
  ident: 1127_CR49
  publication-title: Appl Sci
  doi: 10.3390/app122211758
– volume: 87
  start-page: 488
  year: 2022
  ident: 1127_CR58
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28962
– volume: 6
  year: 2021
  ident: 1127_CR60
  publication-title: Mach Learn Appl
– ident: 1127_CR74
– volume: 10
  start-page: 1902
  year: 2020
  ident: 1127_CR12
  publication-title: Appl Sci
  doi: 10.3390/app10061902
– volume: 295
  start-page: 552
  year: 2020
  ident: 1127_CR40
  publication-title: Radiology
  doi: 10.1148/radiol.2020192173
– ident: 1127_CR42
  doi: 10.23919/EUSIPCO54536.2021.9615963
– ident: 1127_CR48
  doi: 10.1007/978-3-030-88081-1_60
– ident: 1127_CR28
  doi: 10.1007/978-3-030-59861-7_64
– volume: 44
  start-page: 6209
  year: 2017
  ident: 1127_CR7
  publication-title: Med Phys
  doi: 10.1002/mp.12600
– ident: 1127_CR26
  doi: 10.1109/CVPR.2016.90
– year: 2020
  ident: 1127_CR13
  publication-title: Front Cardiovasc Med
  doi: 10.3389/fcvm.2020.00017
– ident: 1127_CR39
  doi: 10.1007/978-3-030-33843-5_6
– volume: 70
  start-page: 155
  year: 2020
  ident: 1127_CR6
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2020.04.007
– volume: 84
  start-page: 663
  year: 2020
  ident: 1127_CR77
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28148
– volume: 86
  start-page: 1093
  year: 2021
  ident: 1127_CR18
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28733
– ident: 1127_CR55
  doi: 10.1007/978-3-030-11021-5_20
– volume: 63
  start-page: 185
  year: 2019
  ident: 1127_CR64
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2019.07.010
– volume: 139
  year: 2021
  ident: 1127_CR47
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.105010
– volume: 54
  start-page: 452
  year: 2021
  ident: 1127_CR35
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.27585
– ident: 1127_CR52
– volume: 47
  start-page: 983
  year: 2020
  ident: 1127_CR4
  publication-title: Med Phys
  doi: 10.1002/mp.14006
– volume: 6
  start-page: 615
  year: 2020
  ident: 1127_CR17
  publication-title: IEEE Trans Comput Imaging
  doi: 10.1109/TCI.2020.2964201
– ident: 1127_CR75
– volume: 9
  start-page: 1516
  year: 2019
  ident: 1127_CR50
  publication-title: Quant Imaging Med Surg
  doi: 10.21037/qims.2019.08.10
– volume: 53
  start-page: 1015
  year: 2021
  ident: 1127_CR25
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.27078
– volume: 41
  start-page: 1747
  year: 2022
  ident: 1127_CR78
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2022.3147426
– volume: 37
  start-page: 117
  year: 2020
  ident: 1127_CR5
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2019.2950433
– volume: 84
  start-page: 2246
  year: 2020
  ident: 1127_CR30
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28274
– ident: 1127_CR56
  doi: 10.1109/ICASSP.2018.8461664
– ident: 1127_CR63
  doi: 10.1007/978-3-031-43999-5_47
– ident: 1127_CR41
– ident: 1127_CR44
  doi: 10.1109/NAECON46414.2019.9057834
– volume: 39
  start-page: 2738
  year: 2020
  ident: 1127_CR57
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.2974858
– ident: 1127_CR51
  doi: 10.1007/978-3-030-11726-9_21
– volume: 24
  start-page: 568
  year: 2020
  ident: 1127_CR45
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2912935
– volume: 63
  year: 2018
  ident: 1127_CR14
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aac71a
– volume: 71
  start-page: 30
  year: 2019
  ident: 1127_CR16
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2018.10.005
– volume: 36
  start-page: 65
  year: 2023
  ident: 1127_CR11
  publication-title: Magn Reson Mater Phys, Biol Med
  doi: 10.1007/s10334-022-01041-3
– volume: 10
  start-page: 13590
  year: 2020
  ident: 1127_CR76
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-70479-z
– ident: 1127_CR43
  doi: 10.1117/12.2513158
– volume: 10
  start-page: 1275
  year: 2020
  ident: 1127_CR69
  publication-title: Quant Imaging Med Surg
  doi: 10.21037/qims-19-1090
– volume: 98
  year: 2020
  ident: 1127_CR59
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2019.107038
– volume: 37
  start-page: 1310
  year: 2018
  ident: 1127_CR29
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2785879
– ident: 1127_CR15
  doi: 10.1007/978-3-030-00928-1_11
SSID ssj0021503
Score 2.4016383
Snippet Objective This study aims to assess the statistical significance of training parameters in 240 dense UNets (DUNets) used for enhancing low Signal-to-Noise...
This study aims to assess the statistical significance of training parameters in 240 dense UNets (DUNets) used for enhancing low Signal-to-Noise Ratio (SNR)...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 507
SubjectTerms Algorithms
Analysis of Variance
Basic Science - Reconstruction algorithms and artificial intelligence
Biomedical Engineering and Bioengineering
Brain - diagnostic imaging
Computer Appl. in Life Sciences
Deep Learning
Health Informatics
Humans
Image Enhancement - methods
Image Processing, Computer-Assisted - methods
Imaging
Magnetic Resonance Imaging - methods
Medicine
Medicine & Public Health
Neural Networks, Computer
Radiology
Reproducibility of Results
Research Article
Signal-To-Noise Ratio
Solid State Physics
Title Learning to deep learning: statistics and a paradigm test in selecting a UNet architecture to enhance MRI
URI https://link.springer.com/article/10.1007/s10334-023-01127-6
https://www.ncbi.nlm.nih.gov/pubmed/37989921
https://www.proquest.com/docview/2892658628
Volume 37
WOSCitedRecordID wos001107753200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1352-8661
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021503
  issn: 1352-8661
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD64KeKL90u9jAi-aWFtekl9E3EouCHTyd5Km6RzoN1YO3-_J206J5OBvidpOV-S8x1OzncALmgk8dKj0qQRE6bDbd8MqJOYLlJZzqUdNONCxPXR73RYvx886aKwrHrtXqUki5t6rtiNUsdEH4Phr4VrejVYRXfHVMOG7vPrLMxCikN1eczv8366oAVeuZATLVxNa-t_P7kNm5pakptyL-zAikx3Yb2tk-d7MNRaqgOSj4iQckx0y4jBNVF1RaVkM4lSQSKiJMHFcPBBkIrmZJiSrGiYo2ZHpNeROZlPQagVZfqmdhBpdx_2ode6e7m9N3WnBZPTwMpNhNFFP25FLEFvJaTrJEKddM5kLAKOMVIz8UWMwOHl6Xgcx7ixxzyLI-t1EoceQD0dpfIICBO2aIqEBbFHHd9HfDhSIo_7gcWEcJsGWJXxQ65lyFU3jPfwW0BZ2TBEG4aFDUPPgMvZnHEpwrF09HmFaYhnRSVAolSOplmIwaWNjMuzmQGHJdiz9agfYOhpWwZcVciG-jhnSz52_LfhJ7BhIysq3_ueQj2fTOUZrPFPxHjSgJrfZ41iN38B3fTsIg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-xgjZexudGGR9G4g0iJbGT2LxNE4iKtkJQEG9WYjtdpS1Fbbq_f-fEKSBQJXg_O9Gdffc7ne93AMc0Nej0qPFoyrXHVJh4grLcixDKKmVC4WcViWs36ff5w4O4dk1h0-a1e1OSrDz1s2Y3SpmHMQbT3wD3jD_BMsOIZRnzb27v52kWQhzq2mPeXvcyBL3Cla9qolWouVj72E-uw1cHLcnP-ixswJIpNuFzzxXPt2DkuFSHpBwTbcwjcSMjhmfE9hXVlM0kLTRJiaUE16PhX4JQtCSjgkyrgTl2dUru-qYkz0sQdkdT_LYniPRuOttwd3E--HXpuUkLnqIiKD00Y4RxPEh5jtFKm4jl2t50xU2mhcIcyc8TnaHh0HmyWKFMlMU8DhSiXpYz-g1axbgwO0C4DrWvcy6ymLIk8QVXCIlilYiAax35bQga5UvlaMjtNIw_8olA2epQog5lpUMZt-FkvuaxJuFYKH3U2FTiXbEFkLQw49lUYnIZIuKKQ96G77Wx5_vRRGDqGQZtOG0sK911ni742O77xA_hy-Wg15XdTv_qB6yGiJDqt7970ConM7MPK-of2ntyUJ3p_2ea7h4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54Q3zxfpnXCL5pWdukbeKbqMOhDvGGb6FN0jnQbrjO3-9J282JIojvSVryneR8h5PzHYADGhu89KhxaMy1w5QfOYKy1AmQyiplfOEmhYjrVdRq8acncTNWxV-8dh-mJMuaBqvSlOX1nk7rY4VvlDIH_Q2Gwh6uH07CNLMP6W28fvc4CrmQ7tCqVObneV_d0TeO-S0_WridxsL_f3gR5ivKSU5KG1mCCZMtw-x1lVRfgU6lsdomeZdoY3qkaiXRPia23qiUciZxpklMrFS47rRfCVLUnHQy0i8a6djZMXlomZyMpybsiiZ7tpZFrm-bq_DQOL8_vXCqDgyOosLLHYQ3QP_uxTxFL6ZNwFJtbwDFTaKFwtjJTSOdIKB4qbJQ4ZggCXnoKWTDLGV0DaaybmY2gHDta1enXCQhZVHkCq6QKoUqEh7XOnBr4A2BkKqSJ7ddMl7kp7Cy3UOJeyiLPZRhDQ5Hc3qlOMevo_eH-Eo8QzYxEmemO-hLDDp9ZGKhz2uwXgI_Wo9GAkNS36vB0RBlWR3z_i8f2_zb8D2YvTlryKtm63IL5nwkTuWT4G2Yyt8GZgdm1DvC_bZbmPcHdJ73Ag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+deep+learning%3A+statistics+and+a+paradigm+test+in+selecting+a+UNet+architecture+to+enhance+MRI&rft.jtitle=Magma+%28New+York%2C+N.Y.%29&rft.au=Sharma%2C+Rishabh&rft.au=Tsiamyrtzis%2C+Panagiotis&rft.au=Webb%2C+Andrew+G&rft.au=Leiss%2C+Ernst+L&rft.date=2024-07-01&rft.eissn=1352-8661&rft.volume=37&rft.issue=3&rft.spage=507&rft_id=info:doi/10.1007%2Fs10334-023-01127-6&rft_id=info%3Apmid%2F37989921&rft.externalDocID=37989921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-8661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-8661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-8661&client=summon