Application of the hippopotamus optimization algorithm for distribution network reconfiguration with distributed generation considering different load models for enhancement of power system performance
This paper presents an innovative approach to enhance the efficiency of radial distribution networks by optimizing the placement of distributed generation (DG) units and network reconfiguration simultaneously while considering voltage-dependent load models, including constant power, constant current...
Gespeichert in:
| Veröffentlicht in: | Electrical engineering Jg. 107; H. 4; S. 3909 - 3946 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0948-7921, 1432-0487 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper presents an innovative approach to enhance the efficiency of radial distribution networks by optimizing the placement of distributed generation (DG) units and network reconfiguration simultaneously while considering voltage-dependent load models, including constant power, constant current, constant impedance, and composite load models. This study utilizes the Hippopotamus Optimization Algorithm (HOA), a novel approach inspired by the unique behaviors of hippopotamuses, for optimal DG planning and network reconfiguration. By mimicking the hippos' strategic positioning, defense mechanisms, and evasion techniques, HOA is used to optimize the weighted sum of multiple objective functions, including active and reactive power losses and bus voltage deviation. Additionally, the study analyzes the impact of various DG planning strategies with network reconfiguration on energy loss cost savings. The effectiveness of the HOA is demonstrated on 84-node practical and 141-node radial distribution networks. The results demonstrated that combining strategic DG placement with network reconfiguration significantly improved system performance across different voltage-dependent load models. This combined approach outperformed DG planning without reconfiguration under optimal power factor conditions, improving active power loss by 55.47%, reactive power loss by 55.85%, and bus voltage deviation by 47.86% in the 84-node network and 91.20%, 91.56%, and 78.50% in the 141-node network. Additionally, the efficacy of HOA is compared with practical swarm optimization, whale optimization, grasshopper optimization, zebra optimization, coot bird optimizer, and firefly algorithms. Overall, this approach significantly enhances the efficiency and reliability of power distribution networks, especially within complex power systems. |
|---|---|
| AbstractList | This paper presents an innovative approach to enhance the efficiency of radial distribution networks by optimizing the placement of distributed generation (DG) units and network reconfiguration simultaneously while considering voltage-dependent load models, including constant power, constant current, constant impedance, and composite load models. This study utilizes the Hippopotamus Optimization Algorithm (HOA), a novel approach inspired by the unique behaviors of hippopotamuses, for optimal DG planning and network reconfiguration. By mimicking the hippos' strategic positioning, defense mechanisms, and evasion techniques, HOA is used to optimize the weighted sum of multiple objective functions, including active and reactive power losses and bus voltage deviation. Additionally, the study analyzes the impact of various DG planning strategies with network reconfiguration on energy loss cost savings. The effectiveness of the HOA is demonstrated on 84-node practical and 141-node radial distribution networks. The results demonstrated that combining strategic DG placement with network reconfiguration significantly improved system performance across different voltage-dependent load models. This combined approach outperformed DG planning without reconfiguration under optimal power factor conditions, improving active power loss by 55.47%, reactive power loss by 55.85%, and bus voltage deviation by 47.86% in the 84-node network and 91.20%, 91.56%, and 78.50% in the 141-node network. Additionally, the efficacy of HOA is compared with practical swarm optimization, whale optimization, grasshopper optimization, zebra optimization, coot bird optimizer, and firefly algorithms. Overall, this approach significantly enhances the efficiency and reliability of power distribution networks, especially within complex power systems. This paper presents an innovative approach to enhance the efficiency of radial distribution networks by optimizing the placement of distributed generation (DG) units and network reconfiguration simultaneously while considering voltage-dependent load models, including constant power, constant current, constant impedance, and composite load models. This study utilizes the Hippopotamus Optimization Algorithm (HOA), a novel approach inspired by the unique behaviors of hippopotamuses, for optimal DG planning and network reconfiguration. By mimicking the hippos' strategic positioning, defense mechanisms, and evasion techniques, HOA is used to optimize the weighted sum of multiple objective functions, including active and reactive power losses and bus voltage deviation. Additionally, the study analyzes the impact of various DG planning strategies with network reconfiguration on energy loss cost savings. The effectiveness of the HOA is demonstrated on 84-node practical and 141-node radial distribution networks. The results demonstrated that combining strategic DG placement with network reconfiguration significantly improved system performance across different voltage-dependent load models. This combined approach outperformed DG planning without reconfiguration under optimal power factor conditions, improving active power loss by 55.47%, reactive power loss by 55.85%, and bus voltage deviation by 47.86% in the 84-node network and 91.20%, 91.56%, and 78.50% in the 141-node network. Additionally, the efficacy of HOA is compared with practical swarm optimization, whale optimization, grasshopper optimization, zebra optimization, coot bird optimizer, and firefly algorithms. Overall, this approach significantly enhances the efficiency and reliability of power distribution networks, especially within complex power systems. |
| Author | Tiwari, Prabhakar Pratap, Arvind Maurya, Priyanka |
| Author_xml | – sequence: 1 givenname: Priyanka surname: Maurya fullname: Maurya, Priyanka email: priya456maurya@gmail.com organization: Department of Electrical Engineering, Madan Mohan Malaviya University of Technology – sequence: 2 givenname: Prabhakar surname: Tiwari fullname: Tiwari, Prabhakar organization: Department of Electrical Engineering, Madan Mohan Malaviya University of Technology – sequence: 3 givenname: Arvind surname: Pratap fullname: Pratap, Arvind organization: Department of Electrical Engineering, Madan Mohan Malaviya University of Technology |
| BookMark | eNp9kcFu3CAURVGVSpmk_YGskLp2izG2YRlFbVMpUjftGmH8mCG1gQLWJP3D_FXwOFKkLrJ4IHHP5T24F-jMeQcIXdXkc01I_yURQgmtCGWl-rI-vEO7mjXliPH-DO2IYLzqBa3P0UVK94SQphVsh56uQ5isVtl6h73B-QD4YEPwwWc1Lwn7kO1s_22AmvY-2nyYsfERjzblaIflJDnIRx__4AjaO2P3S9wsx4K_kjDiPTh40QqZ7AjRun1BjIEILuPJqxHPfoQpndqAOyinYV61MmHwR4g4PaYMMw4QCzKv-gf03qgpwceX_RL9_vb1181tdffz-4-b67tKN6LOleZ0bDUzvGe9Hmqh-kFwqrpBdSPXHeOEE6rGWjEmup5DQZsBeGsEJcAEaS7Rp-3eEP3fBVKW936JrrSUDW3btdquUHyjdPQpRTBS23x6dY7KTrImcg1ObsHJEpw8BScfipX-Zw3Rzio-vm1qNlMK63dCfJ3qDdcz83a19A |
| CitedBy_id | crossref_primary_10_3390_su17062536 crossref_primary_10_1038_s41598_025_89316_2 crossref_primary_10_1063_5_0249695 crossref_primary_10_1093_jcde_qwaf007 |
| Cites_doi | 10.1109/TEC.2010.2044414 10.1007/S10489-017-1019-8/TABLES/9 10.1049/IET-GTD.2017.0338 10.1080/15325008.2020.1797935 10.1109/JSYST.2021.3136778 10.1016/J.ASOC.2015.02.028 10.22266/ijies2023.0430.24 10.1016/J.EPSR.2004.01.006 10.1016/j.heliyon.2024.e26343 10.21203/RS.3.RS-2765810/V1 10.1049/IET-GTD.2015.1034 10.1016/J.APENERGY.2017.10.106 10.1080/01430750.2019.1583604 10.1016/J.EPSR.2005.03.002 10.1109/TPWRS.2011.2180406 10.1016/J.AEJ.2022.01.056 10.1016/J.IJEPES.2014.06.011 10.1109/ACCESS.2021.3134872 10.1016/J.ASEJ.2019.08.015 10.15676/ijeei.2020.13.2.5 10.52549/IJEEI.V9I4.3432 10.1109/ICADEE51157.2020.9368909 10.1109/TPWRD.2011.2158246 10.1049/IET-GTD.2020.0917 10.1109/ICNN.1995.488968 10.1016/J.AEJ.2021.09.063 10.1007/S00521-020-05092-2/TABLES/12 10.1016/J.ADVENGSOFT.2016.01.008 10.1155/2023/6081991 10.2139/SSRN.4173700 10.1007/S42452-021-04466-Y/FIGURES/8 10.2298/SJEE2401001P 10.1109/ACCESS.2022.3172789 10.1016/J.ESWA.2021.115352 10.1038/s41598-024-54910-3 10.1155/2020/1615792 10.1109/IT48810.2020.9070762 10.1016/J.ASOC.2020.106293 10.1109/ACCESS.2022.3155484 10.1109/ACCESS.2021.3076670 10.1155/2022/5015771 10.1109/TPWRS.2012.2197227 10.1504/IJSI.2013.055801 10.1109/TASE.2021.3072862 10.1016/J.EPSR.2007.10.002 10.1109/MPER.1989.4310641 10.1080/15325008.2016.1266714 10.18273/revuin.v22n3-2023007 10.1080/01430750.2018.1517688 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00202-024-02724-x |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1432-0487 |
| EndPage | 3946 |
| ExternalDocumentID | 10_1007_s00202_024_02724_x |
| GroupedDBID | -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L8X LAS LLZTM M4Y MA- MK~ ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX ABFSG ABJCF ABRTQ ACSTC AEZWR AFFHD AFHIU AFKRA AHWEU AIXLP ARAPS ATHPR BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c391t-c82d5c4f8747cb19a7b982a6ba6d8c6480802ad1a449678ec4f3be85f920e4903 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001320125500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0948-7921 |
| IngestDate | Tue Sep 30 03:13:21 EDT 2025 Tue Nov 18 22:36:46 EST 2025 Sat Nov 29 08:01:06 EST 2025 Sun Apr 20 01:10:35 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Voltage-dependent load models Bus voltage deviation reduction Loss reduction Optimal placement of DG Hippopotamus optimization algorithm Network reconfiguration |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c391t-c82d5c4f8747cb19a7b982a6ba6d8c6480802ad1a449678ec4f3be85f920e4903 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3255325556 |
| PQPubID | 2044221 |
| PageCount | 38 |
| ParticipantIDs | proquest_journals_3255325556 crossref_citationtrail_10_1007_s00202_024_02724_x crossref_primary_10_1007_s00202_024_02724_x springer_journals_10_1007_s00202_024_02724_x |
| PublicationCentury | 2000 |
| PublicationDate | 20250400 2025-04-00 20250401 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 4 year: 2025 text: 20250400 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | Archiv für Elektrotechnik |
| PublicationTitle | Electrical engineering |
| PublicationTitleAbbrev | Electr Eng |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | RS Rao (2724_CR41) 2013; 28 E Trojovska (2724_CR36) 2022; 10 AA Juan (2724_CR42) 1989; 9 K Balu (2724_CR43) 2020; 48 MI Akbar (2724_CR15) 2022; 10 U Raut (2724_CR46) 2020; 92 PH Kumar (2724_CR17) 2021; 9 MH Amiri (2724_CR32) 2024; 14 TT Tran (2724_CR9) 2020; 11 M Ali Shaik (2724_CR13) 2022; 61 J Kennedy (2724_CR33) 1995; 4 SZ Mirjalili (2724_CR35) 2018; 48 MDG Leite (2724_CR6) 2022 V Janamala (2724_CR44) 2021; 3 W El-Khattam (2724_CR1) 2004; 71 T Jayabarathi (2724_CR27) 2024; 10 AM Helmi (2724_CR48) 2022; 19 A El-Fergany (2724_CR47) 2015; 30 AM Shaheen (2724_CR28) 2021; 9 FS Abu-Mouti (2724_CR12) 2011; 26 S Mirjalili (2724_CR34) 2016; 95 A Pratap (2724_CR21) 2024; 21 M Kashyap (2724_CR2) 2020; 41 THB Huy (2724_CR24) 2022; 61 2724_CR31 SK Dash (2724_CR10) 2021; 13 N Kanwar (2724_CR19) 2017; 45 AR Abd El-maksoud (2724_CR23) 2023; 16 TT Nguyen (2724_CR26) 2021; 33 MV dos Santos (2724_CR25) 2020; 14 AK Bohre (2724_CR18) 2016; 10 A Shaheen (2724_CR30) 2022; 16 2724_CR3 K Jasthi (2724_CR8) 2018; 12 T Tran The (2724_CR11) 2020; 2020 THB Huy (2724_CR22) 2023; 2023 A Ehsan (2724_CR39) 2018; 210 CT Su (2724_CR40) 2005; 75 TT Nguyen (2724_CR29) 2022; 2022 XS Yang (2724_CR38) 2013; 1 RA Jabr (2724_CR4) 2012; 27 I Naruei (2724_CR37) 2021; 183 DQ Hung (2724_CR45) 2010; 25 KS Sambaiah (2724_CR14) 2021; 42 T Van Tran (2724_CR20) 2021; 9 HM Khodr (2724_CR49) 2008; 78 OD Montoya-Giraldo (2724_CR5) 2023; 22 A Mohamed Imran (2724_CR16) 2014; 63 2724_CR7 |
| References_xml | – volume: 25 start-page: 814 issue: 3 year: 2010 ident: 2724_CR45 publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2010.2044414 – volume: 48 start-page: 805 issue: 4 year: 2018 ident: 2724_CR35 publication-title: Appl Intell doi: 10.1007/S10489-017-1019-8/TABLES/9 – volume: 12 start-page: 1303 issue: 6 year: 2018 ident: 2724_CR8 publication-title: IET Gener Transm Distrib doi: 10.1049/IET-GTD.2017.0338 – volume: 48 start-page: 697 issue: 6–7 year: 2020 ident: 2724_CR43 publication-title: Elect Power Comp Syst doi: 10.1080/15325008.2020.1797935 – volume: 16 start-page: 6371 issue: 4 year: 2022 ident: 2724_CR30 publication-title: iEEE Syst J doi: 10.1109/JSYST.2021.3136778 – volume: 30 start-page: 803 year: 2015 ident: 2724_CR47 publication-title: Appl Soft Comput doi: 10.1016/J.ASOC.2015.02.028 – volume: 16 start-page: 2023 issue: 2 year: 2023 ident: 2724_CR23 publication-title: Int J Intell Eng Syst doi: 10.22266/ijies2023.0430.24 – volume: 71 start-page: 119 issue: 2 year: 2004 ident: 2724_CR1 publication-title: Elect Power Syst Res doi: 10.1016/J.EPSR.2004.01.006 – volume: 10 start-page: e26343 issue: 7 year: 2024 ident: 2724_CR27 publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e26343 – ident: 2724_CR3 doi: 10.21203/RS.3.RS-2765810/V1 – volume: 10 start-page: 2606 issue: 11 year: 2016 ident: 2724_CR18 publication-title: IET Gener Transm Distrib doi: 10.1049/IET-GTD.2015.1034 – volume: 210 start-page: 44 year: 2018 ident: 2724_CR39 publication-title: Appl Energy doi: 10.1016/J.APENERGY.2017.10.106 – volume: 42 start-page: 1018 issue: 9 year: 2021 ident: 2724_CR14 publication-title: Int J Ambient Energy doi: 10.1080/01430750.2019.1583604 – volume: 75 start-page: 190 issue: 2–3 year: 2005 ident: 2724_CR40 publication-title: Elect Power Syst Res doi: 10.1016/J.EPSR.2005.03.002 – volume: 27 start-page: 1106 issue: 2 year: 2012 ident: 2724_CR4 publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2011.2180406 – volume: 61 start-page: 8069 issue: 10 year: 2022 ident: 2724_CR24 publication-title: Alexandria Eng J doi: 10.1016/J.AEJ.2022.01.056 – volume: 63 start-page: 461 year: 2014 ident: 2724_CR16 publication-title: Int J Elect Power Energy Syst doi: 10.1016/J.IJEPES.2014.06.011 – volume: 9 start-page: 165618 year: 2021 ident: 2724_CR20 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3134872 – volume: 11 start-page: 389 issue: 2 year: 2020 ident: 2724_CR9 publication-title: Ain Shams Eng J doi: 10.1016/J.ASEJ.2019.08.015 – volume: 13 start-page: 318 issue: 2 year: 2021 ident: 2724_CR10 publication-title: Int J Elect Eng Inform doi: 10.15676/ijeei.2020.13.2.5 – volume: 9 start-page: 880 issue: 4 year: 2021 ident: 2724_CR17 publication-title: Indonesian J Elect Eng Inform (IJEEI) doi: 10.52549/IJEEI.V9I4.3432 – ident: 2724_CR7 doi: 10.1109/ICADEE51157.2020.9368909 – volume: 26 start-page: 2090 issue: 4 year: 2011 ident: 2724_CR12 publication-title: IEEE Trans Power Delivery doi: 10.1109/TPWRD.2011.2158246 – volume: 14 start-page: 6526 issue: 26 year: 2020 ident: 2724_CR25 publication-title: IET Gener Transm Distrib doi: 10.1049/IET-GTD.2020.0917 – volume: 4 start-page: 1942 year: 1995 ident: 2724_CR33 publication-title: Proc ICNN’95 Int Conf Neural Netw doi: 10.1109/ICNN.1995.488968 – volume: 61 start-page: 4081 issue: 5 year: 2022 ident: 2724_CR13 publication-title: Alexandria Eng J doi: 10.1016/J.AEJ.2021.09.063 – volume: 33 start-page: 1625 issue: 5 year: 2021 ident: 2724_CR26 publication-title: Neural Comput Appl doi: 10.1007/S00521-020-05092-2/TABLES/12 – volume: 95 start-page: 51 year: 2016 ident: 2724_CR34 publication-title: Adv Eng Softw doi: 10.1016/J.ADVENGSOFT.2016.01.008 – volume: 2023 start-page: 6081991 issue: 1 year: 2023 ident: 2724_CR22 publication-title: J Control Sci Eng doi: 10.1155/2023/6081991 – year: 2022 ident: 2724_CR6 publication-title: SSRN Electron J doi: 10.2139/SSRN.4173700 – volume: 3 start-page: 1 issue: 4 year: 2021 ident: 2724_CR44 publication-title: SN Appl Sci doi: 10.1007/S42452-021-04466-Y/FIGURES/8 – volume: 21 start-page: 1 issue: 1 year: 2024 ident: 2724_CR21 publication-title: Serbian J Elect Eng doi: 10.2298/SJEE2401001P – volume: 10 start-page: 49445 year: 2022 ident: 2724_CR36 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3172789 – volume: 183 start-page: 115352 year: 2021 ident: 2724_CR37 publication-title: Expert Syst Appl doi: 10.1016/J.ESWA.2021.115352 – volume: 14 start-page: 1 issue: 1 year: 2024 ident: 2724_CR32 publication-title: Sci Rep doi: 10.1038/s41598-024-54910-3 – volume: 2020 start-page: 1615792 issue: 1 year: 2020 ident: 2724_CR11 publication-title: Math Probl Eng doi: 10.1155/2020/1615792 – ident: 2724_CR31 doi: 10.1109/IT48810.2020.9070762 – volume: 92 start-page: 106293 year: 2020 ident: 2724_CR46 publication-title: Appl Soft Comput doi: 10.1016/J.ASOC.2020.106293 – volume: 10 start-page: 25669 year: 2022 ident: 2724_CR15 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3155484 – volume: 9 start-page: 67186 year: 2021 ident: 2724_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3076670 – volume: 2022 start-page: 5015771 issue: 1 year: 2022 ident: 2724_CR29 publication-title: Math Probl Eng doi: 10.1155/2022/5015771 – volume: 28 start-page: 317 issue: 1 year: 2013 ident: 2724_CR41 publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2012.2197227 – volume: 1 start-page: 36 issue: 1 year: 2013 ident: 2724_CR38 publication-title: Int J Swarm Intell doi: 10.1504/IJSI.2013.055801 – volume: 19 start-page: 82 issue: 1 year: 2022 ident: 2724_CR48 publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2021.3072862 – volume: 78 start-page: 1192 issue: 7 year: 2008 ident: 2724_CR49 publication-title: Elect Power Syst Res doi: 10.1016/J.EPSR.2007.10.002 – volume: 9 start-page: 101 issue: 4 year: 1989 ident: 2724_CR42 publication-title: IEEE Power Eng Rev doi: 10.1109/MPER.1989.4310641 – volume: 45 start-page: 476 issue: 5 year: 2017 ident: 2724_CR19 publication-title: Electric Power Comp Syst doi: 10.1080/15325008.2016.1266714 – volume: 22 start-page: 87 issue: 3 year: 2023 ident: 2724_CR5 publication-title: Rev UIS Ing doi: 10.18273/revuin.v22n3-2023007 – volume: 41 start-page: 1561 issue: 14 year: 2020 ident: 2724_CR2 publication-title: Int J Ambient Energy doi: 10.1080/01430750.2018.1517688 |
| SSID | ssj0003594 |
| Score | 2.4184775 |
| Snippet | This paper presents an innovative approach to enhance the efficiency of radial distribution networks by optimizing the placement of distributed generation (DG)... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3909 |
| SubjectTerms | Algorithms Deviation Distributed generation Economics and Management Effectiveness Electric potential Electric power loss Electrical Engineering Electrical loads Electrical Machines and Networks Energy Policy Engineering Fractals Heuristic Heuristic methods Impact analysis Networks Neural networks Nodes Optimization Optimization algorithms Optimization techniques Original Paper Placement Power Electronics Power factor Radial distribution Reactive power Reconfiguration Systems stability Test systems Voltage |
| Title | Application of the hippopotamus optimization algorithm for distribution network reconfiguration with distributed generation considering different load models for enhancement of power system performance |
| URI | https://link.springer.com/article/10.1007/s00202-024-02724-x https://www.proquest.com/docview/3255325556 |
| Volume | 107 |
| WOSCitedRecordID | wos001320125500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-0487 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003594 issn: 0948-7921 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQ9FAOQCmI5aU59EYjJU686xxXCNQTQgIqbpHjx-5Ku0m0ySL-Iv-KseNsoGorwSG5eOJY8tgz4_F8HyE_YvRhpchlYBg1QcKNTRLmLDCRkSN0J4wKW7KJ0c0Nf3xMb31RWN3ddu9Skm6nXhe7Wc-GBmhTbN4R3-g5bjGLNmNj9Lvf6_03Zo7-EOMWHoxSGvlSmb_38d4c9T7mH2lRZ22udz83zj2y471LGLfq8I1s6GKfbL_BHPxOXsZ9yhpKA-gAwnRWVWVVNmKxqqHETWThqzNBzCflctZMF4DOLSiLsusJsqBoL5CDC6nNbLJqdQnsyW4vqRVMHLK1a5OeHhRHAh01SwPzUihwlDy1-40uplYX7bmlHWFlidyghZyGqi90OCAP11f3l78Cz-cQyDiNmkByqphMDMcQRuZRKkZ5yqkY5mKouBwmFuKSChWJJEnRhmoUjXPNmUlpqJM0jA_JZlEW-ogAVzSRaN9DjQFuFHIhImU0o0owZkHkBiTqpjWTHuzccm7MszVMs5umDKcpc9OUPQ_IxfqbqoX6-K_0aactmV_2dRZjgGYfNhyQn5129M3_7u34Y-In5Cu1PMTuBtEp2WyWK31GvsinZlYvz91yeAXK6QyV |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUqqEQ5QAutupS2c-BWIiVOvOscUVVEVbpCglbcIscfuyvtJtEmi_oX-68YO86mIECih-TiiWPJY8-Mx_MeIUcx-rBS5DIwjJog4cYmCXMWmMjIEboTRoUt2cRoPObX1-mFLwqru9vuXUrS7dTrYjfr2dAAbYrNO-IbPcfNxNLs2Bj98vd6_42Zoz_EuIUHo5RGvlTm4T7umqPex7yXFnXW5nT3_8b5mux47xJOWnV4Q17oYo9s_4M5uE_-nvQpaygNoAMI01lVlVXZiMWqhhI3kYWvzgQxn5TLWTNdADq3oCzKrifIgqK9QA4upDazyarVJbAnu72kVjBxyNauTXp6UBwJdNQsDcxLocBR8tTuN7qYWl2055Z2hJUlcoMWchqqvtDhLfl1-u3q61ng-RwCGadRE0hOFZOJ4RjCyDxKxShPORXDXAwVl8PEQlxSoSKRJCnaUI2ica45MykNdZKG8TuyUZSFfk-AK5pItO-hxgA3CrkQkTKaUSUYsyByAxJ105pJD3ZuOTfm2Rqm2U1ThtOUuWnK_gzIl_U3VQv18aT0YactmV_2dRZjgGYfNhyQ4047-ubHezt4nvhnsnV29fM8O_8-_vGBvKKWk9jdJjokG81ypT-Sl_KmmdXLT25p3AJnZw95 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF5VtKrKAUopIhDKHHqjFvbam6yPERBRFUURfYibtd5HEimxrcRB_Yv9V51d2zGgFqnqwb54vF5pxjszOzvfR8jHEGNYKVLpGUaNF3Fji4Qp80xgZB_DCaP8imyiPxrxu7t4_KCL3512b0qSVU-DRWnKyvNCmfNN45uNcqiH_sXWIPGOUeTLCDMZe6jr9uuPzVocMkeFiDkM9_oxDeq2mT-P8dg1tfHmkxKp8zzD3f-f81uyU0edMKjMZI-80Nk7sv0Ai3Cf_Bq0pWzIDWBgCNNZUeRFXorFegU5Li6LumsTxHySL2fldAEY9IKy6Ls1cRZk1cFycKm2mU3WlY2B3fFtJbWCiUO8ds9kTRuKM4GGsqWEeS4UOKqelfuMzqbWRu1-pp1hYQneoIKihqJtgHhPvg-vvl1cezXPgyfDOCg9yaliMjIcUxuZBrHopzGnopeKnuKyF1noSypUIKIoRt-qUTRMNWcmpr6OYj88IFtZnulDAlzRSKLf9zUmvoHPhQiU0YwqwZgFl-uQoFFxImsQdMvFMU828M1OTQmqKXFqSn52yNnmnaKCAHlWuttYTlIvB6skxMTNXqzXIZ8aS2kf_320o38TPyWvx5fD5Obz6MsxeUMtVbE7ZNQlW-VyrU_IK3lfzlbLD-4v-Q3dzhhd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+the+hippopotamus+optimization+algorithm+for+distribution+network+reconfiguration+with+distributed+generation+considering+different+load+models+for+enhancement+of+power+system+performance&rft.jtitle=Electrical+engineering&rft.au=Maurya%2C+Priyanka&rft.au=Tiwari%2C+Prabhakar&rft.au=Pratap%2C+Arvind&rft.date=2025-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0948-7921&rft.eissn=1432-0487&rft.volume=107&rft.issue=4&rft.spage=3909&rft.epage=3946&rft_id=info:doi/10.1007%2Fs00202-024-02724-x&rft.externalDocID=10_1007_s00202_024_02724_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0948-7921&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0948-7921&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0948-7921&client=summon |