Application of the hippopotamus optimization algorithm for distribution network reconfiguration with distributed generation considering different load models for enhancement of power system performance

This paper presents an innovative approach to enhance the efficiency of radial distribution networks by optimizing the placement of distributed generation (DG) units and network reconfiguration simultaneously while considering voltage-dependent load models, including constant power, constant current...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrical engineering Jg. 107; H. 4; S. 3909 - 3946
Hauptverfasser: Maurya, Priyanka, Tiwari, Prabhakar, Pratap, Arvind
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2025
Springer Nature B.V
Schlagworte:
ISSN:0948-7921, 1432-0487
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents an innovative approach to enhance the efficiency of radial distribution networks by optimizing the placement of distributed generation (DG) units and network reconfiguration simultaneously while considering voltage-dependent load models, including constant power, constant current, constant impedance, and composite load models. This study utilizes the Hippopotamus Optimization Algorithm (HOA), a novel approach inspired by the unique behaviors of hippopotamuses, for optimal DG planning and network reconfiguration. By mimicking the hippos' strategic positioning, defense mechanisms, and evasion techniques, HOA is used to optimize the weighted sum of multiple objective functions, including active and reactive power losses and bus voltage deviation. Additionally, the study analyzes the impact of various DG planning strategies with network reconfiguration on energy loss cost savings. The effectiveness of the HOA is demonstrated on 84-node practical and 141-node radial distribution networks. The results demonstrated that combining strategic DG placement with network reconfiguration significantly improved system performance across different voltage-dependent load models. This combined approach outperformed DG planning without reconfiguration under optimal power factor conditions, improving active power loss by 55.47%, reactive power loss by 55.85%, and bus voltage deviation by 47.86% in the 84-node network and 91.20%, 91.56%, and 78.50% in the 141-node network. Additionally, the efficacy of HOA is compared with practical swarm optimization, whale optimization, grasshopper optimization, zebra optimization, coot bird optimizer, and firefly algorithms. Overall, this approach significantly enhances the efficiency and reliability of power distribution networks, especially within complex power systems.
AbstractList This paper presents an innovative approach to enhance the efficiency of radial distribution networks by optimizing the placement of distributed generation (DG) units and network reconfiguration simultaneously while considering voltage-dependent load models, including constant power, constant current, constant impedance, and composite load models. This study utilizes the Hippopotamus Optimization Algorithm (HOA), a novel approach inspired by the unique behaviors of hippopotamuses, for optimal DG planning and network reconfiguration. By mimicking the hippos' strategic positioning, defense mechanisms, and evasion techniques, HOA is used to optimize the weighted sum of multiple objective functions, including active and reactive power losses and bus voltage deviation. Additionally, the study analyzes the impact of various DG planning strategies with network reconfiguration on energy loss cost savings. The effectiveness of the HOA is demonstrated on 84-node practical and 141-node radial distribution networks. The results demonstrated that combining strategic DG placement with network reconfiguration significantly improved system performance across different voltage-dependent load models. This combined approach outperformed DG planning without reconfiguration under optimal power factor conditions, improving active power loss by 55.47%, reactive power loss by 55.85%, and bus voltage deviation by 47.86% in the 84-node network and 91.20%, 91.56%, and 78.50% in the 141-node network. Additionally, the efficacy of HOA is compared with practical swarm optimization, whale optimization, grasshopper optimization, zebra optimization, coot bird optimizer, and firefly algorithms. Overall, this approach significantly enhances the efficiency and reliability of power distribution networks, especially within complex power systems.
This paper presents an innovative approach to enhance the efficiency of radial distribution networks by optimizing the placement of distributed generation (DG) units and network reconfiguration simultaneously while considering voltage-dependent load models, including constant power, constant current, constant impedance, and composite load models. This study utilizes the Hippopotamus Optimization Algorithm (HOA), a novel approach inspired by the unique behaviors of hippopotamuses, for optimal DG planning and network reconfiguration. By mimicking the hippos' strategic positioning, defense mechanisms, and evasion techniques, HOA is used to optimize the weighted sum of multiple objective functions, including active and reactive power losses and bus voltage deviation. Additionally, the study analyzes the impact of various DG planning strategies with network reconfiguration on energy loss cost savings. The effectiveness of the HOA is demonstrated on 84-node practical and 141-node radial distribution networks. The results demonstrated that combining strategic DG placement with network reconfiguration significantly improved system performance across different voltage-dependent load models. This combined approach outperformed DG planning without reconfiguration under optimal power factor conditions, improving active power loss by 55.47%, reactive power loss by 55.85%, and bus voltage deviation by 47.86% in the 84-node network and 91.20%, 91.56%, and 78.50% in the 141-node network. Additionally, the efficacy of HOA is compared with practical swarm optimization, whale optimization, grasshopper optimization, zebra optimization, coot bird optimizer, and firefly algorithms. Overall, this approach significantly enhances the efficiency and reliability of power distribution networks, especially within complex power systems.
Author Tiwari, Prabhakar
Pratap, Arvind
Maurya, Priyanka
Author_xml – sequence: 1
  givenname: Priyanka
  surname: Maurya
  fullname: Maurya, Priyanka
  email: priya456maurya@gmail.com
  organization: Department of Electrical Engineering, Madan Mohan Malaviya University of Technology
– sequence: 2
  givenname: Prabhakar
  surname: Tiwari
  fullname: Tiwari, Prabhakar
  organization: Department of Electrical Engineering, Madan Mohan Malaviya University of Technology
– sequence: 3
  givenname: Arvind
  surname: Pratap
  fullname: Pratap, Arvind
  organization: Department of Electrical Engineering, Madan Mohan Malaviya University of Technology
BookMark eNp9kcFu3CAURVGVSpmk_YGskLp2izG2YRlFbVMpUjftGmH8mCG1gQLWJP3D_FXwOFKkLrJ4IHHP5T24F-jMeQcIXdXkc01I_yURQgmtCGWl-rI-vEO7mjXliPH-DO2IYLzqBa3P0UVK94SQphVsh56uQ5isVtl6h73B-QD4YEPwwWc1Lwn7kO1s_22AmvY-2nyYsfERjzblaIflJDnIRx__4AjaO2P3S9wsx4K_kjDiPTh40QqZ7AjRun1BjIEILuPJqxHPfoQpndqAOyinYV61MmHwR4g4PaYMMw4QCzKv-gf03qgpwceX_RL9_vb1181tdffz-4-b67tKN6LOleZ0bDUzvGe9Hmqh-kFwqrpBdSPXHeOEE6rGWjEmup5DQZsBeGsEJcAEaS7Rp-3eEP3fBVKW936JrrSUDW3btdquUHyjdPQpRTBS23x6dY7KTrImcg1ObsHJEpw8BScfipX-Zw3Rzio-vm1qNlMK63dCfJ3qDdcz83a19A
CitedBy_id crossref_primary_10_3390_su17062536
crossref_primary_10_1038_s41598_025_89316_2
crossref_primary_10_1063_5_0249695
crossref_primary_10_1093_jcde_qwaf007
Cites_doi 10.1109/TEC.2010.2044414
10.1007/S10489-017-1019-8/TABLES/9
10.1049/IET-GTD.2017.0338
10.1080/15325008.2020.1797935
10.1109/JSYST.2021.3136778
10.1016/J.ASOC.2015.02.028
10.22266/ijies2023.0430.24
10.1016/J.EPSR.2004.01.006
10.1016/j.heliyon.2024.e26343
10.21203/RS.3.RS-2765810/V1
10.1049/IET-GTD.2015.1034
10.1016/J.APENERGY.2017.10.106
10.1080/01430750.2019.1583604
10.1016/J.EPSR.2005.03.002
10.1109/TPWRS.2011.2180406
10.1016/J.AEJ.2022.01.056
10.1016/J.IJEPES.2014.06.011
10.1109/ACCESS.2021.3134872
10.1016/J.ASEJ.2019.08.015
10.15676/ijeei.2020.13.2.5
10.52549/IJEEI.V9I4.3432
10.1109/ICADEE51157.2020.9368909
10.1109/TPWRD.2011.2158246
10.1049/IET-GTD.2020.0917
10.1109/ICNN.1995.488968
10.1016/J.AEJ.2021.09.063
10.1007/S00521-020-05092-2/TABLES/12
10.1016/J.ADVENGSOFT.2016.01.008
10.1155/2023/6081991
10.2139/SSRN.4173700
10.1007/S42452-021-04466-Y/FIGURES/8
10.2298/SJEE2401001P
10.1109/ACCESS.2022.3172789
10.1016/J.ESWA.2021.115352
10.1038/s41598-024-54910-3
10.1155/2020/1615792
10.1109/IT48810.2020.9070762
10.1016/J.ASOC.2020.106293
10.1109/ACCESS.2022.3155484
10.1109/ACCESS.2021.3076670
10.1155/2022/5015771
10.1109/TPWRS.2012.2197227
10.1504/IJSI.2013.055801
10.1109/TASE.2021.3072862
10.1016/J.EPSR.2007.10.002
10.1109/MPER.1989.4310641
10.1080/15325008.2016.1266714
10.18273/revuin.v22n3-2023007
10.1080/01430750.2018.1517688
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
DBID AAYXX
CITATION
DOI 10.1007/s00202-024-02724-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1432-0487
EndPage 3946
ExternalDocumentID 10_1007_s00202_024_02724_x
GroupedDBID -Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L8X
LAS
LLZTM
M4Y
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFFHD
AFHIU
AFKRA
AHWEU
AIXLP
ARAPS
ATHPR
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c391t-c82d5c4f8747cb19a7b982a6ba6d8c6480802ad1a449678ec4f3be85f920e4903
IEDL.DBID RSV
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001320125500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0948-7921
IngestDate Tue Sep 30 03:13:21 EDT 2025
Tue Nov 18 22:36:46 EST 2025
Sat Nov 29 08:01:06 EST 2025
Sun Apr 20 01:10:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Voltage-dependent load models
Bus voltage deviation reduction
Loss reduction
Optimal placement of DG
Hippopotamus optimization algorithm
Network reconfiguration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-c82d5c4f8747cb19a7b982a6ba6d8c6480802ad1a449678ec4f3be85f920e4903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3255325556
PQPubID 2044221
PageCount 38
ParticipantIDs proquest_journals_3255325556
crossref_citationtrail_10_1007_s00202_024_02724_x
crossref_primary_10_1007_s00202_024_02724_x
springer_journals_10_1007_s00202_024_02724_x
PublicationCentury 2000
PublicationDate 20250400
2025-04-00
20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 4
  year: 2025
  text: 20250400
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Archiv für Elektrotechnik
PublicationTitle Electrical engineering
PublicationTitleAbbrev Electr Eng
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References RS Rao (2724_CR41) 2013; 28
E Trojovska (2724_CR36) 2022; 10
AA Juan (2724_CR42) 1989; 9
K Balu (2724_CR43) 2020; 48
MI Akbar (2724_CR15) 2022; 10
U Raut (2724_CR46) 2020; 92
PH Kumar (2724_CR17) 2021; 9
MH Amiri (2724_CR32) 2024; 14
TT Tran (2724_CR9) 2020; 11
M Ali Shaik (2724_CR13) 2022; 61
J Kennedy (2724_CR33) 1995; 4
SZ Mirjalili (2724_CR35) 2018; 48
MDG Leite (2724_CR6) 2022
V Janamala (2724_CR44) 2021; 3
W El-Khattam (2724_CR1) 2004; 71
T Jayabarathi (2724_CR27) 2024; 10
AM Helmi (2724_CR48) 2022; 19
A El-Fergany (2724_CR47) 2015; 30
AM Shaheen (2724_CR28) 2021; 9
FS Abu-Mouti (2724_CR12) 2011; 26
S Mirjalili (2724_CR34) 2016; 95
A Pratap (2724_CR21) 2024; 21
M Kashyap (2724_CR2) 2020; 41
THB Huy (2724_CR24) 2022; 61
2724_CR31
SK Dash (2724_CR10) 2021; 13
N Kanwar (2724_CR19) 2017; 45
AR Abd El-maksoud (2724_CR23) 2023; 16
TT Nguyen (2724_CR26) 2021; 33
MV dos Santos (2724_CR25) 2020; 14
AK Bohre (2724_CR18) 2016; 10
A Shaheen (2724_CR30) 2022; 16
2724_CR3
K Jasthi (2724_CR8) 2018; 12
T Tran The (2724_CR11) 2020; 2020
THB Huy (2724_CR22) 2023; 2023
A Ehsan (2724_CR39) 2018; 210
CT Su (2724_CR40) 2005; 75
TT Nguyen (2724_CR29) 2022; 2022
XS Yang (2724_CR38) 2013; 1
RA Jabr (2724_CR4) 2012; 27
I Naruei (2724_CR37) 2021; 183
DQ Hung (2724_CR45) 2010; 25
KS Sambaiah (2724_CR14) 2021; 42
T Van Tran (2724_CR20) 2021; 9
HM Khodr (2724_CR49) 2008; 78
OD Montoya-Giraldo (2724_CR5) 2023; 22
A Mohamed Imran (2724_CR16) 2014; 63
2724_CR7
References_xml – volume: 25
  start-page: 814
  issue: 3
  year: 2010
  ident: 2724_CR45
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2010.2044414
– volume: 48
  start-page: 805
  issue: 4
  year: 2018
  ident: 2724_CR35
  publication-title: Appl Intell
  doi: 10.1007/S10489-017-1019-8/TABLES/9
– volume: 12
  start-page: 1303
  issue: 6
  year: 2018
  ident: 2724_CR8
  publication-title: IET Gener Transm Distrib
  doi: 10.1049/IET-GTD.2017.0338
– volume: 48
  start-page: 697
  issue: 6–7
  year: 2020
  ident: 2724_CR43
  publication-title: Elect Power Comp Syst
  doi: 10.1080/15325008.2020.1797935
– volume: 16
  start-page: 6371
  issue: 4
  year: 2022
  ident: 2724_CR30
  publication-title: iEEE Syst J
  doi: 10.1109/JSYST.2021.3136778
– volume: 30
  start-page: 803
  year: 2015
  ident: 2724_CR47
  publication-title: Appl Soft Comput
  doi: 10.1016/J.ASOC.2015.02.028
– volume: 16
  start-page: 2023
  issue: 2
  year: 2023
  ident: 2724_CR23
  publication-title: Int J Intell Eng Syst
  doi: 10.22266/ijies2023.0430.24
– volume: 71
  start-page: 119
  issue: 2
  year: 2004
  ident: 2724_CR1
  publication-title: Elect Power Syst Res
  doi: 10.1016/J.EPSR.2004.01.006
– volume: 10
  start-page: e26343
  issue: 7
  year: 2024
  ident: 2724_CR27
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e26343
– ident: 2724_CR3
  doi: 10.21203/RS.3.RS-2765810/V1
– volume: 10
  start-page: 2606
  issue: 11
  year: 2016
  ident: 2724_CR18
  publication-title: IET Gener Transm Distrib
  doi: 10.1049/IET-GTD.2015.1034
– volume: 210
  start-page: 44
  year: 2018
  ident: 2724_CR39
  publication-title: Appl Energy
  doi: 10.1016/J.APENERGY.2017.10.106
– volume: 42
  start-page: 1018
  issue: 9
  year: 2021
  ident: 2724_CR14
  publication-title: Int J Ambient Energy
  doi: 10.1080/01430750.2019.1583604
– volume: 75
  start-page: 190
  issue: 2–3
  year: 2005
  ident: 2724_CR40
  publication-title: Elect Power Syst Res
  doi: 10.1016/J.EPSR.2005.03.002
– volume: 27
  start-page: 1106
  issue: 2
  year: 2012
  ident: 2724_CR4
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2011.2180406
– volume: 61
  start-page: 8069
  issue: 10
  year: 2022
  ident: 2724_CR24
  publication-title: Alexandria Eng J
  doi: 10.1016/J.AEJ.2022.01.056
– volume: 63
  start-page: 461
  year: 2014
  ident: 2724_CR16
  publication-title: Int J Elect Power Energy Syst
  doi: 10.1016/J.IJEPES.2014.06.011
– volume: 9
  start-page: 165618
  year: 2021
  ident: 2724_CR20
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3134872
– volume: 11
  start-page: 389
  issue: 2
  year: 2020
  ident: 2724_CR9
  publication-title: Ain Shams Eng J
  doi: 10.1016/J.ASEJ.2019.08.015
– volume: 13
  start-page: 318
  issue: 2
  year: 2021
  ident: 2724_CR10
  publication-title: Int J Elect Eng Inform
  doi: 10.15676/ijeei.2020.13.2.5
– volume: 9
  start-page: 880
  issue: 4
  year: 2021
  ident: 2724_CR17
  publication-title: Indonesian J Elect Eng Inform (IJEEI)
  doi: 10.52549/IJEEI.V9I4.3432
– ident: 2724_CR7
  doi: 10.1109/ICADEE51157.2020.9368909
– volume: 26
  start-page: 2090
  issue: 4
  year: 2011
  ident: 2724_CR12
  publication-title: IEEE Trans Power Delivery
  doi: 10.1109/TPWRD.2011.2158246
– volume: 14
  start-page: 6526
  issue: 26
  year: 2020
  ident: 2724_CR25
  publication-title: IET Gener Transm Distrib
  doi: 10.1049/IET-GTD.2020.0917
– volume: 4
  start-page: 1942
  year: 1995
  ident: 2724_CR33
  publication-title: Proc ICNN’95 Int Conf Neural Netw
  doi: 10.1109/ICNN.1995.488968
– volume: 61
  start-page: 4081
  issue: 5
  year: 2022
  ident: 2724_CR13
  publication-title: Alexandria Eng J
  doi: 10.1016/J.AEJ.2021.09.063
– volume: 33
  start-page: 1625
  issue: 5
  year: 2021
  ident: 2724_CR26
  publication-title: Neural Comput Appl
  doi: 10.1007/S00521-020-05092-2/TABLES/12
– volume: 95
  start-page: 51
  year: 2016
  ident: 2724_CR34
  publication-title: Adv Eng Softw
  doi: 10.1016/J.ADVENGSOFT.2016.01.008
– volume: 2023
  start-page: 6081991
  issue: 1
  year: 2023
  ident: 2724_CR22
  publication-title: J Control Sci Eng
  doi: 10.1155/2023/6081991
– year: 2022
  ident: 2724_CR6
  publication-title: SSRN Electron J
  doi: 10.2139/SSRN.4173700
– volume: 3
  start-page: 1
  issue: 4
  year: 2021
  ident: 2724_CR44
  publication-title: SN Appl Sci
  doi: 10.1007/S42452-021-04466-Y/FIGURES/8
– volume: 21
  start-page: 1
  issue: 1
  year: 2024
  ident: 2724_CR21
  publication-title: Serbian J Elect Eng
  doi: 10.2298/SJEE2401001P
– volume: 10
  start-page: 49445
  year: 2022
  ident: 2724_CR36
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3172789
– volume: 183
  start-page: 115352
  year: 2021
  ident: 2724_CR37
  publication-title: Expert Syst Appl
  doi: 10.1016/J.ESWA.2021.115352
– volume: 14
  start-page: 1
  issue: 1
  year: 2024
  ident: 2724_CR32
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-54910-3
– volume: 2020
  start-page: 1615792
  issue: 1
  year: 2020
  ident: 2724_CR11
  publication-title: Math Probl Eng
  doi: 10.1155/2020/1615792
– ident: 2724_CR31
  doi: 10.1109/IT48810.2020.9070762
– volume: 92
  start-page: 106293
  year: 2020
  ident: 2724_CR46
  publication-title: Appl Soft Comput
  doi: 10.1016/J.ASOC.2020.106293
– volume: 10
  start-page: 25669
  year: 2022
  ident: 2724_CR15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3155484
– volume: 9
  start-page: 67186
  year: 2021
  ident: 2724_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3076670
– volume: 2022
  start-page: 5015771
  issue: 1
  year: 2022
  ident: 2724_CR29
  publication-title: Math Probl Eng
  doi: 10.1155/2022/5015771
– volume: 28
  start-page: 317
  issue: 1
  year: 2013
  ident: 2724_CR41
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2012.2197227
– volume: 1
  start-page: 36
  issue: 1
  year: 2013
  ident: 2724_CR38
  publication-title: Int J Swarm Intell
  doi: 10.1504/IJSI.2013.055801
– volume: 19
  start-page: 82
  issue: 1
  year: 2022
  ident: 2724_CR48
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2021.3072862
– volume: 78
  start-page: 1192
  issue: 7
  year: 2008
  ident: 2724_CR49
  publication-title: Elect Power Syst Res
  doi: 10.1016/J.EPSR.2007.10.002
– volume: 9
  start-page: 101
  issue: 4
  year: 1989
  ident: 2724_CR42
  publication-title: IEEE Power Eng Rev
  doi: 10.1109/MPER.1989.4310641
– volume: 45
  start-page: 476
  issue: 5
  year: 2017
  ident: 2724_CR19
  publication-title: Electric Power Comp Syst
  doi: 10.1080/15325008.2016.1266714
– volume: 22
  start-page: 87
  issue: 3
  year: 2023
  ident: 2724_CR5
  publication-title: Rev UIS Ing
  doi: 10.18273/revuin.v22n3-2023007
– volume: 41
  start-page: 1561
  issue: 14
  year: 2020
  ident: 2724_CR2
  publication-title: Int J Ambient Energy
  doi: 10.1080/01430750.2018.1517688
SSID ssj0003594
Score 2.4184775
Snippet This paper presents an innovative approach to enhance the efficiency of radial distribution networks by optimizing the placement of distributed generation (DG)...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3909
SubjectTerms Algorithms
Deviation
Distributed generation
Economics and Management
Effectiveness
Electric potential
Electric power loss
Electrical Engineering
Electrical loads
Electrical Machines and Networks
Energy Policy
Engineering
Fractals
Heuristic
Heuristic methods
Impact analysis
Networks
Neural networks
Nodes
Optimization
Optimization algorithms
Optimization techniques
Original Paper
Placement
Power Electronics
Power factor
Radial distribution
Reactive power
Reconfiguration
Systems stability
Test systems
Voltage
Title Application of the hippopotamus optimization algorithm for distribution network reconfiguration with distributed generation considering different load models for enhancement of power system performance
URI https://link.springer.com/article/10.1007/s00202-024-02724-x
https://www.proquest.com/docview/3255325556
Volume 107
WOSCitedRecordID wos001320125500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0487
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003594
  issn: 0948-7921
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQ9FAOQCmI5aU59EYjJU686xxXCNQTQgIqbpHjx-5Ku0m0ySL-Iv-KseNsoGorwSG5eOJY8tgz4_F8HyE_YvRhpchlYBg1QcKNTRLmLDCRkSN0J4wKW7KJ0c0Nf3xMb31RWN3ddu9Skm6nXhe7Wc-GBmhTbN4R3-g5bjGLNmNj9Lvf6_03Zo7-EOMWHoxSGvlSmb_38d4c9T7mH2lRZ22udz83zj2y471LGLfq8I1s6GKfbL_BHPxOXsZ9yhpKA-gAwnRWVWVVNmKxqqHETWThqzNBzCflctZMF4DOLSiLsusJsqBoL5CDC6nNbLJqdQnsyW4vqRVMHLK1a5OeHhRHAh01SwPzUihwlDy1-40uplYX7bmlHWFlidyghZyGqi90OCAP11f3l78Cz-cQyDiNmkByqphMDMcQRuZRKkZ5yqkY5mKouBwmFuKSChWJJEnRhmoUjXPNmUlpqJM0jA_JZlEW-ogAVzSRaN9DjQFuFHIhImU0o0owZkHkBiTqpjWTHuzccm7MszVMs5umDKcpc9OUPQ_IxfqbqoX6-K_0aactmV_2dRZjgGYfNhyQn5129M3_7u34Y-In5Cu1PMTuBtEp2WyWK31GvsinZlYvz91yeAXK6QyV
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUqqEQ5QAutupS2c-BWIiVOvOscUVVEVbpCglbcIscfuyvtJtEmi_oX-68YO86mIECih-TiiWPJY8-Mx_MeIUcx-rBS5DIwjJog4cYmCXMWmMjIEboTRoUt2cRoPObX1-mFLwqru9vuXUrS7dTrYjfr2dAAbYrNO-IbPcfNxNLs2Bj98vd6_42Zoz_EuIUHo5RGvlTm4T7umqPex7yXFnXW5nT3_8b5mux47xJOWnV4Q17oYo9s_4M5uE_-nvQpaygNoAMI01lVlVXZiMWqhhI3kYWvzgQxn5TLWTNdADq3oCzKrifIgqK9QA4upDazyarVJbAnu72kVjBxyNauTXp6UBwJdNQsDcxLocBR8tTuN7qYWl2055Z2hJUlcoMWchqqvtDhLfl1-u3q61ng-RwCGadRE0hOFZOJ4RjCyDxKxShPORXDXAwVl8PEQlxSoSKRJCnaUI2ica45MykNdZKG8TuyUZSFfk-AK5pItO-hxgA3CrkQkTKaUSUYsyByAxJ105pJD3ZuOTfm2Rqm2U1ThtOUuWnK_gzIl_U3VQv18aT0YactmV_2dRZjgGYfNhyQ4047-ubHezt4nvhnsnV29fM8O_8-_vGBvKKWk9jdJjokG81ypT-Sl_KmmdXLT25p3AJnZw95
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF5VtKrKAUopIhDKHHqjFvbam6yPERBRFUURfYibtd5HEimxrcRB_Yv9V51d2zGgFqnqwb54vF5pxjszOzvfR8jHEGNYKVLpGUaNF3Fji4Qp80xgZB_DCaP8imyiPxrxu7t4_KCL3512b0qSVU-DRWnKyvNCmfNN45uNcqiH_sXWIPGOUeTLCDMZe6jr9uuPzVocMkeFiDkM9_oxDeq2mT-P8dg1tfHmkxKp8zzD3f-f81uyU0edMKjMZI-80Nk7sv0Ai3Cf_Bq0pWzIDWBgCNNZUeRFXorFegU5Li6LumsTxHySL2fldAEY9IKy6Ls1cRZk1cFycKm2mU3WlY2B3fFtJbWCiUO8ds9kTRuKM4GGsqWEeS4UOKqelfuMzqbWRu1-pp1hYQneoIKihqJtgHhPvg-vvl1cezXPgyfDOCg9yaliMjIcUxuZBrHopzGnopeKnuKyF1noSypUIKIoRt-qUTRMNWcmpr6OYj88IFtZnulDAlzRSKLf9zUmvoHPhQiU0YwqwZgFl-uQoFFxImsQdMvFMU828M1OTQmqKXFqSn52yNnmnaKCAHlWuttYTlIvB6skxMTNXqzXIZ8aS2kf_320o38TPyWvx5fD5Obz6MsxeUMtVbE7ZNQlW-VyrU_IK3lfzlbLD-4v-Q3dzhhd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+the+hippopotamus+optimization+algorithm+for+distribution+network+reconfiguration+with+distributed+generation+considering+different+load+models+for+enhancement+of+power+system+performance&rft.jtitle=Electrical+engineering&rft.au=Maurya%2C+Priyanka&rft.au=Tiwari%2C+Prabhakar&rft.au=Pratap%2C+Arvind&rft.date=2025-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0948-7921&rft.eissn=1432-0487&rft.volume=107&rft.issue=4&rft.spage=3909&rft.epage=3946&rft_id=info:doi/10.1007%2Fs00202-024-02724-x&rft.externalDocID=10_1007_s00202_024_02724_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0948-7921&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0948-7921&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0948-7921&client=summon